Communicated 13 September 1961 by O. FROSTMAN

On a property of the minimal universal exponent, $\lambda(x)$

By HANS RIESEL

The purpose of this note is to answer the following question: For which numbers x does $\lambda(x)$ divide the given number k? The answer is: For all divisors x of a certain number X, which will be constructed in the note.

In constructing X one uses the following

Theorem. All "quadratfrei" solutions q of the equation

$$\lambda(q) | k \quad (\lambda(q) \text{ divides } k)$$
 , (1)

are the divisors of the denominator Q of the Bernoullian number B_k , given in its lowest terms.

The first step will be to prove the theorem. To begin with, the definition of $\lambda(n)$ and of the Bernoullian numbers B_k will be recalled, $\lambda(n)$ being the so-called minimal universal exponent, i.e. the least positive exponent λ , for which the congruence $a^{\lambda} \equiv 1 \pmod{n}$ holds for all a for which the g.c.d. (a, n) of a and n equals 1. As is well known, $\lambda(n)$ is calculated in the following manner: Let $\varphi(n)$ denote Euler's φ -function

$$\varphi(n) = n \prod_{i} \left(1 - \frac{1}{p_i}\right)$$
 if $n = \prod_{i} p_i^{\alpha_i}$,

where all p_i are different primes. Furthermore, let $\lambda(p_i^{\alpha_i}) = r_i \varphi(p_i^{\alpha_i})$. Here, $r_i = \frac{1}{2}$, if $p_i = 2$ and $\alpha_i \ge 3$, otherwise $r_i = 1$. Then

$$\lambda(n) = [\lambda(p_i^{\alpha_i})]_i$$

(the l.c.m. of all numbers $\lambda(p_i^{\alpha_i})$), which may be written

$$\lambda(n) = [r_i \varphi(p_i^{\alpha_i})]_i = [r_i p_i^{\alpha_{i-1}}(p_i - 1)]_i.$$
 (2)

From (2), it immediately follows that

$$\lambda(d) | \lambda(n) \quad \text{if} \quad d | n.$$
 (3)

The Bernoullian numbers B_k are defined by the equation

$$\frac{x}{e^x-1}=\sum_{m=0}^{\infty}\frac{x^m}{m!}\,B_m,$$

which gives

HANS RIESEL, On a property of the minimal universal exponent, $\lambda(x)$

$$\begin{split} B_0 &= 1, \ B_1 = -\frac{1}{2}, \ B_2 = \frac{1}{6}, \ B_4 = -\frac{1}{30}, \\ B_6 &= \frac{1}{42}, \ B_8 = -\frac{1}{30}, \ B_{10} = \frac{5}{66}, \ B_{12} = -\frac{691}{2730}, \ \dots \\ B_2 &= B_5 = B_7 = \dots = 0. \end{split}$$

The proof of the theorem proceeds as follows: If q is "quadratfrei" $q = \prod p_i$, and

$$\lambda(q) = \lceil p_i - 1 \rceil_i,$$

which divides k if and only if $(p_i-1)|k$ for all i. The greatest "quadratfrei" solution Q is thus obtained as the product of all primes p_i for which $(p_i-1)|k$. According to (3) and because of the fact that every factor of a "quadratfrei" number Q is a "quadratfrei" number, it is clear that all "quadratfrei" solutions of (1) are the divisors of Q.

Now from the theorem by von Staudt and Clausen:

$$B_k \equiv -\sum_i \frac{1}{p_i} \pmod{1},$$

where the summation is extended over all primes p_i such that $(p_i-1)|k$, it follows that the denominator of B_k , given in its lowest terms, is the above number Q. This proves the theorem.

Example. $\hat{k} = 10$ gives $(p_i - 1) | k$, if $p_i = 2$, 3 or 11. $Q = \prod p_i = 2 \cdot 3 \cdot 11 = 66$. $B_{10} = \frac{5}{66}$. The "quadratfrei" solutions of $\lambda(q) | 10$ are the 8 divisors of 66, for which one has

$$\lambda(1) = 1$$
, $\lambda(2) = 1$, $\lambda(3) = 2$, $\lambda(6) = 2$, $\lambda(11) = 10$, $\lambda(22) = 10$, $\lambda(33) = 10$, $\lambda(66) = 10$.

For odd numbers k, $(p_i-1)|k$ if and only if $p_i=2$. In this case Q=2, and the solutions q=1 and q=2 alone exist. Thus in this connection all Bernoullian numbers with odd indices >1, $B_3=B_5=\ldots=0$ should be provided with the denominator 2, as is already the case with $B_1=-\frac{1}{2}$. However, because of the simple nature of this special case we do not want to introduce such a convention.

It is, however, possible to get not only all "quadratfrei" solutions q to (1), but all solutions x. One must first determine the number Q and then examine for each prime p_i in Q which is the greatest exponent α_i , such that

$$\lambda(p_i^{\alpha_i}) | k$$
.

The number X will be obtained as $\prod p_i^{\alpha_i}$. According to (3), as before, all divisors x of X will be the solutions of

$$\lambda(x) | k$$
.

Example. $k = 2 \cdot 3^3 \cdot 19$, $Q = 2 \cdot 3 \cdot 7 \cdot 19$

ARKIV FÖR MATEMATIK. Bd 4 nr 31

$$\lambda(2^{\alpha}) | k \text{ gives } \alpha \leq 3,$$

 $\lambda(3^{\alpha}) | k \text{ gives } \alpha \leq 4,$
 $\lambda(7^{\alpha}) | k \text{ gives } \alpha \leq 1,$
 $\lambda(19^{\alpha}) | k \text{ gives } \alpha \leq 2,$

which gives $X = 2^3 \cdot 3^4 \cdot 7 \cdot 19^2$.

The formula for constructing X might also be written

$$X = 2 Q \cdot \max_{n} (Q^{n}, k).$$

Tryckt den 24 januari 1962