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Some examples of sets with linear independence

By IncEMAR WIK

A necessary and sufficient condition for the real numbers z,,z,,...,2y to be
linearly independent (mod 27) over the rational numbers is, by Kronecker’s
theorem:

(1) For every £>0 and real numbers 6,, 0,, ..., 0y, there exists a real number
t such that

[e®r —e%|<e (v=1,2,...,N).

An equivalent condition is:
(2) For every sequence 4, ...,ay of complex numbers

N N
sup 11+ 3 a,e*|=1+3 |a,
r=1 1

where ¢ represents a real number.

Instead of using all real numbers ¢, we might as well use only the positive
integers >0, with the same conclusion.

The two conditions above give rise to generalizations of the notion of linear
independence in closed sets.

A. E is a uniform Kronecker set if, to every continuous function f on E, of
absolute value 1, and to every &>0, there exists a real number ¢ such that

sup |f(z) — ™| <e.
TekE
B. F is a Kronecker set if

inf sup =1,

nelp n

Lgm dp(x)

?h'ere| Fo(E) is the class of functions g which are constant outside £ and satisfy
E d = 1.
F(’fr a finite set, z,,,,...,2y, condition B is satisfied if and only if 2, —x,,
X3~ &y, ..., Zy— %, are linearly independent (mod 2x).

Thus a finite set F is a uniform K-set if and only if E U {0} is a K-set. In
the general case the following is true:

If B is a uniform K-set, then E U {0} is a K-set.
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I. WIK, Sets with linear independence
Proof. Suppose that E is a uniform K-set and choose an arbitrary u €To(E U {0})

and an &£>0. We may suppose, without loss of generality, that x has a real
jump @ at x=0. We have

sup

[ ttal =] a1,
EUL0} EU{0}>

where the supremum is taken over all continuous functions on E, of absolute
value 1. Thus there exists a continuous f such that |fzyucoy fdu|>1—¢, and
since E is a uniform K-set #, exists such that

|f(z) —e*|< & on E.

The triangie inequality gives:

f eitoz d,u ((E)
EU{0>

Since ¢ is arbitrary, E U {0} is a K-set.

The question, raised by Rudin in [1, p. 113], about the equivalence of K-
sets and uniform K-sets is answered negatively by Theorem 2. (If F U {0} is a
K-set, then F is not necessarily a uniform K-set.)

It follows from the Riemann-Lebesgue lemma that a K-set cannot have po-
sitive Lebesgue measure. (Choose du(x)=exp (iNz)-dz/mE.) How large can a
K-set be? Theorem 1 gives the answer to that question. Finally we prove, in
Theorem 3, that a uniform K-set cannot be maximal, i.e. we can always add
one point and the set remains a uniform K-set. It is not known whether the
same is true for K-sets.

The idea of the construction in Theorem 1 is the following: Let {py};° be a
sequenee, such that py.,/py—oo, and I,,1,,...,Iy intervals on (0, 2m). A sign
+1 or —1 is attached to the intervals in every possible way, i.e. 2¥ ways. If
p, is large enough there are intervals in each I, where exp(ip,x) is approxima-
tely equal to the first combination of signs. The union of these intervals = E,.
If p,/p, is large enough there are intervals in each I, N E,, where exp(ip,z) is
approximately equal to the second combination of signs. The union of these
=E,c E,. Proceeding like that we finally get E,; which has the property that
an arbitrary combination of signs on I, is approximated on E, by one of the
exp(ip,x), v=1,2,...,2".

The intervals of K, are now taken as I,’s and we proceed as above. If we
make the p,’s grow rapidly, it means that the intervals are partitioned into a
great many parts. This makes the Hausdorff measure large. At last we obtain
a Cantor set with large Hausdorff measure such that every combination of siéns
on intervals is approximated by the exp(¢p,x)’s. This is roughly speaking the de-
finition of a umform K-set.

In Theorem 2 we make.the same construction but at each partition we leave
one “odd” interval large enough to guarantee that the combination of signs is
not approximated on it. This is enough for the set not to be a uniform K-
set. Since the definition of K-sets involves an integration, the set is a K-set if
the “odd” intervals are disjoint and tending to zero.

>1-2¢.

a_*_f eitozd‘u(x)
E
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To facilitate the reading we have omitted some uninteresting details. There-
fore the proofs contain a few unprecise statements that can easily be proved.

Theorem 1. Let h(r) be a continuous positive function defined for r =0 and such
that h(0)=0, h(r) is increasing and lim,_, .o h(r)/r= + co. Then there exists a
perfect uniform K-set E of positive Hausdorff measure with respect to the measure
function h. (M,(E)>0).

Proof. We prove the theorem by constructing a set with the desired property.
If A(r)/r does not tend to infinity monotonously when r tends to +0, we
study the measure function A,(r) defined by

h(r)=r-inf h(—rl),

nsr Ty

which has this property. Since h,(r)<A(r), it follows immediately from the de-
finition that M, (£)>0 1mphes M, (E)>0. We may thus suppose, Wlthout loss
of generality, that h(r)/r is decreasing.

We construct the set # as a generalized Cantor set = N7°Ey. Let {gn}?
be an increasing sequence of positive integers and {dy}i° a decreasing sequence
of real numbers with the property limy_, , 6y=limy_,. 1/gy=0.

Suppose that Ey has been constructed as the union of My disjoint closed inter-
vals I; of length ;. We attach to each of these intervals a “sign” exp(2nik/qy),
where k can be 0,1,2,...,gy—1. This can be done in ¢¥¥ different ways. To

each combination of signs we choose a positive integer p, xi1,v=1,2, ..., ¢¥".
This choice is made so that the inequalities (1) and (4) are satisfied.

20
Pv+1.~+1>—6 Drwit (=1,2,...,¢¥¥—1).
N+1
(1)
20
‘P mx-1.

P1N=1 =
On+1 I

Nor
. > . . Q
We construct Fy,, as a finite mtersectlonﬂlN B, yi1, where B, 1 vi1 < B, nn

E, .1 541 is the part of E, y., where

Ieipv+l, N+1% . g2nikian I <Oni1- (2)

Here k& has the different integer values in I, U E,, y.1 that are associated with .
Ey=Ey yi1. Only intervals of equal lengths (~dy.1/Pys1.5+1) are accepted.
Then E, y,, consists of M, y,; intervals of lengths w,, y.1. - The total length of
E, .1, 541 is approximately dy,; times the length of E, y.; and we obtain the
following relation:

é
M1, vir @osr, v01 > My, w1 @y, w1 *? 3)
h(w, 11, é
Thus hwyr1,n41) * Myi1, w1 >M'MV.N+1 “Wy, N+1" i1 4)

Wy+1, N+1



I. Wik, Sets with Linear independence
if @,+1, x+1 i3 small enough, because h(r)/r—>co when r—+0. Since

Sy+1
Dy +1, N+1 7 ’
Pr+1,N+1

the inequality (4) is satisfied if p,.y, y+1 is chosen large enough.

We have now constructed E,.; vy, starting from B, y.i. Ei, y.1 is constructed
in a similar way from Ey. We get Ey.1= E, y:+1 and finally E= N’ Ey as
a perfect set of Cantor type.

We first prove (I) that the Hausdorff measure with respect to % is positive
and then (II) that E is a uniform K-set.

I. To prove that M,(E)>0 we show that the equivalent condition is ful-
filled: There exists a non-negative set function u(e) with u(E)=1 such that
u(8)< h(r) for every interval S of length 2r.

Let u, v be continuous, with its total mass 1 equally distributed on the in-
tervals of E, y, and constant outside B, y. ty+1. 5 is equal to u, y outside E,
and the mass of uy on an interval I, of E, y is equally distributed on the in-
tervals of X,.; y that are contained in I,

Define BN A= PO N+2= M 2y -
ay N+1

Then uy—>pu when N —co and u is continuous and distributes its unity mass
only on E.
We now prove that h(mI)>u(I) for an arbitrary interval I. For one » and
one N, I satisfies
wv+1.N< mI< Wy, N-

From the way pu is constructed it follows immediately that

”(I) <mI'C,,+1Y. N> (5)
where ¢, ————l—
PN My v @i N

and we have from (3)

Cor L. N <G N 5’
N

Since A(r)/r is decreasing and (4) holds we obtain

hmI) _ h(w, x) 2 2
> > 6y N> Cpan N
ml1 Wy, N >6N'-Mv.va.N 6N6'N G ¥

Thus hmI)=ml-c, 41, N (6)
(6) and (6) give A(mI)>u(l) and it follows that M,(E)>0.

II. We now prove that every continuous function ¢ on E such that |p|=1,
can be uniformly approximated on E by characters e'™.

210



ARKIV FOR MATEMATIK. Bd 5 nr 12

Let @ be an arbitrary function of the described kind and choose £>0. ¢ is
uniformly continuous on E and thus

lp(x) — p(x,)| < ¢ if |x—2,]<d.

Choose an N such that wy<d and z, as one point in the »:th interval of Eg,
K>N. Approximate ¢ with the step function having the values @(z,) = exp(4b,)
on the »:th interval of E;. By the triangle inequality we obtain

lemz _ e:‘ﬂ,‘ < ,emz_ 2nt<kqu>l + lezni(qug) _ e""VI.

Here the numbers ¥ may be chosen in the best possible way and it follows
|exp (inx) — exp(iB,)] < Sx 41 + 2 |sin (77/gx)| < efor n =oneof thep, k1,7 =1,2, ...,%%
and K>K, But K is arbitrary >K, and thus

inf |p(x) —e™|<2¢ on E.

Thus E is a uniform K-set q.e.d.

Lemma. If E is a uniform K-set there ewists, to every £>0, a'sequence {t,},
t, oo, such that |exp (it,x)—1|<e on E.

Proof. Let ¢ be a continuous function of absolute value 1 on E but not
equal to any character on E. Then there exists {s,}(‘,"’ where s, —oco such that

le!** — ()| <§ on E.
Thus by the triangle inequality:
[e* —e*w|<¢ and |6 W —1|<¢
and {s,—s,} is a sequence with the desired property.

Theorem 2. There exists o set E such that E U {0} is a K-set and E not a uni-
form K-set.

Proof. We prove this theorem by a construction similar to that in Theorem 1.
Condition (4) need not, however, be fulfilled. But when constructing X, 5., we
leave one interval I, of length 27(p,-1, v+1 and one interval I, of length 2x/p, y.1
unchanged. In E,,, 5.1 I, serves as an I, and an interval of length 27/p,. 1, y41
is left unchanged as an I, The former I, is, however, divided in accordance
with the “sign” and so on. These “odd” intervals may be chosen disjoint from
all preceeding “‘odd” intervals. This is easily checked since the number of in-
tervals increase by a factor 3, at least, at each partition because of (1). The
set K, v thus consists of one interval of length 27/p, 1, ~, one of length 27/p,, v,
and all the others of length approximately 6y/p,, r.

qﬁ”

OlEv.N+1=EN+l and QEN:E
is a perfect set of Cantor type as in Theorem 1.
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I. WIK, Sets with linear independence

1. Eu{0} is a K-set.

We choose an arbitrary ¢>0 and a function u of bounded variation with
sapport on.F U {0}. We normalize u so that [zucey |du|=1, ie. EETWE U {0}),
and g has a real jump a at 2=0. u has jumps =a, at the points z,. Choose
p such that 2% |a,|<e and put u,(x)=pu(x) — 251 8a(x) where

Ay, X Z Xy

8q(x) = {

0, z<z,.

f einrdﬂ(x) . j einzdlul(x)
Eu{0> EUL0>

We make a finite division of (0, 2m) in intervals I, such that

» ( f Jautz) —e"’vldu(w)ll) <

Then <e. (7)

where UI,>E and I, has its endpoints in the complement of E. For the in-
terval that contains z=0 we take 6,=0. This is possible, for, by the Radon-
Nikodym theorem, du(x) =exp (ig(x)) |du(x)| where g(x) is measurable with respect
to |du| and thus can be approximated by a step function. Exp(if,)|du,(x)| has
constant argument on every interval in Ey for N>N,. For N>N,>N, it is
also true that wx,,n=1,2,...,p, do not lie in any “odd” interval. The conti-
nuous part of g, is uniformly continuous and thus §|du|< & where we integrate
over the two “odd” intervals of Ey and N >N,.
For N >Max (N,,N,) we obtain

f einzdlul(z) f einz d:ul(x)
EU{0> EyU{0>

where I, and I, are the two “odd” intervals of Ey. Hence

2 Vo
> f e duy @)+ 3. | e du(e)
I, v=3J I

=1 »

> —&z —2e>

f einzdlul (x)
E

g , eim:d’ul (x)

3 [ e o)

>3 [ @ =3 [ 11-eoes a0 -2
3 JI, 3J1,

For n=one of the p, .1, v=1,2, ...,4%% we find
Py, n+15 , q

ZJ |1 — el || du, (2) | < w1 +2 sin =
3JI, N

<é&

for N >N,. We thus obtain

2l—e—e—2e=1—4¢

f ™ du, (x)
E

sup
n
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and by (7) and since ¢'is arbitrary >0 it follows

=1

f ™ dy ()

sup
and ¥ is a K-set.

2. E is not a uniform K-set.

Suppose that E is a uniform K-set. Then, by the lemma, there exists ¢,
such that
le*—1|<e on E. (8)
For one v and one N

pv, N < to < pv.+l, N-

On the “odd” interval of length 2n/p, y there are points from E on every in-
terval of length 27n/p,.s y. But exp (ifyx) assumes all values of absolute value
1 on an interval of length 27/p, v. Let & be a point from the “odd” interval
such that exp (i#yf)= ~1. x, is a point from E such that |z,—&|<27/pysan.
Then

]
. -2
|gfteme — 1| > et — 1| — | eitef — gitomn| > 2 — 2 by 27
pv+2.N
. . 7o
>2—9 sin 22N - 99 gin .
pv+2.N 20

which is a contradiction to (8) if ¢ is sufficiently small.
This proves part 2 of the theorem.

Theorem 3. There exisis no maximal uniform K-set.

Proof. Let E be a uniform K-set. Then, by the lemma, there exists, to an
arbitrary ¢>0, a sequence {£};° such that |exp (it,z)—1|<e, v=0,1,.... Let
{6,} be a sequence of positiye numbers tending to zero. We may take the
increasing sequence {f,}¢°-so thin that

8,/ >2n/t,11, v=0,1,2,.... (9)

Then there exists a point £ € C(E) such that {exp (if,£)}&° is everywhere dense on the
unit circle. )

We construct this point as a N§ E,, where E,,;<E,. The complement of E
contains an interval I and mI>2n/ty for some N.

E,=interval in C(E) of length 2m/ty.

E,=one interval where |¢7+17—1]<4,.

E, = one interval where |exp (ity.,x) — exp (2mir,)| < 8,, »=2, 3, ..., where r, runs
through the rational numbers between 0 and 1.

(9) secures that this can be done.
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1. WIK, Sets with linear independence

Let f be an arbitrary continuous function, |f|=1, on E U {£} and f(&)=exp
(¢py). Since E is a uniform K-.set there exists, to an arbitrary £>0, a real num-
ber s, such that |f(x) —exp (is,x)| <& on E. But exp (is,£) =exp (ig,), where ¢,
may be different from ¢,. The way we constructed £ gives us a number #,, such
that |exp (it,, &) —exp (i(g,— @,))| <& and |exp (it,,z) —1|<e on E. Hence

| /() — exp (i(sy +t,) )| < |f(z) — €% + | — €7 - exp (it x)| < 2&
on K. |£(£) — exp (i(so +8,)E)| =|e'™ — &' -exp (it,, &)|<e.

Thus s,+4, is a ¢t such that |exp (itx) — f(x)| <2¢ on E U {£}. Since ¢ is arbitrary
Eu{¢&} is a uniform K-set, which proves Theorem 3.
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