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Generalized zeta-functions 

By BURTON RANDOL 

1. Introduction 

In  this paper, we will show tha t  some of the features common to certain 
zeta-functions which occur in analysis are properties of much more general ob- 
jects. As it turns out, a considerable unity of t reatment  can be achieved with 
surprisingly mild assumpt ions ,  and when possible, we will point out how familiar 
cases fall within the more general framework. Our starting point will be Boch- 
ner 's  paper  [1], and I would like here to express my  gratitude to Professor 
Bochner for his generous advice during the preparation of this paper, and to 
thank Professors Edward Nelson and Rober t  Langlands for several informative 
conversations. 

2. Some examples 

1. The Riemann zeta-function can be defined in a right half-plane by  a Di- 
richlet series 

2~(2s) = ~ 'n  -2~, 

where the prime indicates tha t  the summation is over all non-zero integral lattice- 
points in E 1. In  particular, the series is of the general type 

Y/[P(n)]-~, 

where P is a positive form in E 1. 
2. In  [3], P. Epstein discussed, among other things, series of the type 

~/[P(n)] -s, 

where P is a positive-definite quadratic form in E ~, and where the summation 
is over all non-zero integral lattice-points in E k. He was able to show tha t  the 
function corresponding to the series (the latter clearly converges uniformly in 
some right half-plane) is meromorphic in s, and satisfies a functional equation 
analogous to tha t  for the Riemann zeta-function. 

3. Bochner [1] considered series of the type 

S'[P(n)] -s, 
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where P is simply required to be a positive homogeneous form in E ~, not ne- 
cessarily quadratic. He showed that  the function corresponding to the series is 
meromorphic in the a-plane, with a single simple pole at  s = k / N ,  where N is 
the degree of the form. In addition, he showed that  the function 

F(x, s) = lim ~'e 2~<z' ">-t' 'l '  [p(n)] -s 
$--~0 

exists for arbitrary complex s and x not an integral lattice-point, and is, for 
fixed s, real-analytic in x with certain growth properties in the neighborhood 
of a lattice-point. (Here "1" ]" denotes the Euclidean norm). If s is a positive 
integer, the function F(x, s) corresponds to a fundamental solution on the k-torus 
for the operator 

1 ~ 8 

3. A General izat ion  

Let  B be a (not necessarily commutative) Banach algebra with unit. Let  
~(x) be a B-valued function of z =  (x 1 . . . . .  xk) in g k -  {0} satisfying the following 
conditions: 

(a). (Homogeneity) There exists a positive number N, such that  fl(rx)= evil(x) 
for r > 0  and x~=0. 

(b). fl(x) is C ~~ in E ~-{0}.  (By C a we will always mean that  all mixed 
derivatives exist in the strong topology.) 

(c). For all x # 0 ,  the spectrum of /~(x) is contained in C t -  R_, where R_ = 
the non-positive reals. (It will develop that  there are possible variants of this 
condition.) 

Examples 
1. B =  C 1, f l ( x )=x  2. (This will correspond to the Riemann zeta-function.) 
2. B = C 1, fl(x) = P(x), where P is a positive homogeneous form on E k. (Epstein 

zeta-functions; the zeta-functions introduced in [1].) 
3. B =  The algebra of complex n •  matrices, /~(x)= a matrix of homogeneous 

Nth  order polynomials satisfying (c). 

Now the principal branch of 9l -s is defined in C 1 -  R_, and we can adopt the 
usual convention and define the - s t h  power of fl(x) (s arbitrary complex) by 
a contour integral 

1 f c  I-~ 2z~---i ]~e - fl (x~) dl ,  (1) 

where e is the unit of B, and C is a smooth curve in C l - R _  enclosing the 
spectrum of /~(x) (which is, of course, compact). This is well-defined in the 
sense that  it is independent of C. 
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Lemma 3.1. Let x~:O. Suppose s Jixe~I and r > 0 .  Then 

[ f l ( r x ) ]  -~  = r -  ~ '  [ t / ( x ) l -  ~. 

Proo[. This  is an easy consequence of (1) and  condit ion (a). 

Lemma  3.2. For fixed x:~O, [fl(x)] -s  is an entire, B.valued function o~ s. 

Proo]. This follows immedia te ly  f rom (1). 

Now b y  condit ion (b), fl(x) is no rm continuous on I xl = 1, and  b y  a combina-  
t ion of condit ion (c), the  cont inui ty  of the  spec t rum ([4], p. 118), and  the  fact  
t ha t  the spec t rum of fl(x) is compac t  for  each x, we see t h a t  the  to ta l i ty  of 
the  spectral  values of fl(x) on I xl = 1 const i tutes  a compac t  subset  of C 1 -  R_. 
We enclose this subset  in a smooth  curve C in C l -  R_. Then  by  the homo- 
genei ty  of the  spec t rum,  for x in a neighborhood of I xl = 1, 

1 fc 2-~ [t6(x)]-~ = ~ 2e - fl(x) d2. (1') 

In  par t icular ,  i t  is clear f rom this t h a t  [/~(x)] -8 is C ~* in x in some neigh- 
borhood of Ixl  = 1, for f ixed s, and  so b y  L e m m a  3.1, [fl(x)] -"  is, in fact ,  C ~ 
in x for x in E k - { 0 } .  

Lemn/a  3.3. Let D be a disc in C 1. Then [fl(x)] -s, or more generally, any 
fixed partial derivative with respect to x o/ [fl(x)] -8, is bounded in norm /or s in 
D and [ x [ = l .  

Pro@ This follows immedia te ly  f rom (1'). 

Lemma 3,4. Let a I . . . . .  ae be fixed non-negative integers, and let D be a disc in C 1. 
Then there exists A > 0 such that 

II 
- ~-2~.~. [ ~ ( x ) ]  - "  

[or x + 0 and s in D, where " l l .  I1" is the algebra norm. I n  particular, iJ a 1 . . . . .  ak = O, 

< A Ix I 

Proof. I n  view of L e m m a s  3.1 and  3.3, i t  will suffice to  show t h a t  if F(x)  
is a C ~r B-valued funct ion of x in E k -  {0} of weight M,  i . e . ,  such t h a t  F(rx) 
=rMF(x) for some fixed complex M and  any  r > 0, then  the  operat ion of taking 

a par t ia l  der iva t ive  wi th  respect  to x, yields a C ~ B-valued  funct ion of x in 
E ~ -  {0) of weight M -  1 (i = 1 . . . . .  k). Le t  x 0 = (Xl ~ . . . . .  x ~ * 0. Wi thou t  loss of 
general i ty,  we can suppose i = 1. Now 

OF(x) I F(X~ + h . . . . .  x ~ - F ( x  ~ . . . . .  x ~ 
I = l i r a  

xo ,h--~O h 
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and 
~F(x) ] F(rx  ~ + h . . . . .  rx ~ - F(rx~ rx ~ ) 

lira 
rx~ h~-O h I 

= lim 
h--,o h 

= r M-1 lira 
h-->O h 

r 

= r g-1  ~F(_x) II Q.E.D. 
~Xl ] x0" 

Consider now the series 
z ( s )  = ~'  [f l(n)]-s.  

By Lemma 3.4, i t  locally converges absolutely and  uniformly in some r ight  
half-plane Re s>ao,  and by  Lemma 3.2, represents a holomorphie,  B-valued 
function there. 

Now [fl(x)] -s will generally no t  be defined for x =  0, and to avoid complica- 
tions arising from this fact, we take  once and for all some fixed C ~ smoothing 
function Z (x), which is identically 1 in the complement  of a small ball a round 
the origin, and zero in a neighborhood of the origin, and  mult iply  [fl(x)] -s by  
X(x). (We assume tha t  the ball does no t  contain any  integral latt ice-points 
other than  the origin.) To avoid addit ional notat ion,  we continue to use the 
symbol [fl(x)] -s to  denote wha t  should actual ly be wri t ten as g(x)[fl(x)] -~. :Note 
tha t  with this convention, [fl(x)] -~ is defined for all x and s, is C ~ in x for 
fixed s, is entire in s for fixed x, and  we can easily show t h a t  L e m m a  3.4 
holds for all x, though with perhaps a different A. I n  particular,  the terms of 
the series ~'[fl(n)] -s are unaltered. 

Lemma 3.5. If  [ i8 a C ~r B-valued /unction o/ x in E k, which, together with its 
derivatives, te~wls to zero su/ficiently rapidly as Ix I--> cr then the Poisson summation 
[ormula ho lds /or / ,  where the Fourier trans[orm is defined by 

[(y) = f r J ( x )  e-~'~<x'~> dVx.  

Proo]. The proof proceeds exact ly  as in the  ordinary  ease. 

Theorem 3.6. Z(s) is a B-valued meromorphic /unction o / s .  I t  has a simple pole at 
s = k i N  with the B-valued residue 

N-lfl~l=l [~6(~)] -k/N dS~ 

and no other poles. (dS~ = the natural (k - 1).dimensional volume element on Sk-1). 
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Proo/. (Since the proof for B =  C 1 is contained in [1], and since only obvious 
modifications are required for the general case, we only indicate the highlights.) 
I t  is known from Lemma 3.4 tha t  sufficiently high x-derivatives of [fl(x)] -s are 
uniformly L 1 for s in any  disc we choose. Supposing [fl(x)] -s satisfies the condi- 
tions for the Poisson summation formula in some half-plane, this suggests applying 
the formula there and then integrating the expression for the Fourier transform 
of [fl(x)] -8 repeatedly by  parts, in order to extend the representation to the left. 
The term ^[fl(0)] -s must,  of course, be t reated separately, but  this turns out to 
be no problem, on account of the homogeneity of [fl(x)] -~ away from the origin. 
On the other hand, this procedure, although conceptually straightforward, involves 
certain details which can be avoided through the following device: 

Consider the B-valued functions 

Ke(x, s) = e -'~1' [fl(x)] -s. 

By Lemma 3.4, Ks(x,s) is uniformly L t for s in any fixed disc and ~ 4 0  
fixed. Moreover, K~(x,s) satisfies the conditions for the Poisson summation 
formula in x, and /~(x, s) is 'entire in s, for fixed x and ~. 

Now for Re s > a  0, ~ ' [ f l ( n ) ]  - ~  = ~ [ f l ( n ) ]  - ~  

locally converges absolutely and uniformly, and since 

~[fl(n)]- '  =l i ra  ~K~(n, s) 
e ---)0 

= lim ~ / ~  (n, s), 
8 - - ) 0  

the problem becomes one of showing tha t  lim I~(n, s) is meromorphic, with a 
e--~0 

single simple pole at  s = kiN having residue 

Au f~X,ffil [~(O~)]-klN d~" 

Now ~R,(n,  8) = R,(O, s) + 5'R,(n,  s) 

and I~(0, s) = fs  e-I**l'[fl(x)]-SdV,. 

For Re s large, rE, II d vx < 

so in a suitable half-plane, 

l i ra /~(0 ,  s) = fs  [fl(x)]-~dVx" 
~--~0 k 
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Moreover, f sk-- f lxt<l + f t.,:l>~l, 
and by Fubini's theorem, 

f ,.~,>, [fl(x)]-" dr.~= y,.~,=ld& f ::l [fl(r=)]-~ r"-l dr" 

By Lemma 3.1, this is equal to 

fi f,'~ -" rk- ,vs--1 dr dS= [~(~)] 
z{ =I =I 

= (~Ts --  ~ ) - l f [ z [  =1 [ ~ ( ~ ) ] - S d ~  (Re s large). 

Now both ft-"t <I [~(x)]-~dV~ 

and ftxt =1 [fl(~)]-sdS= 

are entire in s, so lim J~(0, 8) 
s-~.0 

is a B-valued meromorphic function of s having a single simple pole at s = k/N 
with residue 

N-~fl~l =1 [~(=)] - k/NdS~" 

To complete the proof of the theorem, we have to show that 

lim ~.'l~(n, 8) 
e--~0 

is entire, and to do this, it suffices to show that .given any disc D, 

lim ~'~(n, s) 

exists and is holomorphic in D. 
Now for fixed e~=0, ~'/~,(n, s) converges uniformly in any disc, and is thus 

an entire function. Moreover, 

~. K~(n, s) = ~' e-I~xt'[fl(x)] -s e-2=t<x'n> dVx, 

and appropriate integrations by parts show that 
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~'.R~(n, s) = ( - 1)h "~' fE Inl-   Aage-I~xl'rmx~]-S~e-2"t<x'n>dV 
k x t [ p ~  1] J x ,  

where Ahx is  the h-times iterated Laplacian with respect to x. 
From this it is clear that  to complete the proof, we only need to verify that  

for h large, 

lira ( - ' }  - =o 

uniformly in D, since then the family (in ~) of entire functions {~ '~ (n ,  s)} will 
be uniformly convergent in D. For the proof of this last fact, which is straight- 
forward, the reader is referred to [I], pp. 34-35. 

Remark. Using the same methods as above, it is possible to prove the fol- 
lowing extension of Theorem 3.6: 

Let fl(x) be as before, and let x(x) be a homogeneous C ~ B-valued function 
of x in E k-{0} of we igh t 'M,  i.e., such that  lr(rx)=r M~(x) for r>0(x=k0).  
Define 

Z(s) = ~.' ~'(n) [fl(n)]-8 

in a right half-plane. Then Z(s) is a B-valued meromorphic function of s. I t  
has a single simple pole at  s= (M+ k ) / N  with residue 

N-~. I =, ~(a) [ f l ( a )y  (u+*)/N dS~ 

and no other poles. 

4. A n  example  

I t  is natural to ask whether or not the case N =  2 exhibits special properties, 
such as the presence of a functional equation, and in this section we will supply 
a partial answer to this question. Throughout what follows, B is assumed to 
be both commutative and semi-simple. 

Theorem 4.1. Let fl(x) be a B-valued /unction o/ x = (x 1 . . . . .  xk) sat@lying condi- 
tions (a), (b), and (c) o/ ( I I I ) ,  with N = 2. Suppose that/or each homomorphism T in 
the maximal ideal space o/ B, T[fl(x)] is a positive de/inite quadratic ]orm < FTX, x >, 
where Fr is a positive de/inite symmetric real matrix whose dependence on T is indica- 
ted by the subscript. Then there exists a B-valued/unction fl*(x) satis/ying conditions 
(a), (b), and (c) o/ (111), with N = 2, and a [ixed element o /B ,  which we shall call 
A-�89 such that i/ Z~(s) and Z$(s) are respectively the zeta-/unctions (in the sense o/ 
(II1)) associated with fl(x) and fl*(x), then/or each s, 

~_~ r(k/2 - s) z $ ( k / 2 -  s) = r(~) 

(C/. [3], p. 625.) 
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Proo/. Assuming tha t  both A-�89 and fl*(x) exist, we know from [3] how 
homomorphism T should act on them. Specifically, writing A -1 for (A-�89 2, we 
should have T[A -1] = (det F~) -1, and T[fl* (x)] = < F~lx, x >. 

To show tha t  there exist objects in B which behave this way under homo- 
morphism, it will suffice to show that ,  as functions of T, both (det ST) -1, and, 
for fixed x, < FTlX, x > ,  are in the transform algebra ~ of B, and then take 
their inverses, which will be unique, since B is semi-simple. Now for every 
fixed x, <Frx, x> is, by  hypothesis, in /}. On the other hand, it is trivial, 
(for example, by  induction on k), to see tha t  in general, if < Ax, x > is a qua- 
dratic form and :r is any entry in the matr ix  A, then there exist a finite num- 
ber of fixed non-zero vectors x ~ . . . . .  x ~  depending on the location of ~ but  not. 
on its value, such tha t  a is a fixed linear combination of the numbers < Ax ~ x ~ > 
(i = 1 . . . . .  M). In  particular, therefore, both (det ST) -1, and, for each x, < F T  1 x,  X >, 
are expressible as rational functions (with positive denominators) of objects 
already in /~, and since ~} is closed under the application of holomorphie func- 
tions ([5], p. 78), they have unique preimages, A -1 and fl*(x), in B. Now it is 
clear from the behavior of fl*(x) under homomorphism, and from its form as 
the preimage in B of <FTtX, X>, tha t  fl*(x) satisfies conditions (a), (b), a n d  
(c) of ( I II) ,  with N = 2, and by  a second application of the fact t h a t / ~  is closed 
under composition with holomorphic functions, we find tha t  there exists an ele- 
ment  A--t of B which corresponds in /~  to the positive square root of (det FT) -1. 
Setting up as before the zeta-functions Z#(s)and Z$ (s) corresponding to fl(x) 
and fl*(x), we have from [3] tha t  for each homomorphism T, 

T[A-�89 F(k/2-S) z ~ ( k / 2 - s ) ] = T [ 9 !  Zz(s) ] 

and since B is semi-simple, we conclude tha t  in fact 

F(k/2-s) F(sl z~(k/2-s)=-~'~' Za(s). Q.e.D. ~ljk]2 - s  

As an illustration, suppose H is a Hilbert  space, and L = Sba ]~dE~ is a bounded 
self-adjoint operator on H. Let  B be the algebra of continuous functions of L, 
i.e., operators of the form 

f~ g(~) dE~, 

where 9 is a complex-valued continuous function on [a, b]. Define 

fl(x) = f ]  <F~x,x>dE~. 

where for each 2, Fa is a real positive definite symmetric k x k matrix,  whose 
entries are continuous functions of 2(a~< 2 ~  b). Then in the terminology of this 
section, we find tha t  for this particular case, 
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< F;lx ,  x >dE~, 

5 

In  this concluding section, we show tha t  the results in sections w 3 and w 4 
of [1] generalize to our context. We begin by  recalling Theorem 8 of [1], which, 
in a specialized version, goes as follows: 

I f  /(x) is a complex-valued real analytic function in E ~ -  {0}, and if for some 
complex s and N > 0 ,  ](rx)=r-~S/(x) (r >O), then for x not an integral lattice- 
point, 

lira ~' e-lenl' /(n) e ~m<x''> 
e -~r O 

exists and is real analytic. 
The proof of this is far from simple, and rather  than prove the corresponding 

theorem for B-valued functions directly, we will assume the above theorem as 
a lemma. We require one additional lemma. 

L e m ~ a  5.1. Let B be a complex Banach space, and let F(x) be a/unc$ion/tom an 
open set U in E k to B. Suppose F(x) is weakly real analytic in U, i.e.,/or every T in 
B*, T[F(x)] is real analytic in U. Then F(x) is strongly real analytic in U, i.e., it 
has a ~ w e r  series representation at every point in U, where the coefficients o/the power 
8cries are elements o /B .  

Proo]. Let x o e U. We will show tha t  F(x) is strongly real analytic in a neigh- 
borhood of x 0. Suppose U is identified with a subset of C k in the usual way. 
Let  P(r, xo) denote the open polycylinder in C ~ of radius r about x o .  For po- 
sitive integers m and n, define Em, n to be the set of elements T of B* such 
tha t  T[F(x)] has a holomorphic extension, which we will denote by T[F(z)], to 
P(1/n, Xo), and such tha t  IT[F(z)]l<~m in P(1/n, Xo). Now each Bm,~ is closed 
in B*, for suppose Tn -~ T and T~ E Em..n~ Then the family {T,[F(z)]} is bounded 
and hence normal in P(1/no, xo) , so there exists a subsequence {T~k[F(z)]} which 
converges uniformly on compact subsets of P(1/n o, Xo). On the other hand, 
T[F(x)] has a holomorphic extension T[F(z)] to some complex neighborhood of 
x 0 and so by  Vitali 's theorem, T~k[~'(z)] converges either to T[F(z)] or to a 
continuation of T[F(z)] in P(1/%, Xo) , and the limit function is clearly less than 
or equal to m 0 in modulus, which shows tha t  E . . . . .  is closed. By applying the 
Baire category theorem to the sets Em.~, which clearly exhaust  B*, we see tha t  
one of them contains a ball in B*. Transferring, if necessary, this ball to the 
origin, we find tha t  there exists a complex polycylinder R about  x 0, and M > 0, 
such tha t  for any T e B*, T[F(x)] has a holomorphic extensior/ T[F(z)] to R, 
and IT[F(z)]I<~M]ITH for z e R .  Thus to each z e R  corresponds an element 
F(z) of B**, and P(z), regarded as a function from R to B**, is weakly holo- 
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morphie in the restricted sense that  if T E B*, then T[F(z)] is holomorphic in R. 
Now B* is a so-called determining manifold for B***, and by a known theorem 
([2], p. 354), this implies that  F(z) is in fact strongly holomorphic as a func- 
tion from R to B**. (The proof in the reference is only for k =  1, but it gen- 
eralizes, via Hartog's theorem, to several variables.) To 'complete the proof, 
we need to show that  for z E R, F(z) is, in fact, in B. By the Hahn-Banaeh 
theorem, it suffices to show that  any T E B*** which annihilates B, annihilates 
F(z). Now F(z) EB for z in a real neighborhood N of x 0, so if TEB*** anni- 
hilates B, it annihilates F(z), for z E N. But this clearly implies that  T anni- 
hilates F(z), for z E R. q.E.D. 

Theorem 5.2. Let B be a Banach algebra with unit. Suppose fl(x) is a strongly real 
analytic B-valued /unction of x in E L - ( 0 }  which satisfies properties (a) and (c) of 
( l l I ) .  Then/or x not an integral lattice-point and/ixed complex s, 

e2~i < X, rt > 
lim ~'  e -t~nt= - -  - F(x, s) (2) 
~-+o [~(n)] ~ 

exists and is strongly real analytic. 

Example. If B is the algebra of complex n•  matrices, s is a positive in- 
teger, and fl(x) is a suitable matrix of homogeneous polynomials, then F(x, s) 
is a fundamental matrix on the ]c-torus for the system 

Proo/ o/ Theorem 5.2. Exactly as in section I I I ,  we can show by the Poisson 
summation formula that  for fixed 8, the limit in (2) exists uniformly in e for 
x in the complement of any fixed "periodic" neighborhood of the integral lattice- 
points. I.e., there exists F(x, s)E B which satisfies (2). By applying bounded 
linear functionals to (2), noting that  [fl(x)] -s is real analytic in x for x ~ 0 ,  and 
invoking Lemma 5.1 and Theorem 8 of [1], we obtain the theorem. Q.E.D. 

We next give a generalization of Theorem 13 of [1]. Theorem 13, in a spe- 
cialized form, states that: 

I f  ](x) is a C ~ complex-valued function in E L --{0}, and if for some complex 
s and N > 0 ,  f(rx)=r-NSf(x)(r>O), then for x not an integral lattice-point, 

lim ~'  e -I~'1'/(n) e 2~ . . . . .  = F(x) 
e--~0 

exists, and in a neighborhood of the origin, we have the estimates: 

F(x)=O(Ix{~Res-k), i f k - N R e s > 0 ;  

F(x)=O(log {x]-l), if k - N  Re 8=0.  

We generalize this as follows: 
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Theorem 5.3. Let B be a Banach algebra, with unit, and let fl(x) be a B-valued/unc- 
tion o / x  in E k - {0}, which has properties (a), (b), and (c) o/ section I I I .  Then /o r  x 
not an integral lattice-point, and any complex s, 

i~2~i'<X, n >" 
lira ~ '  e -I~nl' .F(x, s) (3) 
~ - * o  [~(n)y 

exists, and in a neighborhood o/ the  origin, we have the estimates: 

IlF(x,s)H=O(lx]Nae~-k), i f k - - N R e s > 0 ;  

HF(x,s)ll=O(log lxl-1), i f k - N R e s = 0 .  

Proo/. As in section I I I ,  we can show by the Poisson summation formula 
that  for fixed s, the limit in (3) exists uniformly in e for x in the complement 
of any fixed "periodic" neighborhood of the integral lattice-points, and it is easy 
to show tha t  it is, in fact, C a.  That  is, there exists F(x, s)E B which satisfies 
(3). Now it turns out in the proof of Theorem 18 of [1] tha t  the estimates 
depend only on bounds for the derivatives of /(x). I f  now D is a constant- 
coefficient linear differential operator, and T EB* is such that  IITII ~< 1, then 
I DT[[fl(x)]-s]l = i T[D[fl(x)]-s]] ~< iiD[fl(x)]-sll. In  particular, by the Hahn-Banach  
theorem, for fixed s and x o not an integral lattice-point, there exists T E B* such 
tha t  HTII = 1, and IT[F(xo, s)] I = IIF(xo, s)l I. Since for IITII ~< l, the derivatives of 
T[[fl(x)] -s] are bounded by the norms of the corresponding derivatives of [fl(x)] -z, 
Theorem 5.3 follows. Q.E.D. 

Princeton University, N . J . ,  U.S .A.  
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