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A theorem of the Phragmén—Lindel6f type f6r second-order
elliptic operators

By Lars LitHNER

1. Introduction and notations

Let R™ be the real n-dimensional Euclidean space with coordinates z= (x,,

Tgy «oes Tn), |w[=1/x?+x§+ ...+ 2% C denotes the set of all complex-valued infi-

nitely differentiable functions on R™ with compact supports and L*Q) is the

Hilbert space of all complex-valued square integrable functions on the set Q.
In R! let D be the domain {z|x>a} where a is arbitrary and let L be the

differential operator
d 2
- (—) +4,4>0.

dx

The solutions of Lu=0 are
u(x)=C,eVie+ Che Viz,

where C, and C, are arbitrary constants. From this we conclude that if a so-
lution is bounded in the domain D or if it belongs to L% D) then it decreases
like e7V2z when z tends to infinity and the same holds for its derivative. In
particular, we*™ and (du/dz)e”® belong to LX(D) if u<VA.

In this paper we shall extend this result to second-order elliptic differential
operators in R”,

n n
L=— 1 ,22 g (x) Dy + kZI bi(x) D+ alx),

1

where Dy, = 0*|ox,0x, D= 8/0x;, and ay(x)=ay(x) (for simplicity we confine our-
selves to the real domain).

Giving the result of the general case at the end of the paper we start with
the operator L= — A+ a(x), where A is the Laplace operator in E" and where
a is positive and continuous or, more generally, locally bounded and Borel
measurable. Then we can prove that if » is a solution of ZLu=0 outside some
compact set K and if » belongs to L*R" — K) then, in the same sense as above,
u and its first derivatives decrease exponentially like ¢ ?® when || tends to
infinity. ¢@(#) is the geodetic distance from the origin to the point z in the
metric ds®=a(x)(dx} +dz3+ ... +dal).
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2. The special case

Let D be the domain {x||x|>R}, where R is a positive number and let B
be the boundary of D. L is the operator —A-+a where the function a is
strictly jpos1t1ve in R™. Let @(x) be the geodetlc distance from the origin to the
point z in the metric ds®=a(x)(dx}+daj+ ... +dal) that is, (x) is the greatest
lower bound of

fFVch/)de%erngr...eryi Y=Yy Yas -+ er Un)s

where I' is a piecewise continuously differentiable curve starting at the origin
and ending at z. Putting further conditions on a ¢ will be continuously differ-
entiable.

Lemma 1. | grad g(z)|<Va(z).

Proof. It is evident from the definition of ¢ that

|¢p(x+Ax)—tp(x)|<|fF VtTy)de%—i—dy%Jr...eryil,
where T, is the straight line segment joining x and x+ Ax. This gives the in-
equality.

_Lemma 2. (Carleman [1].) If u belongs to L¥D) and s a solution of Lu="0 then
Vau and | grad u| belong to L¥(D).

Proof. Let p be a positive function in C. Then we have
O=f u(x)zp(z)Lu(x)dz=f a(x)y;(x)u%x)dx—f > ug(x)u(x) plx)de,
D D 1

ou

where Ugp, = .
T ox, 0%

By partial integration we get

=f M(u)ds-l—j iu?(x)w(w)dx—l-
B D1

+ f éu,—(m) pi(x)u(z)de + fna(x)zp(x)ﬁ(x)dx, (1)

where M(v) contains w and first derivatives of u and where ds denotes the
surface element. In the third integral we can integrate by part once more and get

f zu (x) wi(x)u(x)dx=f M’(u)ds—%f %wn(w)uz(x)dx, (2)
D1 B D1

where M’ is an analogue of M.
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From (1) and (2) we get the following estimates

f p(z)grad®u(z)dz + f a(z) p(x) u?(z)de <

< ’ fB(M(u) + M'(u))ds|+ %ngj pu(x) | ui(z)de.

Letting 9 tend to 1 in such a way that y,; is bounded we conclude that the
lemma is true.

We are now going to prove Theorem 1 below. As before, let u€L*(D) be a
solution of Lu=0 and let v be a function with locally square integrable first

derivatives such that Vav and |grad | belong to L*D). An integration by
parts gives

0=f v(x)Lu(x)dx=f M(u,v)ds +
D B
—l—f grad u(z) - grad o(x)dz + f a(x)u(x)v(zx)dz, (3)
D D
where M(u,v) contains %, grad » and v». In fact, this identity is true if we re-
place v by yv, where y€C. Letting y tend to 1 in such a way that |grady|

tends to zero, we get the general case.
Now let 0 <e<1 and put

" fa(@) = min (X797, ),

where N is a positive number and where ¢ is the function in Lemma 1. It

follows from Lemma 1 and Lemma 2 that Vafyu and |grad (fyu)| belong to
L*D). Thus we can substitute fyu for v in the formula (3) and get

0= J‘ M(u, fyu)ds+ f fu() grad® u(zx)dx +
B D
+ f u(x) grad u(z) - grad fy(x)dx + f a(z) fy(x) Wi (x)dx. (4)

From Lemma 1 it follows

| grad fu(z) | < 2(1 — )| grad p(a) | fu(e) < 201 — &)V a(a) fula)- (5)
From (4) and (5) we get

f fn(®) grad® w(z)dx + f a(x) fu(z) Wi (x) dz <
D D

<

[ e fN-u>ds| +201-0) [ o)V | ) grad o) a5
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Usinig Schwarz’s inequality we get

e(f fv(x) grad® u(x) dx + f fN(x)a(x)u2(x)dx) < ' f Mu, fy-u)ds
D D B

For large N the right member is a constant and thus, letting N tend to in-
finity, we have proved the following

Theorem 1. If u belongs to L*(D) and is a solution of Lu=0, then for every posi-
tive number ¢

l/a(x)u(x) e(l_e) @) and |grad u(x) | e(l—e) @)
belong to L*(D).
3. The general case

Consider the operator

L= —
i,

02() D + 5 by(@) Dy + (),

pMe

1

ay(r) =ay{xr). We suppose that a, besides the conditions in Theorem 1, satisfies
a(x) >d >0 outside some compact set.
The operator L is supposed to be uniforrly elliptic in D, that is

s

ag(x) & & = a> & for all z in D,
1

i, k=1

where « is a positive number. Further we suppose that day(z)/ox, and by(z), 7,

k=1,2,...,n, tend to zero when |z| tends to infinity.
With the same technique as in the proof of Theorem 1 we can prove

Theorem 2. If w belongs to L*(D) and is a solution of Lu =0, then for every positive ¢
ue" 2% and |gradu|e® ®? belong to L*D),

where @(x) is the geodetic distance from the origin to x in the metric
n
ds®=a{z) > air{zx)dx;dx;
i, k=1

(@ix(x)) is the matriz which is inverse to (au(x)).

To show that our theorems in a certain sense are the best possible we give
the following
Example. Let b and ¢ be two positive numbers. The function

u(z, y) = e-3 VB r+Veyy
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satisfies an equation — Au-+a(x,y)u=0, where a(, y)/ba®+ cy®—>1 when Va® + 42
tends to infinity. If ¢(x,y) denotes the geodetic distance from (0, 0) to (x,y)
in the metric ds’= (ba®+ cy®)(da®+dy®) it is easy to see that g(x, ) =3(Vo? +
+Vey?).
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