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On convergent and divergent sequences of equilibrium

distributions

By Hans WaLLIN

1. Introduction

We shall deal with sets belonging to an m-dimensional Euclidean space E™
and we suppose all the time that the sets are bounded Borel sets,

Let K, (r), n=1,2, ..., and K(r) denote non-negative, non-increasing functions,
defined for r >0, which are continuous for » >0. We also suppose that K,(r)—K(r)
when n—co. The problem which we shall discuss, is of the following type.
Suppose that K, (r), n=1,2, ..., are such that the equilibrium problem is pos-
sible for every K,(r).! This is, for instance, the case if every K,(r) is of the
form r % m—2<a<m. When is it true that the equilibrium distributions be-
longing to the kernels X,(r) and a certain closed set F converge, when n— oo,
on the assumption that the K,-capacity? of the set F is positive? By con-
vergence we always mean convergence in the weak sence. We shall here above
all deal with the case when the K-capacity of F is zero. This question is of
interest because a positive answer would, to sets of capacity zero, assign a
distribution of mass which would be an analogue to the equilibrium distribution
for sets of positive capacity. The case when the K-capacity of F is positive
is easily settled. Namely, if the K-capacity of F is positive and K,(r) 7 K(r)
—that is K,(r) tends non-decreasingly to K(r)—it immediately follows that
the equilibrium distributions belonging to K,(r) and the set F' converge, when
n—>oco, towards the equilibrium distribution belonging to K(r) and F. This is
proved by Frostman in [2] for kernels of the type r~* and his proof remains
valid for general kernels. An assumption like K,(r)/K(r) is essential which
is seen by the following counter-example.® There exists a closed linear set F
with Hausdorff dimension? larger than a chosen number o, o<1, such that
the equilibrium distributions belonging to the kernels r * and F fail to converge
to the equilibrium distribution belonging to ~* and F, when a—o,+0—that
is o tends to «, from above. We give a proof of this in Theorem 7.

It is possible to determine the equilibrium distribution exactly only in a few
simple cases. This problem has been treated by Polya and Szegé [6], who have

1 For definitions see [1].

2 As regards the definition of capacity see below.

3 This counter-example has been shown to me by Professor Carleson.
4 For the definition see [1], p. 90.
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H, WALLIN, On convergent and divergent sequences of equilibrium distributions
determined the equilibrium distribution belonging to the kernel »% a< 1, when
the set is, for instance, a linear interval. Their result shows that the equilibrium
distributions converge to the distribution of mass which has constant density
in the given interval, when a—1. An analogous result is valid for a circular
disk and the (3-dimensional) sphere. By mapping a linear interval isometrically
on a rectifiable curve in the plane, Frostman [2] has shown, using the results
of Polya and Szegd, that the equilibrium distributions belonging to » * and a
rectifiable plane curve converge, when a—1, to the distribution of mass, where
the mass which is situated on an arc is proportional to the length of that are.
Another case has been treated by Lithner [3] using methods from Fourier ana-
lysis. He has proved that the equilibrium distributions belonging to r~* and F
converge, when a—m—0, towards the distribution which has constant density on
F, if F is a compact set in R™ which has positive m-dimensional Lebesgue
measure. We shall prove (Theorem 1)—using quite other methods than those
of Lithner—that this result remains valid for much more general kernels K,(r)
and K(r). Thus we get an analogous result even if we do not assume that the
kernels are such that the equilibrium problem is possible. In this case there
exists no longer an equilibrium distribution, but we still consider a (not neces-
sarily uniquely determined) distribution of unit. mass on F, u,, which realizes

inf Jf Ko(jx — y|) dv(z) du(y),
FF

vel

where I' is the class of all positive distributions of unit mass on F. The con-
clusion is then, just as before, that {u,} converges to the distribution which
has constant density on F. This is the main result of the paper.

The method which we shall use in the proof of Theorem 1 can also be used
to prove the following result (Theorem 2). If F is a compact set in R™ and
C.(F) denotes the a-capacity of F and m(F) the m-dimensional Lebesgue measure
of F, we have

Q

«(F)

a—>m—0 M — o

=km(F),

where k is a constant which only depends on the dimension m of the space R™.1

The rest of the paper chiefly consists of counter-examples. The aim of these
is to show that the result in Theorem 1 is, in a certain sense, the best possible.
Thus there is no natural analogue to Theorem 1 for sets having Lebesgue measure
zero. Due to this somewhat negative character of the rest of the paper, we
shall sometimes give only a sketch of the proofs of the counter-examples. In
order to keep the calculations as simple as possible we shall also as a rule give
the counter-examples for linear sets.

In Theorem 3 we prove that there exists a closed linear set F with a pre-
scribed Hausdorff dimension &, O<ay<1, so that the equilibrium distributions
belonging to the kernels r™* and F do not converge when o—-o—0.

The question that is answered by Theorem 1 can in a natural way be gen-
eralized to sets having Hausdorff dimension less than 1. Given an arbitrary

! Compare [2] where a similar formula is proved when F is a rectifiable plane curve.
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positive number o, 0<ay<1, and a closed linear set F which has positive and
finite o-dimensional Hausdorff measure, A, (F), is it then true that the equi-
librium distributions belonging to the kernels r™* and the set F converge, when
a—>ay—0, to a distribution where the mass situated on a subset of F is propor-
tional to the «,-dimensional Hausdorff measure of that subset? A negative an-
swer to this question is given in Theorem 4. It should be noticed that we must
here assume that o<1, because if oy=1 A, (F) coincides with the Lebesgue
measure of F, as F is a linear set, and then the answer to the question is in
the affirmative according to Theorem 1. But hence there appears, in a natural
way the question whether it is possible to construct a closed set F in the plane
having positive and finite 1-dimensional Hausdorff measure, 0 <A, (F)< oo, so
that the equilibrium distributions belonging to » * and F do not converge to a
constant times the 1-dimensional Hausdorff measure, when x¢—1 —0. In Theorem 5
we prove that this is possible. This result is thus an instance of the well-known
fact that there exists a fundamental difference in the structure of linear and
plane sets with positive and finite 1-dimensional Hausdorff measure.

The above counter-examples show that there is no result which is analogous
to Theorem 1 if the set F has Lebesgue measure zero. In order to get a posi-
tive solution of the convergence problem for sets with Lebesgue measure zero,
we must consequently limit ourselves to sets which satisfy some suitable con-
dition of regularity. We shall prove (Theorem 6) that if the set is a linear
Cantor! set, then we get a positive answer to the convergence question. On
the other hand, there exist simple sets for which the answer is in the negative,
which is illustrated by the fact that the sequence of equilibrium distributions
does not necessarily converge if the set F is the union of two Cantor sets. We
sketch a proof of this in the remark to Theorem 6.

A question which is related to the above is the following. Let u, be the
distribution of the mass 1/n in each of the n points (not necessarily uniquely
determined) which realize

L...,

2 E(xi—)
min —1————— = K(D$),

z,eF n)
2

where F is a closed set. If the K-capacity of F is positive and the equilibrium
problem is possible for K(r), then it is true that {u,} converges to the equi-
librium distribution belonging to K(r) and F, when n—> .2 Does {u,} converge
also if the K-capacity of F is zero? The fact that this is not necessarily the
case is an immediate consequence of a result of Terasaka [8], who, in the case
when K(r)=1/r, constructed a closed enumerable set, such that the se-

quence u,(x) = | K(lx—y|)duly), n=1,2, ..., does not converge for every z be-
F
longing to the complement of F. It is, however, possible to make Terasaka’s

! For definitions see [4], pp. 152 ff.
% See [1], pp. 46 ff, where this is proved for K(r) =r~%.
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construction for an arbitrary kernel K(r) and hence we can, to every kernel
K(r), find an enumerable set such that {u,} does not converge. Finally we can
note that the same negative result also remains valid if instead of considering
the n points which realize K(D{) we take the n points {y;}7 which realize

K(R;)=max min — 1 z K(|x— x,l)—mm—- Z K(|x—w)-

I¢€F zeF ZTEF i=1

2. Definitions and notations

z={(2', 2%, ..., 2™} denotes a point in R™. By a closed m-dimensional interval
we mean the set of points which satisfy the inequalities @, <2'<b;, where a;
and b; are any numbers such that a;<b;, i=1, 2, ..., m. 8(z,, r) denotes the
closed sphere |x—xy|<r. I(H, v; F) denotes the energy integral

H”de—yl)dv(x) dly).

The H-capacity of a set F, Cy(F), we define as Cy(F)= {mf I(H, v; F)}™!, where

I' is the class of all positive distributions of unit mass on F, ie. the class of
all completely additive, non-negative set functions taking the value 1 on F and
vanishing outside F. Particularly, we write the o-capacity of F, ie. the case
when H(r)=7r"% as C.F).

A set E is said to be regular with respect to the distribution u, or shorter
regular y, if u does not distribute any mass on the boundary of E. The com-
plement of E we denote by E’ and for the m-dimensional Lebesgue measure
of E we write m(E). If E, and E, are two sets, we denote by E;\ E, the set
of points belonging to E; but not to E, If E,> K, we write E,—E, instead
of B\ E,.

3.

In this section we collect some inequalities which will be of constant use
when we prove the lemmas required for the proof of Theorem 1. Let H(r) be
defined for r>0, continuous for r>0, non-increasing and non-negative. Let
lim H(r)=H(0)< oo. Let F be a closed set of positive H-capacity. As F is
r—>0

closed there exists a not necessarily uniquely determined distribution, 7, of unit
mass on F which realizes

inf I(H, v; F)= Va(F),
vel

where I' is the class of all positive distributions of unit mass on F. We thus have
I(H, v; F)=Vy(F) ={Cu(F)}".

We call 7 a capacitary distribution belonging to H(r) and F. Partlcularly if the
equilibrium problem is possible for H(r), a capacitary distribution is identical with
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the equilibrium distribution and accordingly unique.! We now form the potential
belonging to the capacitary distribution v and the kernel H(r)

u(z) = L H(|x —y]) dz(y).

Then the following inequalities are true:
w(x) = Vy(F) for all x€F except perhaps for a set with H-capacity zero. (3.1)
w(x) < Vy(F) everywhere on the support of 7. (3.2)

ulx) <A - Vy(F) everywhere, where 4 is a constant which only depends
on the dimension m of the space R™. ' (3.3)

The inequalities (3.1) and (3.2) follow from the fact that u(z) is lower semi-
continuous by using the ‘“‘variation method of Gauss”. For this we refer to
Frostman [1], pp 35 ff. (3.3) easily follows from the fact that H(r) is monot-
onously decreasing. This is a result of Ugaheri [9].

4.

We now prove a lemma which we shall use in the proofs of all our theorems.
First, however, we collect the conditions on our functions K,(r) and K(r).

K,(r), n=1,2, ..., and K(r) are defined for r>0, continuous for >0,
are non-negative and non-increasing and satisfy lim K,(r) = K,(0) < oo, (@)
-0
lim K(r)= oo,
-0
lim K,(r) = K(r). (®)
Lemma 1. Suppose that K,(r), n=1, 2, ..., and K(r) satisfy conditions (a)

and (b) and that F is a closed set satisfying Ok, (F)>0 and Cg(F)=0. Let p,
be a capacitary distribution belonging to K,(r) and F and suppose that {u,} con-
verges to a certain distribution u. Denoting by S an m-dimensional sphere it is
true that

xS0 E)
mENEF)=lim = "Fy

if the sphere S is regular u and u(S)>0.2
Proof. We first prove that
lim I(K,, pi,; F)=oco. (4.1)
R—>00
We introduce the functions [K,(r)]y and [K(r)]y, where [K,(r)]y=K,(7) if K,(r)<N
and [K,(r)]=N if K,(r)>N, and where [K(r)]y is defined in an analogous way.

1Tt should be observed that, according to our convention, both a capacitary distribution and
the equilibrium distribution are distributions of unit mass.
? This lemma should be compared to the calculations in Frostman [2].
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The fact that [K,(r)]y and [K(r)]y are non-increasing and that [K(r)]y is con-
tinuous implies that [K,(r)]y converges uniformly to [K(r)]y in every compact
interval. Hence '

lim I(K,, a; F)> lim I([K,ly, ua; F)=I([K]y, p; F),

N->00 n—>o0

for all N. But since Cx(F)=0 we have lim I([K]y, u; F)= oo, and so (4.1) is
proved. Nroo

We now suppose that § has radius » where r is chosen so that 8§ is regular
with respect to u and u(S)>0. Choose a sphere S; with the same centre as
S and with radius 7y, ro>r, so that §; is regular u. Then the following esti-
mate holds

LKy s S) 1Ky (ry—1)
Iy, s )~ S~ 1808 =g "

Un(S) = (Kn, i )

4.2)
This is an easy consequence of the inequalities (3.1) and (3.2). In fact, we have

K, Hons 8< LLKn(lx—?/l) d[un(x) d{“n(?/) <I(K,, Hns F)- fsd#n(x);

according to (3.2). This gives one of the inequalities (4.2). We get the other
by the following division of the energy integral

I(K,, pn; S (ff ff ff) |z = yl) dpen(z) dun(y) =1+ I+ 111

S Sp- S F\S,

IZI(Km M3 F) f dﬂn(x),
S

by (3.1), because u, does not distribute any mass on a set of K,-capacity zero.

U3 1Ky s B) | dunto)

So-
according to (3.2).
III> — K (ry—7).

This gives the other inequality (4.2). Now letting n— oo in (4.2) we get by (4.1)

I(K,, u.; S) I{K,, u.; S)
> > lim > — -8)-
wis) = ilm &, ) T K, u ) w(S) — u(Sy—8)

If ry—r is small u(S,—S) is, however, arbitrarily small and hence we get

I(Kn, tas S)
= lim =, 4.3
wS) = n—>00 (K,., s F) (4.3)
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In an analogous way we realize that

4(8") = lim I(Kn, ptny 8') 44)

nsoo 4 (Kp, Hns F)
It is easy to see that the limit in (4.3) is exactly

lim Ck. (SN F)
Nn—>o0 OK,,(F)

Namely, if », is distributed on 8 N F with the same relative density as a capacitary
distribution belonging to K,(r) and SN F and with the total mass »,(SN F)
= (S N F) = pn(S), we get

. I(K,,v;; SN F)
lim /=22~ — /11, (4.5)
n—>00 I(Kn: Un; S)

For, suppose that lim %—) =h<l. (4.6)

n—oc
As u, is a distribution of unit mass which realizes inf I(K,, v; F), we get

I(K,, p; F)

1=
I(Km Hns F)

I(Kn, va; S0 F) +I(Ky, pn; S) +2f f K|z —yl) dva(x) dn(y)
S JS§ .

<
I(K,, pn; F)

(4.7)

But if 4 is the constant which occurs in (3.3), we have

f f ) Kn('x‘—yl) dvn(x) d;un(y) = (f J +f J‘ ) Kn(|x_y') d"’n(x) dMn(?/)
s Js S JS,-58 s Js

<A I(Ky, pin; F) - {pn(8)} - tn(Sg = 8) + Kfro = 1)

which follows from the fact that

sup f Knllr=3) drafe) <A+ (8} (K, 33 S0 )
<A -{(S)} 7 LKy, pn; )< A{pa(8)} 7 LK, pin; F),

where the first inequality is obtained from (3.3). If we use the estimate which
we have just obtained, (4.7) gives by first letting n—co and then ry—r,
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. I(Ky, v SOF) . I(K,, pa; S')
1<lm ——F—— "+ lim ————--
o I(Km HUns F) n—»o0 I(Km HUn, F)

According to (4.3), (4.4) and (4.6) this gives
1 <hu(S)+ u(8).

But as A<l and u(S)>0 we have 1<hu(S)+u(8)<1, which gives a contra-
diction. The relation (4.5) is hence true, and this, combined with (4.3), imme-
diately gives

_ T Cx. (SN F)
pE) =pSNE) =l =0 )

and so the lemma is proved.

Remark. The conclusion of the lemma remains valid also if S denotes cer-
tain more general sets than spheres. For instance, for § we can choose the
intersection between a sphere and an m-dimensional interval (compare Lemma 2)
or the union of a finite number of m-dimensional intervals (compare Theorem 2).
Clearly, the only difference in the proof in these cases is that we have to
choose S, in a somewhat different way than above. For §, we choose a set,
containing S, which is similar to S, and the boundary of which has a positive
distance from the boundary of S.

5.

Before we can prove Theorem 1 we need some more lemmas. We first prove
a lemma which is identical to Theorem 1 in the special case when F is the union
of a finite number of closed intervals.

Lemma 2. Suppose that K,(r) and K(r) satisfy conditions (a) and (b), that
1
f K. (ryr"ldr<oo for n=1,2, ..., and that j K{r)r™ tdr=co. Suppose also

that F is the union of a finite number of closed m-dimensional intervals. Let u,
be a capacitary distribution belongmg to K,(r) and F. Then it is true that u,—~o,
when n—>oo, where o(B)=m(E)/m(F) for every Borel set E—F.

Proof. The conditions of the lemma guarantee that Cx,(F)>0 for every n
and that Cx(F)=0. u, exists as Ck,(F)>0 and we suppose that {u,} converges
to a certain distribution x. (If necessary, we choose a convergent subsequence.)
We denote by @ the interior of F.

It is easy to realize that u(S(z, r))>0 for every sphere S(z,r) where z€G
and r>0. Namely, if u(S(z, r))=0 for some r>0, we could, for large values
of », obtain a smaller value than I(K,, u,; F) of the energy integral belonging
to K,(r) and F by a redistribution of u, on F so that more mass were distri-
buted in S(x, r).! But this would be a contradiction to the fact that u, is a
capacitary distribution belonging to K,(r) and F and hence we have u(S(z, r))>0
if x€G and r>0.

We now take two spheres S(z,, r) and S(z,, r) which are contained in ¢. As
Cr.(8(x,, 1)) = Ok, (S(x,, r)) we have, according to Lemma 1

! Compare the redistribution of the mass in the proof of Lemma 4.
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#(8(zy, 7)) = u(S(y, 1)), (8.1)

except possibly for an enumerable set of values r. Consequently (5.1) is valid
for all values of r such that S(z, 7)< @, =1, 2. Two spheres belonging to &
and having the same radii are hence carrying the same quantity of mass u,
which means that on G y is distributed with constant density. Hence it only
remains to prove that the boundary F—@ does not carry any mass. Let the
centre z, of the sphere S(z,, ) belong to F—@G and choose r so that S(x,, 7)
is regular with respect to u. (If the boundary of S(=x, r) carries any mass, this
mass is situated on F—@G.) Choosing r small enough there is a subset of G
which is congruent to F n8(x, r) and the conclusion of Lemma 1 is, by the
remark following Lemma 1, valid also for this set. This set and F N 8(zy, 7)
hence carry the same quantity of mass. But this means that the boundary
F — @G does not carry any mass, and thus the lemma is proved.

We now consider the interval A, which is determined from the inequalities
O0<ai<a, =1, ..., m, and a positive distribution of mass, u, on A such that
A is regular 4. We extend the domain of definition of u by making x periodic
with periods a;, i.e. we put

plo +(ngay, ..., 7y @)} = plw),
for arbitrary integers {m;}{' and intervals w<A. w+(n,a,, ..., n,@,) denotes
the interval in which @ is carried by the translation (n,a,, ..., #,0,). We can

now define a class of distributions of mass, {u,}, where u, denotes the distri-
bution which arises from u, when we translate the distribution u by the vector
z, i.e.

ta(w) = p(ow — ), (5.2)
for every interval w. Then the following lemma is valid.

Lemma 3. Lel u be a positive distribution of mass with total mass M on
A={z0<2'<a,, =1, ..., m} and let F be a closed subset of A having positive
m-dimensional Lebesque measure. Then there is a translation as above of the distri-
bution u, u*, so that

s "E) oy

ay* Ay ... Gy

Lemma 3 follows from the relation

J. “..J‘m,u,(F)dxl ...dax™ =M -m(F),
0 0

which is easily proved by means of (5.2) for instance by introducing the char-
acteristic function of the set F in the integral and by then using Fubini’s
theorem.

Using Lemma 2 and Lemma 3 we now prove
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Lemma 4. Let F, and F, be closed sets such that Fy> F, and m(F,;)>0. Let
F, be the union of a finite number of m-dimensional intervals. Swppose that K, (r)
and K(r) satisfy the conditions (a) and (b) and that

1 1
f K, (ryr" 'dr < oo and f K(ry™ tdr= oo
0 0

Let win be a capacitary distribution belonging to K, (r} and F;, i =1, 2, and suppose
that win—>0y. Then it is true that

mE)

A= Ey

E<F,, E Borel set.

Proof. Suppose that the lemma is wrong. Then there is an interval A such that

. m(A N F,)
m(Fy)

The idea of the proof is as follows. F,oF, implies that I(K,, un; Fy)>
I(K,, pzn; F,) for all n. But this indicates that if the limit distribution of {uzn}
distributes more mass on AN F, than the limit distribution of {ui.}, then it
should be possible to reduce the energy integral I(K,, pi.; F;) be redistributing
the part of the mass w;, which falls in A so that the relative density of the
mass on AN F; coincides with that of uz.. As we cannot, however, gaurantee
that uen(A N F,)>0—which is required for a redistribution of the above men-
tioned kind—we first have to undertake a translation of the distribution uan.
according to Lemma 3 so that the translated distribution distributes mass on
An F,. This translation introduces, as we shall see, faults in our estimates which
we can neglect. Now we turn to the details.

We can suppose that A is regular with respect to the distributions o; and
Hen, n=1,2, .... We can also suppose that A is covered by one interval from
F,, ie. that AcF,.

Let ,uzn be the restriction of ws, to A. For every m we can, according to
Lemma 3, fmd a translation, z,, of the distribution ,uzn so that the translated
distribution, ygn, satisfies

p2n(A N Fy) = pron(A) -

0,(A)=h ,h<l and m(ANF)>0. (5.3)

m(A N F,)
md)

This gives, by Lemma 2

mANF,)

. * >
ll‘iluzn(AnFl)/ m(Fz)

n—o0

(5.4)

(Actually it is true that lim ud,(A N F;)=m(A 0 F,)/m(F,).) We now define a

n—>o0

sequence {h,}7 by
ﬂln(A) =h, M;n(A N F1): (5.5)

and introduce new distributions {u,} of unit mass on F,.

536



ARKIV FOR MATEMATIK. Bd 4 nr 42

by u3, on ANF,

Mn=1pan  on F;\A
0 on Fi.

To get a contradiction it is enough to prove that

I(K,, s F) <I(K,, HYin; Fy)

when n is sufficiently large. To prove this we shall use the inequalities

LKy, pon; Fo) <I(K,, uin; Fy) (5.6)
and lim A, <A, (6.7)
n-—>c0

the latter of which follows from (5.3), (5.4) and (5.5).

We shall estimate the integral I(X,, 4n; Fy) by dividing up the domain of
integration F, and by separating a certain rest set, Ry=Ry U RP, d>0, which
is defined in the following way. We first notice that the translations by z,,
n=1,2, ..., can be supposed to converge to a certain translation by z*. (If
necessary, we choose a convergent subsequence) We can also assume that one
of the corners of the interval A is situated in the origin and that the point
#* belongs to A. Then RJ shall consist of those points which are situated at
a distance <d from the intersection of A and the set which consists of the
union of the (m —1)-dimensional planes which on one hand pass through the
point z* and where, on the other hand, each plane is parallel to one of the
edge planes to A. RY shall consist of those points which are situated at a
distance <d from the boundary of A.

Put Un(x) = fp K,(|x —y]) dualy)

We shall estimate I(K,, u,; F,) by the following division.

I(K,, pu,; F))= fF Un(x) d () (fA\Ha f f(A ) un(x) dpn(y) =1+ 11+ II1.
() = hnf g, Knlle =yl dualy) + fA, Koz ~y)) duan(y)

For x belonglng to the intersection of AN\ R; and the support of u, we have,
by 3.2, supposing n so large that |z, —z*|<d/2

d
f Ko(le — y) dpsn(y) < I(Kn, pion; F2)+K,,(§)
ANF,

and hence, by (5.6), for a fixed d
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Un() < hy I(K,, pan; Fp) +O(1).

For z belonging to the intersection of (AU R;)’ and the support of i, we get
in an analogous way

un(x) < I(Km Han; Fl) + 0(1)!

when d is fixed.
Finally, for z € R;, we shall prove that

Un(2) = an Ko(le—y)) dugnly) + f | Enlle =y dpn(y) <
Shy+A-2"- I(Km Uzn; Fz) +4 ‘I(Km Hin; Fl) =0(I(K,, HUin; Fl)):

where 4 is the constant in (3.3). The estimate
f Enlle =yl dpnn(y) < A - I(Ko, pn; F)
follows immediately from (3.3). In order to show that
[ o Eolle ) At < A 27 (B g P

we proceed in the following way. Consider the domains into which A is sub-
divided by the (m —1)-dimensional planes which, on the one hand, pass through
the point x, and where, on the other hand, each plane is parallel to one of
the edge planes to A. y;'n coincides, in each of these domains, with a transla-
tion of the part of the capacitary distribution us, which is situated in A, and
as there are 2™ such domains the desired inequality follows by means of (3.3).

(6.5) and the three estimates which we have obtained for w,(z) give after
simplification

I<h,I(K,, p1n; Fy) - paa(A)+O(1).
1< O(I(Kn, pan; Fy)) [pan{Ba\A) + by pzn(Rq 0 A)].
III<O(1) + I(Kq, pin; Fy) c paa(A).
This gives

I(K,, p; Fy)

! . . -1
1Ky poam; Fl)<hnllln(A)+ prn(A)+O0Q) - {I(Ky, urn; F)} 1+

+O0(1) [pn( By \A) + by 30 (Ba 0 A
By (5.7)and the fact that
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- _m(BsnA)?
Jim pin(Ba 0 A) = m(F,)
we have
— I(Ky, tn; Fy) , . m(Bs N A)
r}LII; 1Ky, yiim; Fy) < hoy(A) +0,(A’) + const. [o‘l(Rd\A) +—————m(F2) ,

if d is chosen so that R, is regular ¢,. d—0 gives, as h<1,

. I(Km Un; Fl)
lim o Hn 20U
novee LKy, pan; F)

in the case when o¢,(A)>0. Accordingly we have obtained a contradiction to
(6.3) for this case. If we suppose that ¢,(A)=0 and m{A N F,)>0, we easily
obtain a contradiction by moving some mass ui, to ANF; and there distri-
buting it in the same way as up, is distributed and by then doing and esti-
mate of the energy integral which is analogous to the one we have done above.
By that Lemma 4 is proved.

We are now in a position to prove Theorem 1 by using Lemma 2 and
Lemma 4.

Theorem 1. Suppose that K, (r), n=1,2, ..., and K(r) are defined for r>0,

2
continuous for r>0, satisfy lim K,(r)=K,(0)< oo, are non-negative and non-in-
r—0

creasing. Also suppose that lim K,(r) = K(r),

n—>00

1 1
f K, (r)r"tdr<oco and f K(r)yr™ ldr=co.
0 0

Let u, be a capacitary distribution belonging to K,(r) and F, where F is a com-
pact set of positive m-dimensional Lebesgue measure. Then {u,} converges weakly
to the distribution o which has constant density on F, o(E)=m(E)/m(F), ECF,
E Borel set.

Proof. Choose a sequence {F,}, where each F, is the union of a finite number
of closed m-dimensional intervals, so that F,>F,>...oF,>...oF and F= fl]F,,.

Let u., be a capacitary distribution belonging to K,(r) and F,. According to
Lemma 2 {u.,} converges, when n—co, to the distribution ¢, which has con-
stant density on F,. By Lemma 4 we have ¢,(E)<u(E) for every E < F where
u denotes the limit distribution of a convergent subsequence to {u.}. But {g,}
converges to the distribution ¢ with constant density on F. This implies
o(E)y<w(E), EcF. But as o(F)=u(F)=1 there must be equality, ie.

! This equality easily follows if we recall that u,, is the translation of a distribution from a

sequence which converges to a constant times the Lebesgue measure and that R;NA is regular
with respect to the Lebesgue measure.
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_ i ="™E)

and this is true for every limit distribution u. Hence {u,} converges to ¢ and
the theorem is proved.

6.

Lemma 1 can be proved in a generalized form which can be used to prove the
following theorem

Theorem 2. Let F be a compact set in R™. Then we have, if k=2""a""*[(m[2),

lim =km(F). (6.1)
a—>m-—0 M — &

Proof. We first prowe the theorem in the case when F is a sphere,
F=8(z,, R)=8. For this case M. Riesz ([7],.p. 16) has given an explicit for-
mula for the equilibrium potential belonging to the kernel 7 * m—2 <a<m.
Namely, let dm(y) denote the element of volume and put

w(x) =7 @™ (ﬁ) sin MJ (B2 — |y — )" 2 ! dm(y)-
s

2 2 |z -y

|az
Then we have u(x)=1 for all x€8.

This formula gives

_ R
C.(8) :7% sin n(m2 o) J‘O (R? — )= ym=1 g,

— 1
= g sin n(_m_i)RuJ‘ (1 __7.2)~(mAa)/2 rm-l dr.
4 2 0

Cu(S) _R™ _

m—a m

Hence lim 27 1g "2 (*n—b) m(S),
«—=>m 2
i.e. (6.1) is true in this case.

We now consider the general case. It is clearly enough to conmsider the case
when m(F)>0. We choose a sphere 8=8(x,, R) so that S>F. Let u, be the
equilibrium distribution belonging to »~* and 8. Then {,um} converges, when
a—>m, to the distribution which has constant density on S, and the following
formula—which is Lemma 1 in the required generalized form—is valid
ColF) _m(F)

Cz(F) TN o
C(8) = ™ 0,8 S mid) ©2)

lim 4,(F) < lim

a—>m a—>m

In order to prove (6.2), we choose, as in the proof of Theorem 1, a sequence
{F,} so that S>F,>F, ,>F, NF,=F, where every F, consists of a finite
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number of intervals. According to the remark following Lemma 1 the conclu-
sion of the lemma remains valid also in this more general situation, i.e. we have

Co(Fn) _m(Fy)

m 5 &) S
.—C(F) C.(F,) m(Fn)
Hence tm S S0 T )

and, finally, letting n—>oco, we get one of the inequalities in (6.2). In order to
prove the other inequality we observe that

oy > e T >0“(S)). 2

10 s §) 0l

and consequently we have pu,(F)<CF)/C,(S), which gives the other inequality
in (6.2).
Our explicit formula for u, makes it possible to show that

m(F) 1

lim p,(F)= py S)

o>

(6.3)

Namely,

1 -1
,u,(F) =2~1ﬂ—m/2R—aIﬂ(%”) {fo(l _7,2)—(m~a)/2 rm—l dr} fF(Rz _ Iy —%lz)_(m_“)/zdm(y),

which gives il_l)l:n U F)y =217 "R ™ (%n) m(F) = m((;’))
(6.2) and (6.3) give 113 g)’ Zg)’ (6.4)
Hence lim Cull) _ lim Culd) lim CalS) _mE), km(8) =km(F),

a—>m m—o oM C (S) oz—>m -« m(S)

and (6.1) is proved also in the general case.

Remark. Theorem 1 is an easy consequence of Lemma 1 and (6.4) in the case
when the kernels K,(r), n=1, 2, ..., are all of the form +* and K(r)=r"",
For general kernels K,(r) and K(r) we cannot, however, prove a relation of
the form (6.4) since we do not have an explicit formula for a capacitary distri-
bution belonging to the kernel K,(r) and a sphere, and so we had to prove
Theorem 1 by the more complicated method which we have used.

1 This formula is not a consequence of Theorem 1 as convergence in Theorem 1 means
convergence in the weak sense.
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7.
We now turn to the proofs of the counter-examples.
The discussion in this section is based on the following fact. To a given
number a, a <1, there exists a closed linear set F satisfying
C.F)>0 for a<a}_

(7.1)
and CAF)=0 for a>a

For F it is even possible to choose a Cantor set. To see this, we suppose that
F is a Cantor set where the nth step in the construction is a set which consists
of 2" intervals where each interval has length [,. As F has positive a-capacity

if and only if £27"1;*< o0, (7.1) follows from the fact that we can clearly
1

choose {l,} so that

22" %<
1

and 227 "% 9 =00 for every e>0.
1

Theorem 3. 70 every given number &, 0<ay<1, there ewists a closed linear
set F such that Co(F)>0 for a<a, and C,(F)=0, and such that the equilibrium
distributions p, belonging to r~* and F do not converge when o—>ay—0.

Proof. We choose two sequences {«,} and {B,} where a, "oy, fn” %, and
g <fy<ay<fa<... Our set F is to be the union of two sets 4 and B which

compete for the mass of the equilibrium distributions, and where 4 =U 4, and
0

o«
B=UB,. We want to construct 4 and B so that {u,} does not converge when
0

a->a, and runs through the sequences {«,} and {8,}. We start with two closed.
disjoint intervals, I and J, and we shall construct 4 and B in such a way
that A<l and BcJ. We first show that it is enough to find 4 and B so
that for instance

Cald) gnrsgn  Oold) g 9 (72)

Can(B) Cpa (B’

Namely, if it is true that there exists a distribution g so that the equilibrium
distributions u, belonging to r* and F =4 U B converge to x4 when a-—>a,, then
we have, by Lemma 1, if x4(4)>0 and u(B)>0

Cu(4)
C.(B)

C.(InF)
CAJ NF)

Cul 0 F)
CAF)

Co(F)

_ ) _pmA)
G D ()

u(B)

which is a contradiction to (7.2). If one of the numbers u(4) and u(B) is zero,
we get a contradiction to (7.2) in a similar way. Consequently, it is enough
to find 4 and B so that (7.2) holds.

1 See for instance [5].

- lim

x—>m

= lim
x—m

= lim

a—m

lim

a—>m
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We now construct 4 and B, A<, BcJ. We subdivide I into three equal
smaller intervals. The first interval (counted from the left to the right) we

denote by I, and we shall do the construction so that U.d,<I,. The second
2

interval is to belong to the complement of A4 and the third is to contain 4,.
We choose 4, in such a way that

C.(4,)>0 and C,4,)=0 for a>o. (7.3)

Starting from J we now construct J, in the same way, U B,<J,, and B, as
2

a subset of the third subinterval of J. We want B; to satisfy

Cs(B)>0 and CuB)=0 for a>p,. (7.4)
and C.(By) <0, (4))-27L (7.5)
This can be realized, because if (7.5) is not satisfied for a certain choice of B,
we can replace B, by a subset of the third subinterval of J, a subset which
is a translation of k-B,, k>0, where k-B, denotes the set consisting of the

points k-x where x€B,, and choose k& so small that k- B, satisfies (7.5). Condi-
tion (7.4) is not disturbed by this.

By subdividing I, into three equal smaller intervals, we get I,, UAd,<1,,
3

and we construct 4, analogously. The condition (7.3) is replaced by
Ci(45)>0 and Cl4,)=0 for a>a,

and Cp(Ay) < Cu(By)-27%

The construction is now continued in the same way. The conditions on 4, are
Con(4,)>0 and C4,)=0 for a>a,

and Cp(4,)<Cp(By)-27", k=1,2, ..., n—1.

The conditions on B, are
Cp(B,)>0 and C B,)=0 for a>f,

and Cor(Bn) < Cui(d4i)-27"%, k=1,2, ..., n.

Finally we choose the left endpoints of I and J as 4, and B, respectively,
which guarantees that 4 and B will be closed.

We now have C.(4)=C,(A4,)
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a’nd Oﬁn(B) < Z Ca"(B,,) = Z C“n( Z “n(A
v=0 y=n p=
=Cr(4,) 27710, (4) - 271
This implies C’::((éz 2"l p=1,2, ...,

which is one of the inequalities in (7.2). In exactly the same way we get

Cg.(4)
Cp.(B)

<27, n=12, ..,
which is the other inequality, and hence Theorem 3 is proved.

8.

By doing a construction similar to the one we have used in the proof of
Theorem 3 we also get the counter-example which is formulated in Theorem 4.
However, we first have to prove the existence of sets having somewhat different
qualities than those which have been formulated in (7.1). We do this in the
following lemma.

Lemma 5. Suppose that two numbers | and «, are given, where 1>0 and
O<ay<l. Then there exists a constant r(l, x,) which only depends on 1 and o
so that, to any given positive number «, satisfying o, <o, i s possible to con-
struct a closed linear set F satisfying

F belongs to an interval with length 1. (8.1)
Co(F) > (L, o). (8.2)
The Hausdorff dimension of F is less than «. (8.3)

Proof. The set F shall be a generalized Cantor set, F = 1 F,. We start with
1

a closed interval @ with length I. Let k be an arbitrary positive number and a
an arbitrary positive integer. We divide the interval w into 2a —1 subintervals
with lengths

l-(@+ak—k)y:, k-(a+ak—k), I-(@a+ak—k) ", ... kl-(@a+ak—k) ™"
l-(@+ak—k)?

counted from the left to the right, and separate the a (closed) intervals with
lengths (@ +ak — k) *. The union of the separated intervals constitutes F,. Every
interval belonging to F, is now subdivided in an analogous way into 2a—1
subintervals and a intervals are separated. In this way we get F, which con-
sists of a® intervals with length l(a +ak —k) ® each. In the nth step of this pro-
cedure we obtain F, which hence consists of a™ intervals with length l(a +ak ~k)™"
each.
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We begin by showing that the Hausdorff dimension of F is

__ loga 7
Z log (@ +ak —k)

It is immediately realized that the Hausdorff dimension of F cannot be larger
than § and in order to realize that it is equal to f§, we can, for instance, con-
struct a bounded y-potential, y<pf, belonging to a distribution of unit mass
on F. To do this We introduce the set functions {u,};’, where u, is the unit
mass uniformly distributed on F,. {un} converges to a distribution of the unit
mass on F and we get the following estimate, if I, =l(a+ak—k)™"

hmJv du,
J‘F |.’L‘ y|'y n—0 y|}' # (y)
Inf2 ® a+ak At
_= - Iy —
<,Zgl,,-a” fo T =p Z
27 a

TP1—y) a—(@+ak—ky

if y<loga/log(a+ak—k)=p. Hence the Hausdorff dimension of F is f.
The estimate which we have done also gives us the following inequality, if
7 <b,
l—y) a—(a+ak—ky
2r a

Cy(F) >

=M(y).

Hence the lemma follows if we can find a constant r(J, «,) so that
< (8.4)
and May) = r(l, o), (8.5)

where «, is the number which is given in the lemma, a, < «, However, a simple
calculation shows that we can find a constant r(l, «,) only depending on ! and
o so that (8.4) and (8.5) are satisfied if ¥ and a are chosen in a suitable way
and large enough.? Lemma 5 is hence proved and we can now show

Theorem 4. Let oy be an arbitrary number satisfying 0 <og<1. Then there
exists a closed linear set F with positive and finite ay-dimensional Hausdorff meas-
ure, 0 <A (F)< oo, so that the equilibrium distributions u, belonging to the kernels
r* and F do not converge when o—>oy—0 to a distribution where the mass situ-
ated on a subset of F is proportional to the ay-dimensional Hausdorff measure of
that subset.

! This is a consequence of a theorem by Ohtsuka [5] on the capacity of genera,llzed Cantor
sots. We give, however, a short direct proof which will also permit us to estimate Cy(F), y < B.

? The choice of k and a will naturally depend on «,. For (I, %,) we can for mstance choose
any number which is smaller than [I%(1 — o)]/2%,
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Proof. Again F shall be the union of two sets 4 and B, F=4 U B, where
for B we choose an arbitrary compact set having positive and finite og-dimen-
sional Hausdorff measure, 0 <A, (B) < oo, and where 4 shall be constructed so
that A,(A4)=0. In order to construct 4 we choose disjoint intervals w; with

o0 -]
lengths I;, 1=1,2, ..., so that X1, < co, and | w; is at a positive distance from
1 1
B. We also assume that the choice is such that the intervals w; converge to
-]
one point. We shall construct 4 so that A=U 4, where 4, is closed and
o

4d;cw, for i=1,2, .... For A, we choose the point to which the intervals w,
converge which makes 4 closed.
As A, (B)< o we have C,{B)=0 which implies

lim C,(B) =0.

a—atg
Hence we can choose a sequence {a}¥°, a; o, so that for instance
Cu(B) <27V r(l, o), 1=1,2, ...,

where r(l;, ) is the constant which occurs in Lemma 5. The lemma then guar-
antees that we can construct 4; so that the conditions which we have formu-
lated above are valid and.so that

Cu(A) > r(ly, o), 1=1,2, ...
The last two inequalities imply that
Cu(A)>2-Cu(B), i=1,2,....

But this means, according to Lemma 1, that the limit distribution of every
convergent subsequence of {us} distributes mass on 4. As A,(4)=0 we can
hence conclude that {u.} does not converge to a distribution where the mass
situated on a subset of F is proportional to the o-dimensional Hausdorff meas-
ure of that subset.

9.

We shall now prove that there is a correspondence to Theorem 4 even when
o,=1. As has been pointed out in the introduction, we have to use plane sets
to get such a correspondence.

Theorem 5. There exists a closed set F in the plane having positive and finite
1-dimensional Hausdorff measure, A,(F), so that the equilibrium distributions be-
longing to the kernels r* and F do not converge, when oa—>1—0, lo a distribution
where the mass situated on a subset of F is proportional to the 1-dimensional
Hausdorff measure of that subset.

The proof of this is analogous to the proof of Theorem 4. The difference is
that instead of considering intervals w; with lengths I;, we consider squares w;
with sides of lengths I, i=1,2, .... In order to be able to construct the sets
A; we also have to reformulate Lemma 5 for plane sets and the case o, =1.
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Lemma 5. To a given positive number | there exists a constant r(l) so that,
to any given positive mumber oy salisfying oy <1, it is possible to construct a
closed plane set' F satisfying

F belongs to a square with side of length 1. (9.1)
Co (F)>r(l). (9.2)
The Hausdorff dimension of F is less than 1. (9.3)

o0
Proof of Lemma 6'. Again we construct F as a generalized Cantor set, F = N F,.
1

We start with a square w with side of length ! and with numbers ¥ and o as
before. We devide w into subsquares by dividing every side of w into 2a —1 sub-
intervals having the same lengths as before, i.e. the same lengths as in the
proof of Lemma 5. We obtain F, by separating the a® squares with area I*- (a +
ak—k)~>. Generally F, consists of " squares with area I*:(a+ak —k)™>" each.

By doing calculations similar to those in the proof of Lemma 5, we can show
that F has Hausdorff dimension

p—__2loga
log (a +ak — k)
The estimate of C,(F) becomes

PE2—-v) a®—(a+ak—kyY
2y+1 ' aZ =

O (F)> M(y),

if y<fp. This finally gives that we can obtain
B<1 and M(x)=r(l),

by choosing %, @ and r(l) suitably. By this Lemma 5’ and hence also Theorem 5
is proved.

Remark. Lemma 5 can of course be formulated for an arbitrary number o,
satisfying 0 <oy, <2 and a closed plane set F. This implies that Theorem 5 can
also be formulated for sets F having positive and finite o-dimensional Haus-
dorff measure, where o, <2. Similar extensions of the counter-examples to higher
dimensions are of course also possible.

10.

The above counter-examples show that the set F has to satisfy suitable
conditions of regularity in order to give convergence of the sequence of equi-
librium distributions in the case when the Lebesgue measure of F is zero. As
an example we prove the simple theorem that the Cantor sets are regular enough
to give convergence.
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-]
Theorem 6. Let F be a linear Cantor set, F =\ F,, where F, consists of 2%

1
wntervals with length 1, each. Call the intervals which constitute F, w;,, t=1,2, ..., 2%,
Let K,(r) and K(r) satisfy the conditions (a) and (b) and suppose that Ck,(F)>0
and Cx(F)=0. Then it is true that a sequence of capacitary distributions, {u,},
where u, belongs to K,(r) and F, converges, when n—> oo, to the distribution which
distributes as much mass on w;, as on wj for all i and j.

As to the proof we only observe that
CKn(F n wiu) =OK,.(F n w]'v)

for all 4, §, » and » and hence the theorem can be proved in a similar way
as Lemma 2.

Remark. There exist sets having a very simple structure for which the ques-
tion of convergence is answered in the negative, at least for certain types of
kernels. This is for instance the case for the set F=AUB where ANB=0
and where 4= N4, and B= N B, are the Cantor sets which are obtained from
intervals of lengths 1 and 2 respectively by letting the sets A, and B, consist
of 2" intervals with lengths 47> and 2477 respectively. To this set F it is pos-
sible to construct a sequence of kernels {K,(r)} such that Ck,(F)>0,n=1,2, ...,
and a kernel K(r) such that Cg(F)=0, kernels which all are such that the equi-
librium problem is possible and conditions (a) and (b) are satisfied and such
that the equilibrium distributions u, belonging to K,(r) and F do not converge
when n->oco, The idea of the construction is to choose the kernel K,(r) piece-
wise linear for =1, 2, ..., which makes it possible approximatively to deter-
mine the equilibrium distribution u, belonging to K,(r) and F. The choice of
different lengths of the intervals building up 4, and B, respectively, »=1, 2, ...,
also makes it. possible to choose K,(r) so that the ability of 4 to compete for
the mass u, is maximized for certain # and the ability of B is maximized for
other values of n. In this way it is possible to arrange so that the sequence
of equilibrium distributions does not converge.

11.

Finally we give a counter-example of a somewhat different kind.

Theorem 7. Let «, be any positive number satisfying ag<1. There exists a
closed linear set F with Hausdorff dimension larger than oy which is of such a
nature that the equilibrium distributions u, belonging to r™* and F do not converge
towards the equilibrium distribution p, belonging to r~* and F when oa—>oy+0.

Proof. Let F be the union of two closed disjoint sets ¥, and F,, F=F, U F,,
F,nFy=0, where F, is chosen so that the Hausdorff dimension of F, is larger
than «, and F, is chosen so that C,(F;)>0 but C (F,)=0 for e>oeq Then
we have u,(F,)=0 if a>ay and . (F,)>0. The conclusion that u,(F,)>0 is
a consequence of the maximum principle. Namely, since C,(F,)>0 there is a

point in F, where the equilibrium potential | |x —y|™* du.,(y) takes its maximum
F

value and this would be a contradiction to the maximum principle if u,(F,)=0.
Hence u,(F,)>0 and thus {u,} does not converge to u, and Theorem 7 is proved.
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