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Continuous functions and potential theory

By Hans WaALLIN

Introduction

Let Fy be a compact set in R™. If F has «-capacity zero, 0 <« <m,! there exists,
according to a well-known result by Evans [8], a positive measure u concentrated
on F,such that the potential of order « of 4 is infinite everywhere on F. In Chapter I
we consider a problem related to this result. We shall prove that a compact set F,
has «-capacity zero if and only if every continuous function coincides everywhere
on F, with a continuous «-potential of a measure with compact support. This is a
consequence of the Theorems 1 and 2. However, these theorems contain much more
than the above characterization of compact sets of a-capacity zero. In particular
we consider the case when we have more general kernels than r—=.

Let h be a positive integer, p =1, 0<a<m, and let F, be a compact set with o-
capacity zero. In Chapter II we use Theorem 1 to deduce conditions on %, p and «
which guarantee that every function f, which is the restiction to F of a continuous
function, can be extended to a function f having the following properties: f is defined
and continuous everywhere in R™ and infinitely differentiable on the complement of
Fy; all the partial derivatives of f of orders less than or equal to A and the function
f itself belong to L?(R™). The result is stated in Theorem 3. The conditions of the
theorem imply in particular a < m —1; i.e. all the compact sets considered in Theorem
3 have Hausdorff dimension less than m—1.

We formulate a converse of Theorem 3 in § 7 (Theorem 4) where we also consider
a certain class of Beppo Levi functions, which, in the case a <m —1, is more general
than the class of functions considered in Theorem 3. The case p =1 is studied further
in §9.

As a by-product of our investigation we obtain a theorem on the existence of
uniformly continuous harmonic functions with finite Dirichlet integrals in the unit
sphere, which take given continuous values on a certain subset of the boundary of the
unit sphere (Theorem 5).

I wish to thank Professor L. Carleson who suggested the subject of this paper and
contributed with many ideas to the proofs of the theorems.

CrHAPTER I. On the representation of continuous functions by potentials

1. Notations and definitions

R™ is the m-dimensional Euclidean space, m >1, with points z = (1,...,2™), || the
distance from z to the origin. By a closed cube in B™ we mean the set of points satis-
fying the inequalities a;<z'<a;+! where a;,i=1,...,m, are any numbers and !>0.

1 & =0 corresponds to the logarithmic capacity.

511 55



H. WALLIN, Continuous functions and potential theory

S(xg,7) denotes the closed sphere |x—xy| <r. We write min {a,b} for the smaller
of the numbers a and b.

The complement of a set E we denote by GE. If E, and E, are two sets, then
E, \ E, is the set of points belonging to E, but not to E,. If E,> E,, we write E, — E,
instead of B, \ B,.

By a kernel we mean a function K satisfying the following conditions:

(a) K is defined in the interval r >0, is finite and continuous, non-negative and non-
increasing and satisfies lim,_ o K(r) = oco.

(b) Jq K(@r)r™Ydr < oo,
0

(a) and (b) are for instance satisfied if K(r)=r"=%, 0 <a<m.

Let o be a real measure on R™, i.e. a completely additive real set function. The
support of ¢ is denoted by S,. o+ is the positive and ¢~ the negative part of 0,6 =
ot—o-, and |¢| =ot+o~.

The potential of a measure o belonging to a kernel K, the K-potential of o, is
denoted by u%,

k(o) = [K( 2=y doto)?
and the energy integral by I.(c),
IK(6)=f K(|z—y|)do(x)da(y)-

uk is well-defined at the point x provided u%*(x) and u% (z) are not both infinite.

If there will be no misunderstanding we write 4° instead of u%. If ¢ is absolutely

continuous and has a density g, do=gdx, we sometimes write u% instead of u%.
The K-capacity of a bounded Borel set £, Cr{E), is defined as

Cr(B)={ ir;f I(w)} 1,

where I'; is the class of positive measures » with total mass 1 and S,< E. The K-
capacity is an inner measure, i.e.

Cx(E) = sup Cx(F), (L.L)

FCE

where ¥ is a closed subset of E.

The a-potential and the logarithmic potential, ie. the potentials in the cases
K(r)=r"% 0<a<m, and K(r)= —logr,? we also denote by u] and u§ respectively
and analogously for the a-capacity and the logarithmic capacity.

1 The integration is to be extended over the whole space if no limits of integration are indi-
cated.

2 We shall also consider the case when K(r)= —logr in spite of the fact that —logr takes
negative values too. We sometimes omit the special simple treatment which is needed in the case
K(ry= ~logr.
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Our kernel K satisfies the continuity principle (see for instance Ugaheri [18]):
If u is a positive measure with compact support and the restriction of w% to 8, is
continuous, then #% is continuous in the whole space.

Let F be a compact set with positive K-capacity. Then there exists a positive
measure T—which is not necessarily uniquely determined—with 7(R™)=1, S, F,
such that

Ix(r) = inf Ie(v) ={Ca(F)},

where I'ris the class of positive measures y with »( B™) =1, 8, < F. We call 7 a capacitary
distribution and w% a capacitary potential belonging to K and F. u% satisfies the fol-
lowing inequalities:

uk(x) > {Cx(F)}! for every x€F except when x belongs to a set of K-capacity
zero. (1.2)

u(z) <{Cx(F)} for every x€S,. (1.3)

uk(x) < A-{Cx(F)}7 everywhere, where A is a constant which only depends
on the dimension m of the space R™. (1.4)

As to (1.2) and (1.3) we refer to Frostman [9, pp. 35 ff.] and Fuglede [11, p. 159].
(1.4) is a result by Ugaheri [18].

If F;is a compact set, we denote by $(F,) the class of functions which are restric-
tions to Fy of real functions defined and continuous everywhere on R™.

2. Representation of continuous functions by potentials

In this section we also make the following assumption on our kernel K:
(c) If E is the union of a finite number of closed spheres and wk a capacitary potential
belonging to K and E, we have

uk(x) = {Cx(B)}-1, for every z€EE. (2.1)

The condition (c) is for instance satisfied if K(r) =r"% 0 <« <m, and, more generally
if K satisfies
K(r)<MK(2r), for every r>0,
where M is a constant.!
We shall now prove the following theorem on the representation of continuous
functions by potentials.

Theorem 1. Suppose that K is a kernel satisfying (¢) and that Fy is a compact set with
Cy(Fo)=0. Then there exists, for every function f,€S(F,), an absolutely continuous
measure g with compact support having the following properties: The potential of o,
Uk, 18 continuous in the whole space and equal to fo on F, i.e.

uk(z) =fo(x), for every xEF;
1 For a proof of this we refer to Kunugui [13] or Carleson [4, p. 16]. These authors have made

further assumptions on the kernel K. However, it is easy to see that the result is true also for
our kernels.
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tf fo(x) >0 for every x € Fy, then o is a positive measure and if K is infinitely differentiable
in the interval r >0 then u% is infinitely differentiable on (F,.
For the proof we need the following simple lemma.

Lemma 1. Let K be a kernel satisfying (c) and Fy a compact set with Cx(Fg)=0.
Suppose that a is given, a.>0. Then there is a set E which is the union of a finite number
of closed spheres, ED F,, so that Cx(E)<a. If uk is a capacitary potential belonging to
K and E, then u% is continuous everywhere and if A is the constant in (1.4) we have

{C(B)} 1< uk(x) < A{Ck(E)}* for every x€E (2.2)
and thus in particular for every x€F.

Proof of Lemma 1. We first observe that the existence of a set £ follows immediately
from the facts that F, is compact and Cg(F,)=0. (2.2) is a consequence of (2.1)
and (1.4). Using (1.3) we also find that the restriction of % to 8, is constant and thus
u% is continuous everywhere according to the continuity principle.

Proof of Theorem 1. We first suppose that fy(x) >0 for every € F,. Let f be a con-
tinuous extension of f, to B™ and F a compact set such that every point of F;is an
interior point of F and f(x)>0 for every z€ F.

We start by proving that for any £>0 there exists a positive measure v with

v(R™) less than a glven positive number so that 8, is a subset of a given neighborhood
of F, and w’ =u% is continuous and satisfies the following inequalities, if M =3"4 +1,
m is the dimension of the space and A the constant in (1.4),

w(x) <f(x) for every xz€PF, (2.3)
w(x) = fo(x) —Me for every z€F,. (2.4)

We introduce the sequence of nets #={M;}, where }, consists of all closed cubes
with corners having integer coordinates, and M,, >0, consists of all closed cubes
which we obtain by dividing the cubes in H,_, into 2™ equal cubes by (m —1)-dimen-
sional hyperplanes parallel to the coordinate planes. Let w,,...,, be a number of
congruent cubes from H, Uw,> F, so that the oscillation of f is less than ¢ in w, for
t=1,...,r. We separate those cubes w,,¢=1,...,r, which are such that the maximum
of foon F N w,;is larger than Me.t In this way we get the cubes wy, ..., ;. Using Lemma
1 it is easy to realize that, for i=1,...,s, we can choose a positive measure with total
mass Jess than a given positive number having the following propertles The support
of the measure is a subset of a given neighborhood of F,N w;; the K-potential of the
measure is continuous everywhere and takes values’ between e and de on FyN wi;
it is less than or equal to Ae on w; and on those cubes wy, ...,w, which have non-void
intersections with w; and it is finally less than a given positive number elseWhere
In this way we get a positive measure associated with every cube wi, i=1,...,5. Let
v, be the sum of these measures. Due to the choice of the constant M, M 3’”A +1,
and the fact that the oscillation of f is less than ¢ in every cube w,, i=1,...,r, it is
easy to realize that we can make the above procedure so that

w(z) < f(x) for every x€F, (2.5)
w(x) > min {fo(zr) — Ms,e} for every x€F,. (2.6)

1 If f(x) < Me for every x € F, there are no such cubes. In this case, however, (2.3) and (2.4)
are satisfied with v=0.
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Our procedure also guarantees that we can get »;(R™) smaller than a given positive
number and 8,, as a subset of a given neighborhood of F,,.

If (2.3) and (2.4) are not true for v=y, we consider f—u™. As f(x) —u"(x) >0 for
every x€F and ™ is continuous we can repeat the procedure leading to (2.5) and
(2.6) but with f replaced by f—u" and f, by f,—%". In this way we get a positive
measure v, having properties which are analogous to those of », , and a continuous
potential #™ satisfying

w(x) < flx) — w(x) for every x€PF, (2.7)
w*(x) > min {fy(x) —w*(x) — Me,e} for every zEF,. (2.8)
(2.6) and (2.8) give, for z€F,,
w'(z) + w’(z) = min {fo(r) — Me, 2¢},
and so (2.7) and (2.8) yield
w(x) + w(x) < f(xr) for every z€PF,
w(x) +u(x) > min {fo(x) — Me,2¢} for every z€F,.

If (2.3) and (2.4) are not true for »=», +v, we repeat our procedure anew. After
n steps we have obtained n positive measures »,,...,7, having continuous potentials
u”,...,u™ so that

ﬁlu”‘(x) <f(x) for every xz€PF, (2.9)
27_[: u"(z) > min {fy(x) — Me,ne} for every x€F,, (2.10)

and so that 37 »,(R™) is less than a given positive number and U7S,, is a subset of a
given neighborhood of F,. As f, is bounded on F,, there exists, according to (2.10), a
smallest number n, so tha.t (2.4) holds with »=», +... +»,,. From (2.9) we see that
also (2.3) is true for this choice of ».

As the second step of the proof we show that there even exists an absolute]y
continuous positive measure, ydz, where y is infinitely differentiable and the total
mass of ydx is less than a given positive number and S, is a subset of a given neigh-
borhood of F, so that (2.3) and (2.4) are true with » repla,ced by wdz. In fact, let
@ be an infinitely differentiable function with compact support, ¢=0, j'tp(a:)dx 1,
and let y be the convolution of ¢ and v, y=@xv. y is then infinitely differentiable
and the measure pdx has the same total mass as ». By choosing r small enough and
@ such that 8,<=.8(0,r), where 8(0,r) is the sphere with centre 0 and radius r, we can
make S, a subset of a given neighborhood of S,. As w” =K v we have

u =Kxy=Kxpxy=gpxu'.
By choosing r small enough we can thus also make the difference u¥ —u’ less than a
given number, uniformly on F. As we can prove an inequality (2.4) for every £>0
we conclude that we also can prove the same inequality and the inequality (2.3)

with » replaced by a measure ydz having the properties stated above.
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Thus we have proved the existence of an absolutely continuous measure y, having
an infinitely differentiable density so that

w(x) < f(x) for every z€F,
w(x) = folx) — 271 for every x€F,.
By considering f—wu* instead of f we get analogously a measure u, so that
wh(x) < f(x) — w"(x) for every z€F,
uH(x) = fo(x) —w(x) — 22 for every 2z€DF,
which gives w(x) + u(x) < f(x) for every z€PF,

wh(x) +u(x) > fo(x) — 22 for every x€EF,.

After » steps we have obtained n positive measures, u;, ..., tins satisfying
n
uHi(x) < f(x) for every z€F, (2.11)
i=1
tz u(x) = fo(x) — 27"  for every xz€F,. (2.12)
=1

We can furthermore suppose that u; is absolutely continuous and has an infinitely
differentiable density for ¢=1,...,n, that >1 u,(R™)isless than a given positive num-
ber which is independent of n, and that the maximal distance between F, and a
point on the boundary of S, tends to zero as n tends to infinity. Under these as-
sumptions it follows that {>T u,}w-1 converges weakly to an absolutely continuous
positive measure u such that the density of y is infinitely differentiable om OF,.
Using (2.12) we obtain, as the kernel K is non-negative,

u @)= D whx) > folr)— 2" n=1,2, ..., for every z€EF,.
2 ;

This gives u*(z)> fy(x) for every u€F, As {>]u;} converges weakly to u we
have by (2.11):

f(x) = lim > u*(x) > w*(x) for every z€F.
oo 1

nN—»00

It follows that uH(x) = fo(x) for every 2xz€F,, (2.13)
w(x) < f(x) for every x€F. (2.14)

From the construction we conclude at once that w* is continuous on (F,. To prove
that u* is continuous at a point z, belonging to F, we use (2.14). It is well known that

uH(2g) < lim uh(x).

T2,
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To prove that ut(xy) = lim wH(x)
52,
we observe that x, is an interior point of F and so (2.14) yields

lim w*(2) < lim f(z) = f(zg) = fo(2g) = w(,)-
T>Ty T->Ty
This proves that »* is continuous at z, and thus everywhere.
¥rom the construction of 4" we easily realize that »* is infinitely differentiable
on (F, in the case when K is infinitely differentiable in the interval »>0. Because
if 2, is a point in (F, we can write u*:

ny n,

wh =3 bt (0 = 3 ) (2.15)

and choose 7, so large that the support of u — >7* u; does not contain x,. The second
term of the right member of (2.15) is then infinitely differentiable at z;, due to our
assumption on K, and the first term due to the fact that >3 u;is absolutely continuous
and has an infinitely differentiable density.

By that our theorem is completely proved in the case when fy(x)>0 for every
x € Fy. The general case follows immediately by writing f, as the difference between
two functions which are strictly positive on F,,.

Remark 1. From the proof it is clear that the measure ¢ in Theorem 1 can be chosen
with ¢+(B™)+0¢—(R™) less than a given number so that S, is a subset of a given
neighborhood of F,. We can also make u’ the difference between two continuous
potentials generated by absolutely continuous positive measures having densities
which are infinitely differentiable on (F,.

Remark 2. The condition K non-negative is not necessary for the validity of
Theorem 1. For instance, it is easy to realize that the theorem is true also for the
kernel —log 7.

Remark 3. From Theorem 1 we can deduce the following result: Suppose that g is a
strictly positive function which is lower semi-continuous in R™ and that Cx(Fy)=0,
F, compact. Then there exists a potential u', continuous on OF,, which is generated by
a positive absolutely continuous measure y such that S, is a subset of a given neighborhood
of Fy and

u(x) =g(x) for every xz€F,.

In fact, there exists a sequence of continuous functions {g,}3°, 0<g, ,(x) <g(x)
for every € F,, 1=2,3, ..., converging pointwise to g on F,. Hence there is a positive
measure p; having suitable properties and a continuous potential w" so that, if
90=0, '

u(x) =gi(r) — gi_1(x) for every =z€F,i=1,2,....

It is possible to arrange so that {37 u,}° converges weakly to a positive measure u
having the required properties and in fact also those stated for ¢ in Remark 1. This
gives the required properties to #* including the equality w*(xz)=g(x) for every
z€ F,. (Compare the calculations leading from (2.11) and (2.12) to (2.13).)
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This result clearly contains the following result by Rudin [16] as a special case
(the case g(x)= oo for every z€ F,): Suppose that G is an open set containing the
compact set Fy and that C,,_,(F,)=0, m>2. Then there exists a positive absolutely
continuous measure y having compact support such that uf;_, is infinite on F,
continuous on (F, and harmonic in the complement of the closure of G.1

Remark 4. Let U be the open unit sphere in R™ If F, is a closed subset of the
boundary of U, f,€ S(Fy) and C,_,(F,) =0, m>2, it is not hard to prove, by modi-
fications of the proof of Theorem 1, that there exists a measure ¢ such that S, is
compact and does not contain any points from U and such that g, _o(x) =f,(x) for
every x€F,. As before we can get un_2 as the difference between two continuous
potentials generated by positive measures which means that the energy integral
I,,_5(|o]) is finite. Therefore we can conclude: For any function f, € §(F) there exists
a function u, u(x) =fy(x) for every x € F,, which is harmonic in U, continuous in the
closure of U and has a finite Dirichlet integral,

m au 2
fvgl(é——x,) dr< oo,

A converse of this proposition will be proved in § 8.

3. Modulus of continuity of potentials

We consider two kernels K and K, and suppose that
lim Ky(r){K(r)} 1= co. 3.1)
>0
We shall show the existence of a modulus of continuity on the set where ug! is
bounded by a given constant, a modulus of continuity which is common to all

potentials u% with o*+(R™) +o~(R™) less than a given constant. In § 4 we shall then
use this result to prove a converse of Theorem 1.

Lemma 2. Suppose that the kernels K and K, satisfy (3.1). Then there exists a non-
negative function ¢ defined in the ‘interval r>0, lim,  t(r)=0, only depending on K
and K, so that, if o is a measure with compact support, s+(R™)+o-(R™) <M, and
ulx)< M,,i=1, 2, then we have

| u%(z,) — uk () | < (M + My) t(| 2, — 2, ]). (3.2)

Proof. We consider only the case when ¢ is a positive measure, from which the
general case is an immediate consequence. Let z, and x, be two points with u%,(x;)
<M,,i=1,2,and put |z, —2,| =r,. Let 8 be the open sphere with centre (z, +x,)-2-!
and radius 2-1ry+r,, where r, is a number which we shall choose later depending
on ry so that r, tends to zero when r, tends to zero.

wble —ukle) = [ (Kl —y) - Klm -y dote)= [ + [ —1+11

1 Rudin also treats the simple extension to arbitrary closed sets.
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In order to estimate I we introduce the function ¢,:
ty(r) = {Ko(r)}~1 - K(r).

t, satisfies lim, o t,(r) =0 according to (3.1). If o(x;r) is the value of ¢ for the
open sphere with centre x and radius r, we have

To+Ty To+Ty

|I]< K(r)do(z,;7) + K(r)do(xy; 1)
0 0

To+ Ty

- f; '::l(r)Ko(r)da(aol;r)+f0 t,(r) Ko(r) do(z,; 7)

< sup  t(r) {uk, (7)) + u%(2)} <2 M, sup ¢,(r),

0Kr<ro+7y 0<T<re+T,

ie. |I|<2M, sup t(r). (3.3)
OKTr<re+ry
To be able to estimate 11 we have to examine the difference K (|z, —y|) — K(|z,—y|)
when y€(S. We need a result of the following kind: There exists a non-negative
function ¢, defined in the interval r>0, lim, o £,(r)=0, only depending on X, so
that, for every >0,

K(r)—K(r+o) <tyn) for r>tyn), 0<e<n. (3.4)

We suppose for a moment that this has been proved and use it to estimate II. As
Hay—y| — |2a—y|| < |2 —2,| =10 and |2,—y| >r,, i=1,2, when y €(S, we have by
using (3.4) with n=r, and choosing r, =t,(r,),

|11] gfcs | K(|2,—y]) —K(|z2—y|)| doly) < My -ts(ro)- (3.5)
We define ¢ by t(ro) = 2 sup t,(r) +ts(ry), 74>0,

where sup is taken for those » which satisfy 0 <r <r,+t,(r,). ¢ satisfies the demands
of the lemma; (3.3) and (3.5) give (3.2).

Tt remains to prove the existence of a function &,, lim, g t,(r) =0, only depending
on K, such that (3.4) is valid. We observe that K is uniformly continuous in the
interval @ <r < oo for every a>>0. From this we conclude that for every >0 there
exists a largest number g(¢), which is possibly + co, so that

K(r)—K(r+p)<e for r=ze, 0<p<qle), (3.6)
and it is not hard to realize that this implies the existence of a function £, with the

desired properties so that (3.4) is true. With that the lemma is proved.

4. A converse of Theorem 1

We denote by U(K,F,) the class of functions which are restrictions to F, of
K-potentials u% of measures ¢ with compact supports. A function f,€ S(F,) belongs
to U(K,F,) if there is a function g€ U(K, F,) well-defined at every point of F,
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such that fy(x)=g(x) for every x€F, We shall prove the following converse of
Theorem 1:

Theorem 2. Let K be a kernel and Fy a compact set, Cx(Fy)>0. Then there exists a
function f, belonging to S(F,) but not to UK, F,).

Remark 1. From the proof of Theorem 2 it will appear that also the following
more general proposition is true: We can find a function f,€ S(F,) such that there is no
function from U(K,F,) coinciding with f, on Fy except on a subset of F, of K-capacity
zero.

Remark 2. It will appear from the proof that the assumption X non-negative is not
necessary for the validity of the theorem. For instance the theorem is true also for
the kernel —log .

Remark 3. Theorem 1 and Theorem 2 give in particular the following characteriza-
tion of compact sets of K-capacity zero: Let K satisfy the condition (c) of §2. 4
compact set F, has K-capacity zero if and only if every function from S(F) is the
restriction to Fy of a continuous K-potential of a measure with compact support.

Proof of Theorem 2. As Cx(Fy)>0 there exists a kernel K, such that
lim Ky(r) - {K(r)}t= o0 (4.1)
-0

and Cr(Fy) > 02 (4.2)

According to (4.2) there is a positive measure v, with total mass 1, S, < F, and
T, (vy) < oo.

We first use Lemma 2 to deduce a property on F, of an arbitrary K-potential
ux of a measure ¢ with compact support and after that we shall construet a continuous
function f with restriction f, to F, such that f, does not have this property. Let
o be a measure with compact support and M, =c*(R™) +o—(R™). As u'¢! is finite
except on a set of K-capacity zero and »,, due to the fact that I (y,) < co, does not
concentrate any mass on such a set, we conclude that the set where «'¢! is finite has
vp-measure 1, i.e. measure 1 with respect to »,. Consequently, for every ¢ >0 there is a
constant M,=M,(e) so that ugl is less than M, on F, except on a subset of F,
having v,-measure less than ¢. According to (4.1) and Lemma 2 this means that there
exists a function ¢ defined in the interval >0, lim,_ {(r) =0, only depending on K
and K, such that

| % () — uk (@) | < (M, + M) (| 2, — 2, ), (4.8)
for x, and x, belonging to F, except when x, and z, belong to a subset of F, having

vo-measure less than e.
We construct the function f in the proof of the following lemma;

Lemma 3. Let K, be a kernel, F, a compact set with Cg(Fy) >0, v, a posttive measure
with S,, < Fy, vo(R™) =1, I (v,)<oo and t* a non-decreasing function defined in the
tnterval r>0 such that t*(r)>0 if >0, lim,_ot*(r) =0. Then there exists a function

! Compare Carleson {3, p. 405].
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|, defined and continuous everywhere, having the following property for all sufficiently
small positive values of ¢: For every Borel set B, E< F, with vy(E)<e, there are points
%, and x, belonging to Fy— E with |z, —,| arbitrarily small so that

[ f(ey) = f(5) | = M3t*(|ay—2,]), M positive constant.t (4.4)

Using Lemma 3 we can easily finish the proof of Theorem 2. Let K, ¥, and »,
in the lemma be identical with the kernel K|, the set ¥, and the measure », occurring
in the proof of the theorem. We choose the function #* in the lemma so that

lin% t*(r) {t(r)} 1 = oo. (4.5)

If { is the function oceurring in the lemma it is clear by (4.3), (4.4) and (4.5) that there
is no measure ¢ with compact support such that 4% and f coincide everywhere on F,.
This proves our theorem.

Proof of Lemma 3. We shall construct f as a sum, f(z) = >{° f,(x). To construct {f;}{°
we use three sequences of positive numbers {a,}, {b;} and {d,}.

We first suppose that the intersection between F,, and an arbitrary (m —1)-dimen-
sional plane parallel to some coordinate plane has v,-measure zero.

To construct f,, for a fixed 7, we start by covering F, by means of congruent cubes
from the sequence of sets {1 ={MN,} which we used in the proof of Theorem 1, and we
use cubes w1th dJameters less than or equal to 2-1-a,.2 After that we separate those
cubes, say wi1,®js, ..., which intersect F, in a set of positive y,-measure. For every
cube i, where j is a fixed number, j=1,2,..., we consider the infinite strip which is
determined by the points (z!,...,2™) where xl varies arbitrarily and «%,...,2™ vary in
the same intervals as the correspondmg coordinates for an arbitrary pomt in wj.
If there is no cube wis, s=%j, which is conta,med in thls strip and has an (m-—1)-
dimensional edge plane in common with w;;, we divide wy; into two rectangles by an
(m —1)-dimensional hyperplane perpendicular to the x'-axis so that both rectangles
get the property that they mtersect F, in a set of positive y,-measure. (Compare
(4.9) below.) The cubes wiy,wsg, ... are in this way replaced by rectangles wi,wss, ..

We now choose the number d, satlsfymg

0 < d;<minyy(F, N wi). (4.6)
7
If v(Fy Nwy) >2d; we divide, for j=1,2,...,i into two or more parts by (m—1)-

dimensional hyperplanes perpendicular to the xz'-axis in such a way that wi,wis, ...
are replaced by rectangles wy, ...,cwm; with the following properties:

i
”o(Fo‘\jl;’l wy) = 0. (4.7)
4, <v(FoNw,)<2d, §=1,..,n, (4.8)

EBvery w,; has an (m — 1)-dimensional edge plane in common with a reciangle w, s +7,
in the infinite strip which is determined by the points (',...,x™) where ' is arbitrary
and z%,...,x™ vary in the same intervals as the corresponding coordinates for an
arbitrary point of w,;. (4.9)
1 In general we cannot make (4.4) true for all &, and x, belonging to F',. This is a consequence

of a result by Besicovitch, [1, p. 183].
? We suppose.for the moment that the number g, is given.
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As the intersection between F, and an (m —1)-dimensional hyperplane parallel to
some coordinate plane has y;-measure zero, we can form a subset A;; of w,; containing
the boundary of w,; such that the distance from the boundary of w;; to w;;—A;;
is larger than zero and, due to (4.8),

Vo(Foﬂ (w“_A”))>di, ?= l,...,’n,-.

We can also make the choice of A,; such that, if n is a given number, >0, and we
define A by

A=U lj (Ay n Fy), (4.10)

1=14=1
then we have v,(A) <.

We now choose f;. For every rectangle w,; there is an infinite strip of the kind
described in (4.9). In each such strip we choose f, identically equal to i*(a,) in every
second set w;;—A,; and identically equal to zero in every second, counted from sets
w;;—A,; with points having smaller z!-coordinates to sets with points having larger
a!-coordinates. In the remaining points of R™ we define f; such that f; becomes con-
tinuous and less than or equal to t*(a;) everywhere and zero on § U;*; wy.

We now fix two points x, and z; from U ", (w,; N F,) \ A belonging to two different
rectangles w,; bordering on each other in an infinite strip of the kind described in
(4.9). If we introduce the notation 857 for the distance between w;;—A;; and w;,— Ay,
and define b; by

b, =min &{2, (4.11)
78
then, clearly, we have

| fil=) _/i(x[,)‘ =t¥*@,) and b, < |xi—x{| <a;

As the function $* is non-decreasing, we obtain

|[fia) — flwi)| = t¥(| 2 — =i }). (4.12)
For j>1 we have [£x)) —Fi(mi) | < 2 max |1@) | < 2t%(a,),
which gives  |f;(&) —f ()| <t¥(|z,—xi])-2t¥(ay)- {£¥ (b))}, 5> (4.13)
If we furthermore assume that
a,;<b_y, i=2,3,..., (4.14)
we get filx) —fx) =0, j<i. (4.15)

Putting f(z) =7 f{z) we have by (4.12), (4.13) and (4.15)
| ) — 1) | > (2~ i D1 — 2 {*@} 2 - 3, t¥(a)]-

If the expression in square brackets is larger than or equal to 271, i.e. if

2. t*{ay) < 3e¥(by), (4.16)

i>i
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then [H) = fai) | = 3 x| — i), i=1, 2, ... (4.17)

It is easy to realize that it is possible to choose the sequence {a,} such that (4.14)
and (4.16) are satisfied and this shows that it is possible to perform our construction.
(4.16) guarantees that > f converges uniformly and therefore f is continuous.
Suppose now that £ is a Borel set, E < F, v(E) <e. To finish the proof of the lemma
it is, according to (4.17), enough to prove that, for all sufficiently small values of ¢
and for all 4, there exist points z; and z; from UJ¥i(w;; N Fy)\ (E U A) belonging to
two different rectangles w,; bordering on each other in an infinite strip of the kind
described in (4.9). Suppose, on the contrary, that this is not the case. Thus, for some
t, at least ome third of the rectangles w,y,...,wi do not contain any points from
Fy\(E UA). Using (4.8) and the fact that we have chosen A so that vo(A) <7 we get

e+ >v0(EuA)>d,.-’—;i, (4.18)

where n; is the number of rectangles w,; for a fixed ¢. But (4.7) and (4.8) give
1 =yo(Fy) <2d;n,,

which, combined with (4.18), gives ¢+7>6-1. As 5 can be chosen arbitrarily small
we get a contradiction if ¢ is small enough.

The lemma is thus proved in the case when the intersection between F, and an
arbitrary (m —1)-dimensional hyperplane parallel to some coordinate plane has
vo-measure zero. If this condition is not satisfied we choose an (m —1)-dimensional
hyperplane P parallel to some coordinate plane such that » (P N Fy) >0 and carry
through the above construction of f—with F, replaced by PN Fy—in the (m—1)-
dimensional hyperplane P. The fact that we may have v(P N F) <1 does not change
the idea of the construction. After having constructed f in P we extend f to a con-
tinuous function in R™. The extended function clearly satisfies the conditions of the
lemma which thus is proved.

CHAPTER II. An extension problem for continuous functions

5. Statement of the problem

We first introduce some more notations. We denote the sequence (s;,...,s,) of
indices between 1 and m by s and its length % by |s| and we put

s o
ox’...0x™

For any number p>1 we denote by L? the class of all Lebesgue measurable func-
tions f in R™ such that [|f(z)[?dz < oo; we denote by L%, the class of all measurable
functions f in R™ such that {|f(x)|°dz < oo for every compact set F. We use the

notation
Up
1l ={ [ Vrr1az}

and we write ||f|[,» instead of ||f||.ewem,
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‘We shall use a class of distributions in R™ (in the sense of Schwartz [17]) consisting
of functions from Li,. and, in order to avoid confusion with the usual pointwise
derivation, we always state explicitly when it concerns derivation in the distribution
sense. § denotes the Dirac measure and we write D® instead of D.

We shall deal with the following extension problem: Let F, be a compact set
having m-dimensional Lebesgue measure zero. We are interested in finding conditions
on F, which guarantee that every function f,€ $(F,) has a continuous extension f
to R™ such that all the derivatives of f—in a certain sense—of orders less than or
equal kb belong to L?, where & and p are given numbers, p=1. It turns out that a
relevant condition is that C,(F,)=0 for a certain a«, 0 <o <<m, irrespective of the
regularity of the set F, in other respects. The results are formulated in the Theorems
3, 4 and 6 as conditions on the connections between %, p, a and the dimension m
of the space.

In the case when we are searching for a positive solution of our extension problem
it is natural to require that the extended function f is to be infinitely differentiable
on (F, (Theorem 3). When we try to find a converse (Theorem 4) of Theorem 3 we
shall use a certain class of Beppo Levi functions of order %, BL,(L{,.),* p>1. This is
the class of distributions 7' in R™ such that all the derivatives (in the distribution
sense) of order h are functions belonging to L, i.e. DT €L, for all s with |s|=h.

We start our investigation by discussing some properties of the class BL, (L),
p=1, and the class of functions which are infinitely differentiable on 0 F, where
C.(Fy) =0 for some x<m—1:

1°. Following Deny-Lions [7, p. 314] we say that a function g, defined in R™, has
the property (4C) in RB™ if ¢ is absolutely continuous on almost every line? with a
given direction if this direction coincides with the direction of some coordinate axis.

Using the property (AC) we get the following characterization of the distributions
in BL,(Lf,):

BL,(L},.) consists of those distributions 7' in B™ which have the following pro-
perties: Every derivative D*T (in the distribution sense) with 0 < |s| < A3is a function
which—vproperly defined on a set of Lebesgue measure zero—gives a function g,
having the property (AC); all the derivatives of the first order of g; in the
usual pointwise sense are in Lf,. and they also constitute the derivatives of g, in
the distribution sense.

This characterization is given by Deny and Lions [7, p. 315] for A=1. The general
case follows easily from the case A=1 if we use a theorem by Kryloff [17, part II,
p. 37] to conclude that if all the derivatives of the first order of a distribution are
functions in Lf,; then the distribution itself is a function in L{.%

2°. F, is a compact set with C,(F,)=0 for some « satisfying o <<m —1. Suppose
that the function g is defined and infinitely differentiable on G.F, and that all the
partial derivatives of g of order % belong to Lf,,, where p=>1. Cp(F)=0and a<m—1
mean that almost every line with a given direction does not intersect F,. Otherwise

1 The discussion of this chapter concerning Beppo Levi functions in the case 4= 1, should be
compared to the discussions in Deny [5] and Deny-Lions [7]. The definition of BL,(L{, )} is found
in the work of Deny-Lions. Compare also Nikodym [14].

2 A function is absolutely continuocus on a line if the restriction of the function to an arbitrary
compact interval of the line is absolutely continuous.

3 DT with |s| =0 denotes 7.

4 Observe that by means of Kryloff’s theorem it is possible to enunciate more than we have

done in our characterization of the distributions in BL,(Lf ).
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there would exist a direction such that the orthogonal projection Fy of F, on an
(m —1)-dimensional normal plane to this direction would satisfy Cy(Fo)>0 for
every f<m—1, contrary to the fact that O (F,)=0.1 This shows that ¢ and all
the partial derivatives of all orders of ¢ have the property (4C). As all the partial
derivatives of order  of g are in Lf,, we can use the result by Deny-Lions [7, p. 315]
and Kryloff’s theorem as in 1° to conclude that g defines a distribution belonging to
BL,(Lf,). In particular we obtain that g and all the partial derivatives of g of orders
less than A are in Lf, too.

3°. As we in the extension problem only are interested in continuous functions we
introduce two classes A4,(Lf.) and A%(LL., F,), p =1, of functions in the following
ways: An(Lic) is the class of functions f defined and continuous everywhere which—
considered as distribusions—belong to BL,(LE.). Ax(Lis, Fo) is the class of functions f
defined and continuous everywhere in R™, infinitely differentiable on {F,, and such
that all the partial derivatives of f of orders less than or equal to h belong to Li,,.

From the discussion in 2° we conclude that 44(Lf., F,), with C,(F,) =0 for some
a<m—1, is a subclass of A4,(L%.).

4°. We shall need the following fact: Let f,€ §(F,). If there exists a function
1€ An(L, Fy) (or Ay(Lbc)) coinciding pointwise with f, on F,, then there exists a
function f* € A% (L., F,) (or 4,(L%.)) which is zero outside a compact set and coin-
cides pointwise with f, on F|,.

In fact, as the function f* we only have to choose fp, where ¢ is identically 1 on
Fy, infinitely differentiable and has a compact support.

6. An extension theorem

We need the following lemma;:

Lemma 4. Let 0 <a<f <m. Let u be a positive measure with u(R™) < oo and suppose
that ul is bounded. Then we have

uie I? if 2<p=’;__:‘ (6.1)
and ul € IL, if 1<p<?—_%’:< 2. (6.2)
More exactly, for p>1 we have, if a=u(R™),
e llzr < (@) - { sup i)} *™>", if 2<p= ZL—:;“ (6.3)
and for every sphere S with radius r, we have
45 i < M@, 1) - { sup wt@)}®", if 1< p< %‘{7"“ <2. (6.4)

M (a) is a constant depending further on m, p and « and My(a,r) a constant depending
further on m, p, o and f.

1 Compare for instance Frostman [9, p. 91] and Brelot [2, p. 330].
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For a proof of the lemma, based essentially on Hoélders inequality, we refer to du
Plessis [15], Deny [6] and Fuglede {10]. A proof based on function theory is given in
Carleson [4, p. 61 and p. 80] for some special values of « and f. The method is,
however, applicable in the general case, too.

Theorem 3. Let F, be a compact set, p=1 and h a positive integer. Suppose. that either

Co(Fy) =0 for oo=m—ph where m—ph=0 and p=2 (6.5)
or

C(Fy) =0 for some o satisfying o<m—ph where m—ph>0 and 1<p<2. (6.6)

Then every function belonging to S(F,) can be extended to a function which is defined and
continuous everywhere in R™ and infinitely differentiable on (Fy and such that all the
partial derivatives of orders less than or equal to h of the extended function and the
extended function itself are in LP.

Proof. We first treat the case a>0 and assume that either (6.5) or (6.6) is valid.

Suppose that f, is a function from §(F,). According to § 5, 4° it is enough to prove
that there is a function from A;(Lf,., F,) coinciding pointwise with f, on F.

As C,(F,)=0 there exists an absolutely continuous measure ¢, constructed as in
Theorem 1, with compact support such that -« is continuous everywhere, infinitely
differentiable on (F,, u!°! is bounded and ug(x)=f,(x) for every z€F, We shall
prove that u3€ 4x(Lh., F,). An easy consequence of the properties of o is that

D ul(x) = J‘Di |—x—;1—y? do(y) for every =z€(F,, (6.7)
for all sequences s with |s| <h if o +h<m. The index x in D; denotes derivation with

respect to x.
(6.7) yields, if [s] =h,a+h<m,

| D* ul(z)| < Mulo(z)  for every xz€(GF,, (6.8)

where M is a constant only depending on %, « and m. As u}! is bounded we can, by
means of (6.8) and Lemma 4 used with §=a -+, conclude that all the derivatives of
order % of ug belong to Li,; we use (6.1) if (6.5) is valid and (6.2) if (6.6) is valid.
From the discussion in § 5, 2° we finally conclude that ul€ A4%(Lf., Fy), and so the
theorem is proved if «>0.

The case a =0 is treated analogously to the case o >0, by using the following lemma
instead of Lemma 4:

Lemma 5. Let 0 <f<m. Let u be a positive measure with compact support. If either
Io(u) is finite and 2<p=m|B or 1 <p<m|B, then uf€L{,.
The proof of Lemma 5 is analogous to that of Lemma 4 (see Fuglede [10]).

7. A converse of Theorem 3

Theorem 3 gives a positive solution of our extension problem with the extended
function in the class A%(LL., Fy) if F, satisfies (6.5) or (6.6). The following theorem
gives a converse of Theorem 3 as A4x(L., F,) is a subclass of 4,(Lf) if Cx(Fo) =0
for some a<m—1:
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Theorem 4. Let F, be a compact sef. A sufficient condition for the existence of a func-
tton tn S(Fy), which cannot be extended to a function in Ay(LL.), is that either

CAFg)>0 for some o satisfying o«.>m—ph, where m —ph=20 and p>2 (7.1)
or C(Fy)>0 for « =m —ph where m —ph>0 and 1 <p<2. (7.2)

In order not to encumber the proof with details we shall not treat the case when
m—ph=0,1<p<2. It is, however, no difficulty to modify the proof which we shall
give to obtain: The theorem is also true in the case when

Co(F) >0, m—ph=0, 1<p<2 (7.3)

An inspection of the Theorems 3 and 4 shows that they give a complete solution
of our extension problem when p=2 but not when p=+2.

Theorem 4 is proved in § 8. For the proof we need integral representations of those
functions in BL,(Lf,) which are zero outside a compact set. To deduce these we
use the following formulas (Schwartz [17, part I, p. 47]): If A, is the Laplace operator
iterated kb times, A1, then we have, in the distribution sense, if § is the Dirac
measure and M, and M, are certain constants only depending on k and m,

M, -Ap|z"~" =6 if m—2h>0 or m—2h<0,m odd, (7.4)
M,y Ap(| "™ log |z|) =6 if m—2h<0, m even. (7.5)
We can write A= a, D’ D, (7.6)

where a, are constants and the sum is extended over a number of multiindices s
with |s| =h. If f€ BL,(L%,) and f has compact support we obtain, by means of
(7.6), in the case when (7.4) is valid,

f=6%f=MAp|x " % f=M, 3 aD % D*|x[**~" % f= M, > a,D |z [** ™ % D*f.

The distributions D*|«|**~™ and D*f are functions and D°f has compact support.
The convolution Df|z|2" ™% D’f can consequently be written as an integral and as
DfeL?, we get:

If f€ BL,(Lf,), | has compact support and the function k, , is defined by k, ,{x)=
Ds|x|2h_”’, then there are functions g, with compact supports, ¢;€LP, and constants b,
so that

=>b, f (@ —Y)g.(y)dy a.e., if m—2h>0 or m—2h<0, m odd.  (7.7)

Analogously we get by (71.5)—with other values on the constants b—if the function
kS, y is defined by k3 (x)=D*(|z|*" "log|x|),

Flz)=>b, f wn(@— ) gs(y) dy a.e., if m—2h<0, m even. (7.8)

The sums in (7.7) and (7.8) are extended over a number of multiindices s with |s| =
In the proof of Theorem 4 we dlso need the following lemma:
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Lemma 6.1 Let K be a kernel. Suppose that g,,1=1, 2, are functions having the property
that for every £>0 there exists a Borel set E with Cg(E)<g such that the restrictions of
gy and g, to O E both are continuous. If we, furthermore, assume that g,(x) =g,(x) a.e. and
that the set of points x where g,(x) = g(x) is a Borel set, then g,(x) =g,(x) except on a set
of K-capacity zero.

Proof. Let E, be the set of points z where g,(x) = g,(x) and suppose that Cy(E,) =
a>0. Choose ¢, 0 <e <a, and let E be a Borel set with C¢(E) <¢ such that the restric-
tions of ¢, and g, to (E both are continuous. We further choose a compact subset
F of E;\ E with Cg(F)>a—¢. Let F,,forn=1,2,..., F, > F, be the union of finitely
many closed spheres having radii <r,, where r,—0 when n— oo, and centres be-
longing to F and let Fy, consist of the set of points situated at a distance <r, from F,.

If u, is a capacitary distribution belonging to the kernel K and F,, then

ugr(x) < A -{Cx(Fu)}™, (7.9)

where A is the constant in (1.4). Let ¢,, fp,dz=1, be a non-negative function which
is infinitely differentiable and let S, be a subset of S(0,r,). We define ¢, by

Yo =@n% Uy Y, dx i3 a positive measure with total mass 1 and S, < Fj. Since E, has

Lebesque measure zero there exists for every 7> 0 a closed set H,(n), H,(n)< Fi\E,,
such that the restriction of the measure y,dz to H,(y) has total mass >1—». Hence

I(yn) > (1 =) {Cx(H, ()} > (1 —n)? {Ox(Fa \ Ey}71. 7—>0 gives
Ie(yn) Z{Cx(Fa\ Ey)} ™. (7.10)
On the other hand we have by (7.9)
wH(@) = K % @ % pin(®) = @ % ufr() <A - {Cx(Fa)} ™,
which gives I (y,) <A-{Cx(F,)} 1. This inequality and (7.10) give
Cx(FW\E,)> A-1Cx(F,) > A-1Cg(F) > A1+ (a—¢).
By choosing ¢ so small that A-1(a —&)>¢ we get Cg(F3\ E))>Cr(E) as Og(E)<e,

i.e. the set (Fy \ E,)\ E is non-empty.
Let x,€(F» \ E,)\ E. According to our construction we have

gl(xn) = g2(xn)’ n = 1}2:'“: a'nd (711)
There exists a point y,€F such that |x,—y,| <2r,, n=12,... (7.12)

We now prove the existence of a point z, from F where ¢; and g, coincide which
gives a contradiction to the fact that F < E,. We suppose that the sequence of points
{x,} converges to a point z, (If this is not the case, we choose a convergent sub-
sequence.) From (7.12) we conclude that {y,} converges to z, too. Hence z,€F.
We now use the estimate

_|9_1(x0) "92(‘”0)‘ < 191(730) _gl(xn)] + Igl(xn) _92(xn)| + |g2(xn) —ga(%y) |

1 A special case of this lemma is given in Deny and Lions [7, p. 353].
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The second term of the right member is zero according to (7.11). As z,, and z, belong
to E and the restrictions of g, and g, to (E are continuous, we conclude that the
two remaining terms of the right member are arbitrarily small when » is large.
This proves that g,(x,) =g.(x,) which gives a contradiction to the fact that z,€F.

8. Proof of Theorem 4 and a theorem on harmonic functions

The idea of the proof of Theorem 4 is as follows: We start by observing that, due
to § 5,4°, we only have to prove the existence of a function f,€ §(F,) which cannot
be extended to a function in A4,(Lf,) with compact support if (7.1) or (7.2) is satisfied.
But every function in 4,(Lf,.) is—considered as a distribution—an element in
BL,(L{,). This means that every function in 4,(L{,.) with compact support can be
written on the form (7.7) or (7.8). Following the method of the proof of Theorem 2
we shall deduce moduli of continuity of the right members of (7.7) and (7.8) having
properties analogous to those of the modulus of continuity of the potentials in the
proof of Theorem 2. This will also show that the right members of (7.7) and (7.8)
have such properties that we can use Lemma 6 to conclude that every function in
An(Lfoc) with compact support has a representation (7.7) or (7.8) valid not only a.e.
but everywhere except on a set of K-capacity zero, where the kernel K, is defined
below. (Compare (8.1) and (8.17).) The choice of K, is such that Cg (F,) >0 and this
will enable us to infer, from Lemma 3, the existence of a function f,€ $(¥,) which
cannot be extended to a function in 4,(Lf,) if (7.1) or (7.2) is valid.

The case 1 <p<2. We start by treating the case 1 <p<2 and we suppose conse-
quently that (7.2) is true for the given set F, and given values on k and p, 1 <p<2.
Since C,(F,)>0 for o =m —ph there exists a kernel K, satisfying

lim Ky(r)r" %" = oo, Ok (F,) >0, lim K(r) > 0. (8.1)
-0 r—>00

As Cg,(Fg)>0 we can choose a measure ¥, with
1w>0, v(B") =1, 8,CF, Igv)<oco. (8.2)

We formulate the information which we need about the right members of (7.7) and
(7.8) in the following lemma:

Lemma 7. Let the compact set F, the kernel K,, and the measure v, satisfy (8.1)
and (8.2) and suppose that p and k are given numbers, h a positive integer, with m —ph >0,
L<p<2. Using the notations of (7.7) and (7.8) we define the function v, by

vp(x) =2, bsfks,h(x—y)gs(y)dy tf m—2h>0 or m—2h<0,m odd, (8.3)
and by vp(x) =2 bsszh(x —y)gs(y) dy if m—2h<0, m even, (8.4)

at those points where the right members are well defined. The sums are extended over the
same multiindices s as in (7.7) and (7.8), i.e. over a number of s with |s| =h; b, are
constants and g, functions in L? with compact supports. Then there exists a non-negative
function t, defined in the interval r >0, lim,_o £,(r) =0, only depending on m, h and K,
such that the following assertion is true:
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For every £>0 there exists a Borel set E, with Oy (E,)<e and a constant M only
depending on g, m, h, K, b, and g, so that

[vn(2y) —vn(@s)| S Mt (|2, —2,|) for all x,,2,€0E,. (8.5)

Furthermore, there exists a.Borel set E, with vy(Ey) <e¢ such that (8.5) is valid with
E, replaced by E,.

We can easily finish the proof of Theorem 4 in the case 1 <p<2 if for a moment
we suppose that Lemma 7 has been proved. As we have mentioned above it is enough
to prove the existence of a function f,€ §(F,) which cannot be extended to a function
in A,(Lf.) with compact support. To prove this we first study those functions in
Ap(LE,) which have compact supports. Let f be such a function. Then f hag a represen-
tation (7.7) if m —2h >0 or m —2k <0, m odd, and a representation (7.8) if m —2h <0,
m even. This gives an integral representation of f valid a.e. But since f is continuous
we can use (8.5) of Lemma T and Lemma 6 to conclude that this integral representa-
tion of f is valid everywhere except on a set of K -capacity zero.! By means of the
last sentence of Lemma 7 we infer, as the set where the integral representation of
f is not true has K -capacity zero and accordingly also »,-measure zero: For every
£>0 there exists a Borel set E, E< F,, vo(E) <e, such that, if ¢, is the function oc-
curring in Lemma 7, then

[fy) —fl@a)| < Mt(|ay—x,]|) forall x,2,€Fy—E. (8.6)

Using Lemma 3 and (8.6) the proof is now completed in the same way as we
finished the proof of Theorem 2 by means of Lemma 3.
It remains to prove Lemma 7.

Proof of Lemma, 7. We first deal with the case p=2. According to our assumptions
we have m —2h>0 which means that the case when v, is defined by (8.4) does not
occur. The kernel K, has when p=2 the properties

lim K(r)r™ 2" = oo, O (Fy) > 0, lim K(r) > 0. (8.7)

-0
Let ¢ be a function defined in the interval » >0 satisfying

q s non-increasing, non-negative and continuous, g(r) < 4,9(2r) for every r >0,
A, constant, lim g(r) = oo. (8.8)
r—>90

We define the function g by
g9ty) =290},

where the sum is extended over those functions g, which occur in (8.3). Finally we

introduce the function w,:
a(z—y) )
wy(x) = i dy.
(%) f Ix_?/| n Oy

1 Due to the degree of arbitrariness in the choice of K, in (8.1) it is, in fact, easy to realize,
that the integral representation of f holds true except on a set of &-capacity zero with a=m — ph.
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The reason for introducing the function w), is the following: Since &, ,(x) = D* | x]z"'”‘,
[s] =k, we have
[k n(@)| < M- |m]? ™2 (8.9) .

This and (8.3) show that v, is majorized by a potential generated by the kernel
r*~". But w, is a potential generated by the kernel #"~™-g(r). Since ¢(r) tends to
infinity as r tends to zero we may proceed as in the proof of Lemma 2 to show an
inequality of the type of (8.5) for v,, valid for points z, and =z, from a set of points
where w), is majorized by a certain constant. We start by performing this and then
we shall finish the proof of Lemma 7 in the case p =2 by showing that w), is bounded
except on a set having K -capacity and v;-measure less than a prescribed positive
number, if ¢ is properly chosen.

We accordingly suppose that w,(x;) <a, =1, 2, where a is a given positive number.
As in the proof of Lemma 2 we put |2, —2,| =, and introduce the open sphere S
with centre 2-(x, +x,) and radius 2-'r,+r,,7,>r,, and write

() — vp(X,) = fs + fﬂs =J+1I.

Using (8.9) we obtain [ I] <a-M {g(ro+r)}
If y €GS we obtain, by using the mean value theorem, if |s| =

,xl-le

| Bes, (2, — %) — ks n(2y — ) | < M =)

As in the proof of Lemma 2 we now realize that we can choose r; depending on 7,
and find a function ¢,, defined in the interval r >0, £,(r)—>0 when r—0, only depending
on m, k and ¢, such that

[von(2)) —va(5) | < (@ + 1) Mt,(|2, —x5|) 3f wyx) <a,i=12 (8.10)

The lemma follows, in the case p=2, by means of (8.10), if we prove that it is
possible to choose ¢ only depending on K, such that, for every >0, there exists a
constant a with w,(z) <a except on a set of K,-capacity and y,-measure less than e.
But this is a consequence of the assertion that we can choose ¢ only depending of
K, such that, if G, denotes the set where w,(x)>a >0, then

CrGa) < M -allg . (8.11)

To prove this last assertion we consider an arbitrary positive measure y with
wB™ =1, 8,cG,. We have, by Schwarz’s inequality,

< ( [ore duta)) { Jo([ = ez — (== y]) duto)) dy}z

<lglt | faute) dy(z)flz(l_”y_lmy_'i fi' - ,ﬁ'ﬂ, dy.

! In the proof of this lemma M denotes a constant—not necessarily the same each time it
occurs—only depending on the parameters shown for the constant M in Lemma 7.
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We define H by H(z,z)= |Z(|—xy—lm3{|’z !llili;l?{" Izh dy

and shall prove that we can choose ¢, satisfying (8.8) and only depending on K,

such that
H(z,2) < MK (|2 —z|). (8.12)

In fact, if for a moment we suppose that this has been proved we obtain from our
estimate of a2,

a*<||gll:- M - Ir,(p).
Hence a?<M-|lgllk: - {Cx,(Ga)}?

which yields (8.11).
We now prove the assertion leading to (8.12). If we put z—x=§ we obtain, by a
substitution in the integral defining H(x,z),

_ [ alyhady—£D
H(z,2) Iylm—hly_flm—h dy.

We denote this expression by H,(£) and estimate H, (&) by the following divi-
sion of the integral, where D is the set of points y satisfying

H
2

H1(§)=f +f +f +J=I+II+III+IV.
< J-a<ll Jwizaa Jo

By using q(r)< 4, ¢(2r) we obtain

I< 2'"-"Alq(|§|)IEI"""fI i ly1" " qlly]) dy
sy

3
01> 10 1y £15 1 ana [y <2121,

5]
<MA1q(|§|)|§|”-'"f0 " q(r)dr.

For II we obtain the same estimate as for 1.

d
HT<2™ " {q( &D)}? f e # <M &P {q(| &)}

as m— 2h>0.

TV <Af-2tn = gl gy | g2 Ldy<M-A% TP g €Dy

These estimates show that (8.12) is true if we can choose g satisfying (8.8) so

that
181
0

q(lfl)'lfl_hf r"“lqr)dr +{q(| )} < ME(| €]) | £]" 7", [&]+0.
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But this is a consequence of the facts that m —2h >0, lim, o K(r)r™ 2" = oo,
lim, . Ky(r)>0 and, for instance, the fact that
1£]
lél"‘f " q(r)dr < Mol ), (8.13)
0

if ¢ satisfies (8 8) with A, sufficiently close to 1. M, is a constant depending on 4,
and k. (8.13) is proved by dividing the integration interval (0, |£|) by the pomts
27"&|, n=0,1,2,.

Hence Lemma 7 is proved in the case p=2.

We now prove Lemma 7 when 1<p<2. In this case it may occur that m —2h <0.
Consequently we also have to consider the case when the function v, is defined by the
formula (8.4).

We let ¢ be a function satisfying (8.8) and introduce the functions g and w, in the
same way as in the case p=2. (8.10) is, of course, still valid, when m —2h>0 or
m—2h <0, m odd, i.e. when v, is defined by the formula (8.3), but we can also deduce
the same formula when m —2h<0, m even, i.e. when v, is defined by the formula
(8.4). In fact, when m —2h< 0, m even, and m —h>0 it is easy to prove that the
estimate (8.9) holds also for k), i.e. that

| n(@) | < M|x|"~", |s|=h. (8.14)

Analogously to the proof of (8.10) when v, is defined by (8.3) it is possible to show,
by means of (8.14), the existence of a function ¢,, defined in the interval r>0,
lim, o t,(r) =0, only depending on m, h and q such that (8.10) is true also when v, is
defined by (8.4).

An inspection of the proof when p=2 now shows that the lemma follows in the
case 1 <p <2 if we prove that we can choose ¢ only depending on K, such that the
following substitute of (8.11) is valid,

CKa(Ga) < Maa—p“g ”2?7 a >0’ (8']5)

where G, denotes the set of points » where wy(z) > a and M, is a constant depending

on the same parameters as the constant M in (8.5) and on the constant 4 in (1. 4)
To prove (8. 15) we consider, as in the proof of (8.11), a pos1t1ve measure u, u(RE™) =

S,<G,. By using Holder’s inequality twice we have in the case 1<p<2} 1f

P =plp-1)™

a’ < ( f w,.(x)du(x)) <llgllz» f { f ’q(l l"‘l" dy(x)} dy
(vh— m)’(p ~2) Mn P
Mol [{fla=sl™ 7 eyl 7 ale—yhautal] dy

p-2 gﬁ_m » 2
<t [{ fla=sPr-raua) - { flo-ol* ez ¥ duio)] a

oh_ v 2
<|lgllz»{ Sugu’,ﬁ-ph(y)}p'_zf{flx—yl_f q(lz—y|)? d,u(x)} dy.

1 As to the latter use of ‘Holder’s inequality, compare [15, p. 130]. The case p =1 requires a
simple special treatment which we omit.
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»
Defining g, by ¢,(r)={g(r)}* we get

vh IJ_' 2
f{flw—yl?—m-q(lav—yl)2 du(x)} dy

=”d#(x)dﬂ(z)J =y alz=y) 5

m—

"ok
lz—y|" 2 |z—y|" @

If we replace h by ph/2 in the proof of (8.12) we realize that we can choose ¢
satisfying (8.8) such that the last integral above is majorized by M - Ig,(u) where
K, satisfies (8.1). Hence

a” < Mlgli¥s- sup {uf_pa(y)}" % I (0)- (8.16)
Ve

Now let F be an arbitrary closed subset of G,. For u we choose a capacitary
distribution belonging to the kernel K, and the set F. This gives

sup wh_pn(y) < M sup wi(y) < M- A4 -{Ox(F)} 7,
veRm ye‘R”'

where A is the constant in (1.4). Consequently (8.16) yields
a” < MA” || gl {Cr (F)} ",
ie. Cx(Fy< M,a"?|lgllZ».

Since F is an arbitrary closed subset of G, we conclude that (8.15) holds true.
By that Lemma 7 is proved and accordingly also Theorem 4 in the case
1<p<2.
The case p>2. We now prove Theorem 4 in the case p>2 and we conse-
quently assume that (7.1) is valid. According to (7.1) we can choose g, such
that

CulFo) >0, g =1m — ph+ £, oty <m, 8> 0. (8.17)
Furthermore, we choose a positive measure », having the properties
=0, 9o(R™) =1, 8,, © Fy, Lo, (vy) < oo. (8.18)

The proof is now analogous to the proof of the theorem in the case 1<p<2
if we replace the kernel Ky by r * and use the following lemma instead of
Lemma 7.1

Lemma 8. Let the compact set Fy, the number oy and the measure v, satisfy (8.17)
and (8.18). Suppose that p and h, b a positive integer, are given numbers with
m —ph >0, p>2. If we define the function v, by the same formula (8.3) as in Lemma
1, then exactly the same conclusions as in Lemma T are true, word by word, concerning
vy, tf we replace the kernel Ky occurring tn Lemma T by r™*.

1 Observe that the case when the function v, is defined by (8.4) does not occur when p>2
since m — 2h >0 if p> 2, due to our assumption (7.1).
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The proof of Lemma 8 is analogous to the proof of Lemma 7 for the case
p=2. The differences are that the function w, which is used in the proof of
Lemma 7 now is defined by

wh(x)=f|xgiy;|ydy, y=m—h+ e, £>0,

where ¢ is defined in the same way as in the proof of Lemma 7, and that we,
instead of (8.11), use the fact that if g is chosen small enough and G, as usual
denotes the set of points x where w,(x)>a >0, then

ColGa) < Ma™" |lgliZs

This fact is proved by using formula (6.4) in Lemma 4 and as the result can
be extracted from du Plessis [15, § 5] and Fuglede [10, § 4] we omit the details.
By that Theorem 4 is completely proved.

We now use Theorem 4 to prove the following theorem on harmonic functions.

Theorem 5. Let U be the open unit sphere in R™, m>2, and Fy a closed subset
of the boundary of U. Then Cm_o(Fy)=0 if and only if every function f,€S(F,)
can be extended to a function w, which is harmonic in U, continuous in the closure
of U, has a finite Dirichlet integral

m 2
fU izl (Z_::—)) dar < = (8'19)

and satisfies uy(z) =fq(x) for every x€F,.

Proof. One half of the theorem has been proved in § 2, Remark 4. To prove
the other half we assume that Cn_s(F,) >0 and assert that there exists a func-
tion f,€S(F,) which cannot be extended to a function u, having the properties
stated in the theorem.

Let u be a function which is continuous in the closure of U, harmonic in U
and such that (8.19) holds with u, replaced by u. We define the function u* by

u(z) if |z|<1

u*(x) = 21 " )

z
if >1, where — =(——, e ).
(I |2) =] [«} [P " [«

Our assertion clearly follows from Theorem 4 if we prove that u*GAl(Lloc) We
first observe that all the partial derivatives of the first order of u* are in L.
Furthermore, it is easy to realize that u* has the property (40). In fact, if a
and b are given finite numbers, we have on almost every line with the direc-

tion 2!
b *\ 2
e
a

which proves that u* is absolutely continuous on almost every line with the
direction «'.
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Since u* has the property (AC) and all the partial derivatives of the first
order of w* are in L}, we conclude (compare Deny-Lions [7, p. 315]) that
u* € A,(L%,.), which proves our theorem.

9. The case p=1

Theorem 3 gives, for p=1, a result in one direction of our investigation of
the extension problem in the case when C(Fg)=0 for some a<m—h, and
Theorem 4 a result in the other direction when C, (F)>0 for « =m —h. We now
give some additional results when C,(F,)=0 for & =m —h but C,(F,) >0 for every
ax<m—h.

We start by the following example!:

Example 1. Let F, be the set of points z=(z1, ..., 2™) with 21=2"" for
rn=0,1,2, ... or xl—O and 0<2'<1, 1=2,...,m. We choose a sequence {a;}¢’
such that Z{f a; is convergent and 23°|a,|— oo and define a function f,€S$(F,)
by putting, for n=0,1, ...,

fo(x)=2a4 if xEFo, pl=2""
0

and fo@)=2.a; if x€Fy, 2l =
0

If f is an extension of f, to R™ which is continuous everywhere and infinitely
differentiable on GFO, we obtain, for 0<a'<1,1=2, ..., m,

f‘ 1=§f2'" of(at, ..., a"

0 0, Jg -1 oxt
1

and hence J‘ f 3f(x

The given set F is thus an example of a compact set which has o-capacity

zero for a=m—1, if m>2, is enumerable if m =1, and has the following pro-

perty: There exists a function f,€S$(F,) that cannot be extended to a function

which is continuous everywhere, infinitely differentiable on { F, and such that

all the partial derivatives of the first order of the extended function are in L.
We use the above example to prove the following theorem:

of(a1, ..., ™) d

2 dxl z I Ap +1 I

dxl dx™ = oo,

Theorem 6. Let h be a positive integer, a=m—h and o=>0. Then there exists a
compact set Fy which satisfies C(F,)=0 if «>0 and is enumerable if a=0, and
a function fy€S(F,) that cannot be extended to a function [ which s continuous
everywhere in R™, infinitely dszerentmble on OF, and such that all the partial
derivatives of order h of f belong to Li..

Proof. For h=1 the theorem is a consequence of Example 1. Hence we assume
that A>1.

1 The idea to use an example of this kind has been proposed to me by Dr. G. Aronsson.
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Put m¥*=m —(h—1) and let R'"* be the m*-dimensional subspace of R™ which
is defined by the points (!, ...,2™",0, ...,0) where 2, ..., 2™ varies arbltrarlly
According to Example 1 we can then choose a compact ‘set F,, F,c R™, which
satisfies C (F,)=0 if «>0 and is enumerable if =0, and a functlon fOES (Fo)
which cannot be extended to a function g, which is defined and continuous in

R™, infinitely differentiable on R™ — F, and such that

Joo .

for all finite values of a and b.

Suppose that we have chosen F, and f, as indicated and that there exists an
extension f of f, having the properties stated for the function f in the theorem.
We shall prove that this gives a contradiction by studying the derivative

1 ™
ag(x 09, - T g ™ < oo

o
oxlox™ o™ 2 . o™

(9.1)

For every choice of 2%, ..., 2™ ! such that the line through the point (', ...,2™",0)
parallel to the 2™-axis does not intersect F,, we get,

ot f(a!, ..., 2™ ! t)dt @ .2 ) T L, 2™ 0) ©2)
o ox'ox™ ... ox'ox™ . ox™ ™t ox'ox™ ... o™ '
From the discussion in § 5, 2° we conclude that for almost all #,
b b h-1 1 m—1
O, 2 ) -
fa...fn axlax’"'“...ax""f da'...dz"™ 1< o0 (9.3)

for all finite values of & and b. (9.2) is valid for almost every line parallel to
the «™-axis as C(F,)=0,a=m—% and h>1. Hence we obtain from (9.2) and
the assumption on f that (9.3) is true with ¢,=0 for all finite values of a and
b. If h=2 this gives a contradiction to the choices of F, and f,. If A>2 we
repeat the above procedure with (9.1) replaced by the second term of the right
member of (9.2). An induction argument finally shows that

Joo.

for all finite values of @ and b which once more gives a contradiction to the
choices of F and f,. This proves the theorem.

The type of sets F, used in Example 1 and in the proof of Theorem 6 has
a rather complicated structure. As a comparison we consider a case when F,
has a simple structure and still satisfies C,(F;)=0,x=m —h.

o, ..., xm* - 0) d2t ... dx™ < oo

Example 2.1 Consider the case m=2 and let F, be the boundary of the open unit
circle U. Then the following assertions are true:

1 This example is due to Professor L. Carleson. The example is related to results by Gagliardo
[12].
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1°. Every function f,€S(F,) can be extended to a function f which is defined
and continuous everywhere in R2, infinitely differentiable on (F,, and such that the
partial derivatives of the first order of f are in L.

2°, Let G be a non-decreasing postitve function defined in the interval r>0
satisfying

1im 97— o (9.4)

r>o0 T

Then there exists a function f,€S(F,) that cannot be extended to a function f which
s continuous tn the closure of U, infinitely differentiable in U and salisfies

Jf G(| grad f|) dat da? < oo. (9.5)
v

Proof of 1°. Let f, be a given function from §(F,). We introduce polar coor-
dinates (r,0) and consider f, as a function of 6. We write f, on the following
. form, where ¢,, for n=1, 2, ..., is an infinitely differentiable function of one
variable with period 2x and maxo<g<2,, ]tpn(ﬂ) | < M-2"" for a certain constant M,

fo(0) = %%(0).

Put maxecoczs |@n(0)|=a,, n=1,2, ..., and choose {e,}, 1 >¢&,>0, limy, £ =0,
such that > ¢, a, < co.

We start by extending f, to U. Let {g,} be a sequence of functions defined
in the interval r>0 with ¢, non-decreasing, infinitely differentiable and such
that ¢.(r)=0 if r<1—¢g, and gq.(r)=1 if r>1. As our extension of f, to U we
choose the function f defined by

o0

f(@, 22) = 3 ga(r) pu(0), ' =7 cos 6, % =7 sin 6.
1

f is clearly infinitely differentiable in U and for a certain constant M, we have

IR(ER

ox2

0 1 r2n
) drtda?< 3 leo f (14 a(0)|+ | an(r) 92 ®) Drddr

3x1
SM, D @2rM-27"+ 27 ay€a) < o0,
1

i.e. the partial derivatives of the first order of f are absolutely integrable over
U. Analogously we can, of course, extend f, to the exterior of U with the ex-
tended function equal to zero outside a compact set, which proves 1°.

Proof of 2°. Suppose that f, is a function from §(¥,) which can be extended
to a function f having the properties stated for the function f in 2°. Let f(r,0)
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be the value of f at the point with polar coordinates (r,0). If we again consider
fo as a function of 0 we have f(1,0)=1,0). We get, if 0<p<1 and 6>0,

_ (" |efr, 8o+ 6) %12 9f(e, 6) f of(r, 6,)
|f0(60 + 6) —f0(00) | = f@ —a—r“ dr+ foo 26 o + . or ) dr.
Integration over 6, yields
27 2n 1
fo [fo(Bo + 8) — £4(6,) | 40, < leo f {grad f(r, 6,)| drdb,
[
27 0p+0
+M1f d00f | grad f(o,0)|d6 =1+ 11, (9.6)
0 8

where M, is a constant.” We divide the domain of integration of I into two
parts, one of which consists of those points where |grad f(r,6,)|> (1 —g) '™
Using (9.4) and (9.5) we obtain, with a constant M, only depending on f and
a number ¢(g) only depending on g, &(p)—0, p—1,

1< My(e(p) + V1 —p). (9.7)

To estimate II we observe that

2.

| grad f(o, 0)[dO,

II=M, 6f

0
and, by (9.5), this quantity is less than M, 8(1 —p)* for a certain value p=p,
where 277711 -p,<2 ", »n=1,2,.... Using this and (9.7) it is easy to realize
- that we can choose ¢ depending on 6 with p—1 when §—0, so that we obtain
a modulus of continuity #d),¢8)—0 when 8—0, for the left member of (9.6),
a modulus of continuity which is independent of f,:

27
f | £o(0 + 8) — £,(0) | dO < ME(S), for every 6>0. (9.8)
0

M is a constant depending on f, and f. Thus (9.8) holds true for all the func-
tions from $(F,) which can be extended to functions having the properties
stated for the function f in 2°. It is, however, not hard to realize that therc
exists a function f,€S(F;) which does not satisfy (9.8).
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