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Orthogonality in normed linear spaces 

By STEN OLOF CARLSSON 

1. I n t r o d u c t i o n  

Let  B be a real  normed  l inear  space. We will say  t ha t  B is Eucl idean  if 
the re  is a symmet r i c  bi l inear  funct ional  (u, v) (called the  inner  p roduc t  of u 
and  v) defined for u, v e B ,  such t h a t  ( u , u ) = l l u l l  2 for every  u e B .  In  a Eu-  
c l idean space we have the  cus tomary  def ini t ion of or thogonal i ty ,  viz. an c lement  
u is o r thogona l  to  an  e lement  v (in n o t a t i o n  u •  if and  only if (u, v)=O. I t  
is an immed ia t e  consequence of this  defini t ion t ha t  o r thogona l i ty  has the  fol- 
lowing propert ies :  

(a) I f  u •  then  v_l_u (Symmetry) ;  
(b) If  u•  then ~u,• for all real A (Homogenei ty) ;  
(c) If  u •  and  v_l_w, then  ( u + v ) •  (Addi t iv i ty) ;  
(d) Fo r  every  pa i r  u, v E B there  is a number  a such tha t  u,i , (au+v).  

I f  a~, by, c~, v = 1, 2, . . . ,  m, are real  numbers  sat isfying 

a. 5~2"-- ~ a~c';=O,~ ~ a~b~c. = 1, (1.1) 
v = l  v = l  r = l  

we have the following iden t i t y  

2(u, v)= ~ a, llb~u+c.v[I 2 for u, v e B .  

This means  t ha t  the  def ini t ion of o r thogona l i ty  in a Euc l idean  space m a y  be 
r e fo rmula ted  in the  following way:  

u •  if and  only  if ~ a v H b y u + c ~ v [ I  2 = 0 .  
V=I 

Since this  new defini t ion makes  no use of the  inner  p roduc t  b u t  only  of the  
norm and  l inear  s t ruc ture  of B, i t  is appl icable  even in the  case of an  a r b i t r a r y  
no rmed  l inear  space B. F o r  th is  reason we make  the following defini t ion:  

Definition 1.1. L e t  B be a normed  l inear  space and  av, b~, c~, v = 1, 2 . . . . .  m, 
a f ixed collection of real  numbers  sat isfying re la t ions  (1.1). A n  e lement  u of B 
is said to  be or thogonal  to  an  e lement  v of B (in no ta t ion  u•  if 

~ a, llb~u§ vllh=o 
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Now the question arises, whether the orthogonality so defined has any of the 
properties (a), (b), (c) or (d). I t  may have property (a), as illustrated by two 
special cases considered by R. C. James [7]. IIe defined two types of ortho- 
gonality, viz. 

"Pythagorean orthogonality": u •  if II u - v II = II u II + II v II 5 

and "Isosceles orthogonality": u •  if I l u + v l l = l l u - v l l  

James showed that  these two types of orthogonality always have property (d), 
while if one of them has property (b) or (c), then t /  must be a Euchdean 
space. The main result of this paper is that  these propositions remain true in 
the case of the more general type of orthogonality defined above. 

Our plan of investigation is as follows. In Section 2 we collect some defini- 
tions and lemmas which will be needed later. 

In Section 3 we first show that  orthogonality always has property (d). Then 
we study a normed linear space in which orthogonality satisfies a certain condi- 
tion, apparently weaker than homogeneity and additivity. We show that this 
condition implies that  orthogonality has properties (a), (b) and (c). Furthermore, 
it implies several properties of B, which, if the dimension of B is at least three, 
permit us to conclude that B is Euclidean. 

There remains now an investigation of the two-dimensional case. This is pre- 
pared in Section 4, where we remark that the problem it essentially equivalent 
to proving the uniqueness under certain conditions of a solution of a functional 
equation 

~p~ F (q, z) = C1 + C~ x 2. 

In Section 5 we remind the reader of the definition and fundamental prop- 
erties of the F-series of a function /(x) associated with a function 

N 
h (t) = ~ d• e~'t 't. 

t t = l  

By means of the results of Section 5, we show in Section 6 that  if orthogo- 
nality is homogeneous in a normed linear space B, then B is Euclidean. 

In  Section 7 we use the same method as in Section 6 to prove a certain 
generalization of the well-known Jordan-yon Neumann characterization of Eu- 
clidean spaces. 

2. Preliminaries 

We state without proof the following lemma by James ([7], Lemma 4.4): 

Lemma 2.1. I[ u and v are elements o~ a normed linear space then 

lim []] ( x + a ) u  + v ] l -  I]xu +v]l] =a IInll 

With the aid of Lemma 2.1 the following result is immediately verified: 
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Lemma 2,2. I /  u and v are elements o] a normed linear space, then 

lira x- l[ l l ( .  +a)u  +vl l2-11xu +vl l~]=2al lu lL  

There is another type of orthogonality which was studied by Birkhoff [1], 
Fortet [5], [6] and James [8], [9]. Following Fortet we will here call it nor- 
mality. 

Definition 2.3. An element u of a normed linear space is normal to an ele- 
ment v (in notation u Nv)  if 

Ilu+~vll>~iiull for every 4. 

Birkhoff [1] gave the following characterization of Euclidean spaces: 

Lemma 2.4. Let B be a normed linear space, whose dimension is greater than 
two. I /  normality is symmetric and unique in B, i.e. i/ 

(a) u N v  implies v N u ,  u E B ,  v ~ B ,  and 
(b) to every pair o/ elements u, v CB there is a unique number a such that 

u N ( a u + v ) ,  

then B is Euclidean. 
The assumption concerning the dimension of B is essential in Lemma 2.4. 

On the other hand, M.M. Day [3] and James [9] have shown that  the assump- 
tion of uniqueness is superfluous. 

We now state the definition of Gateaux differentiability. 

Definition 2.5. The norm of a normed linear space B is said to be Gateaux 
differentiable if, for every pair of elements u, v E B, u=#O, the limit 

lira h -1 E l l u + h v l l -  Ilull] 
h -+0  

exists. In this case the limit is denoted by N (u; v) and called the Gateaux differ- 
ential at  u in the direction of v. 

I t  is an immediate consequence of the convexity of the norm that  N (u; v), 
when it exists, is a linear functional in v. Even if N(u; v) does not exist, the 
corresponding right and le~t limits exist. We will denote them by N+ (u; v) 
and N_ (u; v) respectively. 

Lemma 2.6. For 2#  >0 we have 

N+ (2 u; s v) = Is  I N+ (u; v), N_ (2 u; S v) = IS I N_ (u; v) 

and /or ~ t s < 0  

N+(~u;  ~v)= - f s ] N _ ( u ;  v), N_ (~u; s v ) =  - ] s i N + ( u ;  v). 

Proo/. For 2 s > 0 we have by definition 

299 



S. O. CARLSSON, Orthogonality in normed linear spaces 

X~ O~u; u v ) =  lim h -a [ll).~+h~,,ll-tlaull] 
h - - ~ + 0  

=l) , l l inaoh-1 [' u + h ~ v  I - [ ' u N ]  

= e ] ~ [  lim h - ~ [][ u + h v f[] - ]t u ]l ] 
h ---~. 0 

=l t ,  lX§ v)  

In  the same way the second relation is proved. The two remaining relations 
then follow if we observe tha t  X_ (u; - c ) = - N _  (u; v). 

Lemma 2.7. I /  B is a normed linear space and there exist two real numbers )., 
it with ),+t~=~O, such that 2N_(u;  v)+ / t .Y_(u ;  v) is a continuous /unction o/ 
u, v EB, u+O, then the norm o/ B is Gateaux di]/erentiable. 

Proo[. We  accept wi thout  proof the fact tha t  if ~(x) is a continuous, convex 
function for - ~ < x < , ~o and ~'_ (x), q(_ (x) its r ight  and left derivatives re- 
spectively, then, for every %, 

lim q:'= (x) = q~[ (Xo) and lim q~'~ (x) = 9~  (%). 
3:-"~X o - -  0 x* . -~x  o = 0 

Let  u and v be linearly independent  elements of B, u#O,  and consider the  
function ~v (x) = II u + x v II, " - ~ < x < + ~ .  This function is clearly continuous 
and convex for all x. Now we have 

q:'_ (x)= Jim h-' Ullu+xv+hvlt- t lu+xvll]=N+ (u+ xv; v) 
h - - ~ O  

and ~0'_(x)= lira h - a [ H u . x v + h v l l - } l u + x v H ] = N _ ( u + x v ; v ) .  
h - - ~ - 0  

Our hypothesis then implies t ha t  2 ~ (x) + tt ~'- (x) is a continuous function of x. 
Thus we have 

(2 + # )  q~'- (x0) = lim (2~0+ (x) +/~0'_ (x)) 
X . . - ~ X .  - 0 

= l im (~(~0+ (x) + /z~'_  (x)) 
X-~X,t 0 

= (~ + ju) ~ (Xo). 
Since 2 + # # 0, we get  

~ -  (xo) = ~o" (z o) 

for every %. Put t ing  x o = 0  we see tha t  

N+ (u; v) = N_ (u; v). 

If  u and v are linearly dependent,  i.e. v = k u, it follows directly from the 
definition tha t  N(u;  v) exists and is equal to k}lull. Hence the lemma is proved. 

The following theorem establishes a connection between the Gateaux differ- 
ential and the notion of normali ty.  
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Theorem 2.8. I /  the norm o/ B is Gateaux differentiable, then an element u E B 
is normal to a~ element v E B  i/ and only if N(u;  v ) = 0  (cf. J a m e s  [8]). 

We omit  the  proof of Theorem 2.8, since i t  is a simple consequence of the  
definit ions.  

In  Section 6 we will need the following charac ter iza t ion  of Eucl idean  spaces 
due to F.  A. F icken  [4]. 

Lemma 2.9. Let B be a real normed linear space satis/ying the/ollowing condition: 
I /  u e B ,  v e B  and I l u + v l ] = ] l u - v l l ,  then /or all real x 

Ilu+xvll=Hu-z ll 

Then B is a Euclidean space. 

3. Property ( H )  and its consequences  

When  we speak of o r thogonal i ty  in the  following, we will a lways mean  the  
or thogonal i ty  of Defini t ion 1.1. We begin b y  proving t ha t  o r thogonal i ty  has  
p rope r ty  (d) of the  In t roduc t ion .  

Theorem 3.1. I /  u and v are elements o/ a normed linear space B, there is a 
number a such that u • (a u + v). 

Proo/. P u t  

/(x)= a, llb, u+c,( u+v)ll 
V = I  

for - c~ < x < + ~ .  Then we have to  show t h a t  [ (a) = 0 for some a. Obviously,  
/ (x)  is a cont inuous funct ion of x. 

I f  we pu t  E={vll<~v<<.m , c , * 0 }  and  F = { v J l < v < . m ,  c~=0}, we have 

/(~)X--I=x -1 ~ a, llb, u + c , ( ~ u + v ) l l  ~ 

a [llb.u+c ( u+v) lI =llxc  +c, vll 
S'=I 

=X-1 a [ll(x+b,e:bc, u+c, vll2-11xc, u+c, vll ]+x a b llull 
�9 ~ E  v E F  

Here we have used the assumpt ion  ~m= x a,  c~ = 0. Apply ing  Lemma 2.2, we see t ha t  

m 

lira ](x)x -1= ~ 2a b c:lllc  ll =211 ll  a,b c,=2jluJl 
3:.,*~4"00 I~E E 

Hence i t  follows t h a t  ](x) is posi t ive for large posi t ive values of x and  nega- 
t ive  for large negat ive  values of x. Being a cont inuous funct ion ](x) mus t  be 
zero for some value of x, which was to  be proved.  
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Definition 3.2. Orthogonality is said to have property (H) in a normed linear 
space B if u_l_v implies that  

l ~  ~-1 ~ ~ , l lnb,~§  vll~=O (n positive integer). 
}1---~+ O0 , = 1  

(3.1) 

Clearly, if orthogonality is homogeneous or additive in B, then it has prop- 
er ty (H) in B. 

We now proceed to show tha t  if orthogonality has property (H) in B, the 
number a in Theorem 3.1 is uniquely determined and may  be expressed as a 
linear combination of N+ (u; v) and N_ (u; v). 

Theorem 3.3. I /  orthogonality has property (H) in B and if u.L(au+v),  u~=O, 
then 

a = - I I  ~ II -1 [pN+ (~; v)+ qN_ (~, ~)3, (3.2) 

where p= ~ a,b,c, and q= ~ a,b,c,. 
l~v<~m l~v~rn 
b ~c,>O b ,cl, < 0 

Proo]. Our assumptions imply that  

l i m  n - 1  ~ a ,[ Inb ,  u + c , ( a u + v ) l l ~ = o .  
n-.->+ oo , = 1  

(3 .3 )  

If b , # 0  we have by Lemma 2.2 

Ilnb, u +c,  (au +v) ll~=llnb, u +c,  vll~ + 2nab,  c, llull~ +ne,(n),  (3.4) 

where e, (n)-+ 0 when n--> + ~ .  The same holds trivially when b, = 0. Taking 
the sum of the relations (3.4) multiplied by a, for v = 1, 2 . . . . .  m, dividing by  n, 
and letting n tend to infinity, we get, by (3.3) and (1.1) 

2all~ll~= - lim n -1 ~ a,[Inb, u + e ,  vll ~ (3.5) 

The limit in the right-hand member of (3.5) may  be evaluated in the following 
way. Because of (1.1) we may write 

n -1 ~. avHnbvu+cvvtl2=n -1 ~ av[llnb~,uq-CvVll~--HnbT,~lr "] 
v=l v=l 

= ~ a,[llnb, u+c, vll-IInb~u[[] n-1 [llnb,.u+v, vH+llnb, ull]. 
v=l 

Letting n tend to infinity we get 

lira n -1 ~ a, llnb, u-t-c, vll 2= ~. a,N+ (b,u; c,v)2Hb, u H 
n--~+ Oa v = l  I*~1 
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and  b y  (3.5) 
m 

(3.6) 

If  we now p u t  p =  ~ a,.b,c,, q =  ~ a ,b ,c , ,  

bvcv>O bvcp<O 

and  make  use of L e m m a  2.6, i t  follows t ha t  

a= -[lul[ -1 ~ a~[b~l [c,1/V+(u ; v ) + l l u [ I  -I ~ a,[b,I ]c, IN_(u  ; v) 
l~v<~rn l~<~m 
bvC~>O bvcv<O 

= -II [pN+ +qN_ v)], 

which was to be proved.  
F r o m  Theorems 3.1 and  3.3 i t  follows t ha t  to  eve ry  pa i r  of e lements  u and 

v of B, wi th  u g=0, there  is a uniquely  de te rmined  number  a such t ha t  
u •  We will denote  this  number  b y  a(u; v). 

L e m m a  3.4. I] orthogonality has property (H) in B, then a(u; v ) i s  a continuous 
[unction o/ u and v, u*O.  

Proo/. Let  (un)~ and  (vn)~ r be two sequences of eIements of B such t ha t  
u n * 0  for all n and  u , - * ~ 2 * 0 ,  vn-->~ when n - + r 1 6 2  We have to  show tha t  
a (u.; v,) -+ a (4; ~) when n --> oo. 

I t  is an  immedia te  consequence of the  defini t ion of N+ (u; v) and  N_ (u; v) t ha t  

v)]<i i .H,  for u e B ,  u . 0 ,  v e B .  

Using this  fact  and  (3.2) we see t h a t  the  sequence of real  numbers  (~,)~ = 
= (a (un; v,))• is bounded.  Le t  (flk)• be an  a r b i t r a r y  subsequence of (~)~r Then 

we m a y  select from (flk)T a subsequence (anz)~ r which converges to a number  c. 
F rom the defini t ion of o r thogonal i ty  i t  follows t h a t  if u~• n = l ,  2, . . . ,  and  
u~-->u, v,-->v when n-->oo, then  u•  Consequently,  since u~z• 
1 = 1, 2, . . . ,  we m a y  t ake  the  l imi t  as 1--> ~ of each side of this  re la t ion and  ge t  

z~_l_e4 +ft. 

Bu t  then  we mus t  have c = a (~; ~) .  Thus  we m a y  select from every  subsequence 
of (a(u~; %))~ a subsequence which converges to  a (~;  ~), which implies t ha t  
a (un; v~) -+ a (~; ~) when n --> ~ .  Hence the  l emma is proved.  

I f  a (u; v) is cont inuous  in u; v for u =~0, then, b y  (3.2), the  same holds for 
pN+(u . ;v )+qN_(u;  v). An appl ica t ion  of L e m m a  2.7 then shows t h a t  the  
norm of B is Ga teaux  differentiable.  Fur the rmore ,  we see t h a t  u •  if and only 
i[ N (u; v ) =  0, i.e. if and  only if u is normal  to v. We collect these resul ts  in 
the  following theorem.  

Theorem 3.5. I /  orthogonality has property (H) in B, then the norm o/ B is 
Gateaux differentiable and u_kv holds if and only i/ N (u; v ) =  0. 
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Let  us say, for a moment,  tha t  u is anti-orthogonal to v (in notat ion u Tv)  
if v is orthogonal to u. I.e. we have u T v  if and only if v •  or if and only if 

~ a~llc~u+b, vll~=o. 
v = l  

We have just shown tha t  if orthogonali ty has proper ty  (H) then it is equi- 
valent to normali ty  and therefore homogeneous, i.e. u •  implies ~ u •  for 
all 2, #. Hence it follows in particular tha t  anti-orthogonali ty has property (H). 
Now it is obvious tha t  Theorems 3.1, 3.3 and 3.5 remain true if we replace or- 
thogonali ty by  anti-orthogonality.  Assuming tha t  N(u ;  v ) = 0  we have u •  or 
v T u  and hence, by  the analogue of Theorem 3.5 for anti-orthogonality,  tha t  
N (v; u ) = 0 .  This means tha t  the relation of normali ty  is symmetric  in B. Thus, 
we have 

Theorem 3.6. I /  orthogonality has property (H) in B, then it is symmetric and 
equivalent to normality in B. 

An application of Lemma 2.4 and Theorems 3.3 and 3.6 gives 

Corollary 3.7. If the dimension o/ B is greater than two and orthogonality has 
property (H) in B, then B is Euclidean. 

Since homogeneity and addit ivi ty of orthogonali ty each implies proper ty  (H), 
we also have the following corollary. 

Corollary 3.8. I[ the dimension o/ B is greater than two and orthogonality is 
homogeneous or additive in B, then B is Euclidean. 

4. The two-dimensional problem 

We have defined uJ_v to  mean tha t  

V = I  

Now we change our notat ion a little by  introducing constants p~, q,, v = 1, 2, ..., r, 
and C1, C~ so tha t  

r 

,~xa~[[b'u +c'vH ~= ~x p~Hu +q~vH~-Cx[lu[[2-C~HvH~ 

and p,=C,, p,q:=C,, p,q,--1; q,*O (4.1) 

Let  B be a two-dimensional normed linear space in which orthogonali ty is 
homogeneous. Taking two elements u and v of B, such tha t  u•  IIu[[ = H vii = 1, 
we then have 

p,[lu+xq, v[[2=Cl +C2x 2 for - c ~ < x <  + c ~ .  
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This means tha t  the function ~(x )= l ln+xv l l  2 is a solution of the functional 
equation 

~ p ~ F ( x q ~ ) = C l + C 2 x  'z for - ~ < x <  + ~ "  (4.2) 
v = l  

We know from Section 3 tha t  ~ (x) is continuously differentiable for - ~ < x < + ~ .  
The behaviour of ~ (x) for large and small values of Ix I is given by  the fol- 
lowing lemma. 

Lemma 4.1. The ]unction q~ (x) satis/ ies the conditions 

(x) = 1 + 0 (x) when x --> 0 (4.3) 

and (x) = x 2 + 0 (x) when x - ~  +_ ~ .  (4.4) 

Proo/ .  For every x we have 

I ~ ( x ) -  l l=  t llu +~vl l  2-11 uit~ I 

= I tt u + x v t t -  I1 ~ II 1 (llu + ~ , l l  + It u l l )<  t~I (2 + txl), 

which proves (4.3). We also have 

= I Ilu + ~vll i II ~vll I (11 u + ~ II + II ~ II)< 1 + 2  I~1, 

from which (4.4) follows. 
If  u is suitably chosen, it is possible to strengthen the result (4.3) in the 

following way. 

Lemma 4.2. Zet  B be a two-dimensional  normed l inear space and denote by C 
the set {u I u E B ,  HuH = 1). Then  there is  a dense subset D o / C  such that i t  u E n 
and u N v, the /unct ion V (x) = I I u + x v II 2 satis/ies 

9 (x) = 1 + 0 (x 2) when x -+ O. (4.5) 

Proo/.  Let  us introduce polar coordinates (r, ~ ) s o  tha t  the closed convex 
curve C has the equation r=r(~v), 0~<y~<2g.  For  all y), except a t  most  count- 
ably  many,  C has a unique tangent  a t  the point  (r(~), v2). This tangent  makes 
an angle 0 (~0) with the polar axis. I f  YJ0 is an exceptional value of % we define 
0(~po ) so tha t  0 (y~) is continuous to the left for ~v = ~fo- Then 0 (~) is defined 
and non-decreasing for 0~<~v<2ze. ~rom a well-known theorem it follows tha t  
0 (~v) has a derivative 0' (v2) for almost all y~ in (0, 2z  t). 

We define D to be the set of all u E C  such tha t  0'(v2) exists where ~p is 
the polar angle of u. I t  is obvious tha t  D is a dense subset of G. Now let u 
and v be elements of B such tha t  u E D and u N v .  L e t  the endpoint  P of the 
vector u have coordinates (r(v20), ~P0)" The curve C has a unique tangent  at  P 
and from the definition of normali ty it follows tha t  v lies along this tangent.  
Let  the endpoint  Q of the vector u + x V  have coordinates (~((~), ~0+~)  and let 
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R be the point  ( r (~o+~) ,  ~o+~) .  I n  the triangle P Q R  we denote the angle 
Q R P  by  ~ and the angle R P Q  by 7. Then as x--~0 we have 

,~ = 0 (x) 

and  (sin ~)-1 = 0 (1). 

Since 0' (~Po) exists, it is obvious tha t  

~/= 0 (~) when (~ --> 0 

and consequently ~ = 0 (x) when x --> 0. 

Finally, we have when x--> 0 

(~) ~ (~) - r (~0 + ~) 
I l u + x v l l - 1  - - - 1  

r (v2o + (~) r (~Po + d) 

=o(1) [e (~ ) -  r(ro + ~)] =o(1)I*1 II,,11 sin '7 
�9 sin 

= o (x~). 

Applying this result we also have 

~(~)- x = II~+ ~ I? -  1 = (11 u §  1)(llu + ~ l l  + 1) 
= O ( x  ~) when x-->0. 

Hence Lemma 4.2 is proved. 
In  our t rea tment  of equation (4.2) in Section 6 we will distinguish between 

two cases; we say tha t  the equation is symmetrical  if it may  be wri t ten in 
the form 

k,F(1.~)- ~ k~F(-~,~)=q +C~ ~. 
v = l  " ~ = 1  

Otherwise the equation is non-symmetrical.  We observe tha t  if (4.2) is sym- 
metrical, then it follows from the relations (4.1) tha t  C 1 = C 2 = 0 .  

We are interested in those solutions ~(x) of (4 .2 )which  are continuously 
differentiable and satisfy the conditions (4.4) and (4.5). I t  turns  out  that ,  in 
the case of a non-symmetrical  equation (4.2), there is only one such solution, 
viz. ~ (x)= 1 + x ~. Of course, this is no longer true if the equation is symmet-  
rical because then every even function is a solution. However, in this case we 
prove that ,  conversely, every solution of (4.2) satisfying (4.4) and (4.5) must  
be even. These results, together with the fact  t ha t  they  imply tha t  B is Eu-  
clidean, will be obtained in Section 6. 

5. F-serles 

Let  us consider the functional equation 
N 

d . / ( x + ~ )  = 0 ,  
p f f i l  
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where d,, a~ are complex numbers. Clearly, this equation admits  as solutions the 
functions 

x~e t'x, m=O, 1,2, ..., m s - l ,  s=1,2 ..... (5.1) 

N d where t l ,  t s . . . .  are the ze ros  of the function h ( t )=  ~.=i . e ~ t  and m~ is the 
multiplicity of the zero ts. The theory of F-series (see Moore [12], [13]) investi- 
gates the possibility of expanding a function /(x) in a series of the functions (5.1). 

For  our purpose it is sufficient to assume tha t  d ,  and a ,  are real numbers, 
p = 1, 2 . . . . .  N. In  this case the F-series is a special case of Ki tagawa's  Cauchy 
series. (See Ki tagawa [11].) Let  us also assume tha t  a l < a 2 <  .-. <aN. 

Carmichael [2] has proved the existence of contours Cs, s = 1, 2 . . . . .  about  the 
origin in the complex plane, with the properties 

(a) there exists an e > 0 such tha t  

Ih(t)e-~tl>e for ~l<x~<aN, tees,  s = l , 2  . . . . .  (5.2) 

(b) C~ lies along the circle with radius s and centre at  the origin, except 
for portions of bounded length lying within a bounded distance of the 
imaginary axis, 

(c) no point  of Cs lies outside C,+I. 

Let  us denote by  t~,, / c - 1 , 2  . . . . .  as, the zeros of h ( t ) l y i n g  between C~-I 
and  C 8 (for s = 1 inside C1). L e t  Cks be a small circle passing through no zero 
of h (t) and containing only the zero tk~ of h (t) in its interior. I f  /(x) is integrable 
over the interval (al, aN) we define its F-series in the following way. 

Definition 5.1 (Moore [12]). The 
series 

s = l  k ~ l  = l  

F-series for /(x) associated with h (t) is the 

/(Xi) fc~, e(~+ . . . .  )t {h(t)}-i dtdxl, (5.3) 

where a 1 ~ a ~ aN. 
We remark tha t  this definition is correct, tha t  is, the series (5.3) is inde- 

pendent  of the choice of a. I n  fact, we have 

~ d,, f:~'/(xl) fck e%, + .. . .  )t {h(t)}-l d tdx  1 
t~=l 

-~__ld/./:~/(xl)fcks~(a:~+x-x')t{]bC$)}-ldtdxi 

=0, 
by  Cauchy's  theorem. 

307 



S. O. CARLSSON, Orthogonality in normed linear spaces 

The following lemma is a special case of a result d u e  to Carmichael [2] and 
we state  it wi thout  proof. 

Lemma 5.2. When s--+ ~ the integral 

fe e x' {h ( t)} -1  t -1  d t 

tends uniformly to zero with respect to x in every interval o~ 1 -~ ~' ~ X ~ ~N-- ~", 
0' > 0, c$"> 0. 

Theorem 5.3. I t f (x) has a continuous derivative in the interval :q <~ x <~ aN, then 
the series (5.3) converges to [ (x) in the open interval o~ 1 < x < o~N. 

Moore ([12], Theorem 2) has proved a much  more general theorem. We give, 
however, a special proof of Theorem 5.3 since it is par t icular ly  simple in this case. 

Proof. The sth part ial  sum of the series (5.3) m a y  be wri t ten 

S ~ ( f ; x ) =  1 N f ~  f c  2 _ ~  d,  f(Xl ) ,e(~"+ . . . .  )t { h ( t ) } - ~ d t d x r  

P u t  Qs (Xl) = fcs e(%+x-x')t {h (t)} -1 dt. 

As we have seen above, we m a y  replace a by  x in the expression for Ss ( f ;x) .  
Doing this and integrat ing b y  par ts  with respect  to x t, we get 

1 N 3:1 $1 

= , ~ - .  5 d , f ( x )  e ~ M { h ( t ) } - l t - ~ d t -  e ~ t { h ( t ) } - l t - ' d t  
~ 71: $ , u = l  �9 s 

1 N ~% 
-~ld. Jx /'(Xl) fc{ e('+'-x')t -ext}{ h(t)}-It-ldtd'l 

1 iv f% f c  /'(.11 .e (%+ . . . .  " ( h ( t ) F ' t l d t d . 1  

1 ~ l d ~ f ( a ~  ) e , t {h ( t ) }_ l t_ ld t .  
2 ~ i  = 

The integral f c ,  e~t ( h (t)} -1 t -1 d t 

tends to zero for 61 < g <  gh" by  L e m m a  5.2. Put t ing  
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U~ (xl) =/ '  (x 1 ) f c, e(% + . . . .  )t {h (t)} -~ t -1 d t 

and making use of propert ies (a), (b) of Cs and L e m m a  5.2, we see that ,  for 
:h ~< x <  :oN, the sequence U~ (xl) is uniformly bounded in the interval  (x, :r 
tends uniformly to zero in any  interval  whose endpoints  are interior points of 
(x, ,r Hence it follows tha t  the second te rm in the last  expression for S , ( / ;  x) 
tends to zero when ~ , < x < a ~ .  This completes the proof of Theorem 5.3. 

~.=ld./(x+ ~.)=0/or - co < x <  + ~ ,  Lemma 5.4. I / / ( x )  satisfies the equation N 
we have 

N ~Xl~ 
~ l d ,  J~ / ( Z l ' ~ c k e ( ' l ~ + x - x " ' { h ( t ' } - l d t d X l  

- = d. Ja, /(x~) ~e(~. + . . . .  > t{h( t ) } - ld tdXl ,  (5.4) 

where a, a' and K are arbitrary real numbers. 

Proo[. According to the remark  following Definition 5.1, the lef t-hand side of 
(5.4) is independent  of a. Thus, the difference between the two sides of (5.4) 
m a y  be wri t ten 

d ~'u+ K / (3~1) ~ e@e, u+ . . . .  ) t { h ( t ) } - l d t d x l  
.a= 1 ,u J a, a J Cks 

= 5 1 d  , . =  / ( u + ~ , )  ~ ,d~-~ )~{h ( t ) } - l d tdu '  

which is equal to zero because ~ 1  d ,  / (u + ~,1 = 0. 

Theorem 5.5. I] / (x)  has a continuous derivative and satisfies the equation 
N ~,=1 d, ] (x + o~,) = 0 /or - oa < x < + ~ ,  then the series (5.3) converges to [ (x) /or 

all x. 

Proo]. Suppose ~1 < x < aN and let K be an a rb i t ra ry  real number .  Pu t  [ (x) 
= / ( x + K ) .  Then we have using L e m m a  5.4 

1 N f ~ /  fce( '~+~+K-~' ) t{h( t )}- ld tdxl  

1 i ~ d~, = / ( x l + K  ) e(~ § . . . .  ) t { h ( t ) } - l d t d x  1 
2;7~ tt=l d a - K  

1 L F~v ~"  
=2-~i k d, I [(~) Jc  e"+x-x')t {h(t)}- l  d t d x l  

= S~ (/; ~), 
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which tends to ] ( x ) = / ( x + K )  by  Theorem 5.3. Thus we have 

lim S, (/; x + K) = f (x + K) for every K, 
$--~oo 

which proves the theorem. 

Lemma 5.6. (Moore [12], Theorem 1.) The functions x ~ e tk`~, m = 0 ,  1 . . . . .  m k s -  1, 
k = 1, 2 . . . . .  a,, s = 1, 2 . . . . .  where m~, is the multiplicity o/t~,, satisfy the following 
" biorthogonality relations" 

= j c~, (x m e tk'~ if tk, = 6~.  

6 .  S o l u t i o n  o f  t h e  t w o - d l m e n s i o n a l  p r o b l e m  

We now apply the results of Section 5 to prove the following theorem. 

Theorem 6.1. I f  / ( x )  is a continuously differentiable solution of the non.trivial 
functional equation 

N 

d , f ( x + g ~ ) = O ,  - o o < x < + o %  (6.1) 
p = l  

satisfying (A, B real constants) 

f (x) = A q- 0 (e 2 z) when x--> - oo (6.2) 

and f (x) = B e 2z + 0 (e ~) when x-> + 0% (6.3) 

then f ( x ) = A  + B e  2~ /or - oo < x <  + oo. 

~].=1 d~ e~, t . Let  us denote by  T~s (/;'x) Proo]. As in Section 5 we pu t  h ( t ) =  N 
the term of the F-series for ] (x) corresponding to the zero tks of h (t), i.e. 

l f[fo Tk~(/;x)  =5--~-" 5 ,  / ( x , )  e(V+~-x')t{h(t)}-l d t d x , .  
ks 

Then we know by  Theorem 5.5 tha t  

l (x)= Y T~,(l;x) for - o o < x <  +oo. 
s - 1  k - 1  

(6.4) 

We now calculate Tks (f; x) for the various zeros tks of h (t). We distinguish 
between two cases. 
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(1) Suppose t h a t  Re (tks) < 2 .  

By  (6.2) we m a y  wri te  f ( x l ) = A  q-e2Zl} 7 (xl) , where ~ (xl) is hounded when 
x l - - > -  oo, say  

[~(xx)l<M1 for zX<~l. (6.5) 

Le t  us put ,  for the  moment ,  g(x l )=A and  h(xx)=e2"~'~(xl), so t h a t  /(xl) 
= g (Xx) + h (xl) , - oo < xl < + c~. Then we have 

Tks (/; x) = T~, (g; x) + T~s (h; x). (6.6) 

I f  A = 0 then  Tk, (g; z) = 0. I f  A • 0, we subs t i tu te  the  expression (6.2) for / (xl) 
N in equat ion  (6.1) and  get, when x l - ~ - o o ,  ~ : d ~ = 0 .  This means  t h a t  in th is  

case t = 0 is a zero of h (t) and  we have,  b y  L e m m a  5.6, t h a t  

Tk, (g; x) = A if tk, = 0, Tk, (g; x) = 0 if tk, r 0. 

Thus, in a n y  case we have  

{A+T~,~(h;x) if t ~ = 0 ,  

T k, (/;  x) = Tk, (h; x) if tk, * 0. 
(6.7) 

We nex t  show t h a t  Tk8 (h; x ) =  0 for every  x if .Re (tks)< 2. Choose the  radius  
r of the  circle Ck~ so small  t h a t  

R e (2 - t) >1 c > 0 for t E Ck,. (6.8) 

Fo r  f ixed x and  r there  is a cons tan t  M2 such t h a t  

le(~'.+x)t{h (t)} -1l ~<M~ for # = 1 . . . . .  N,  t G Ck,. (6.9) 

Now le t  e be an  a r b i t r a r y  posi t ive number  and  choose eoa so t h a t  

o~ 2 < 0, o~ 2 ~ oJ 1 and  e ~ '  ~< e for x 1 ~< o~9. (6.10) 

Since h(x)=e~X~(x) is a solut ion of (6.1) we have b y  L e m m a  5.4 

Tk, (h ; x) = , l-~ d/~ .~/~ + K e2xl ~ (gl) e(a.u+~:-x~)t{h(t)I-ldtdxl, (6.11) 

where K is a rb i t r a ry .  I f  we choose K so t h a t  a~+K~<eo2 we get, using the  
es t imates  (6.5), (6.8), (6.9), and  (6.10), 

N 
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Thus, we Since s was arbitrary,  we conclude tha t  Tks (h; x ) = 0  for every x. 
have proved tha t  

Tk~ (/; x) = I A if tk~ =0 ,  (6.12) 
t0 if R e (tk~) < 2, tk~ # 0. 

(2) Suppose tha t  R e  (tk~) ~ 2. 

I n  this case we have 

t B e  ~ if tk~ = 2 

Tk~ (/; x) -- l0 if R e (tk~) >~ 2, tk~ # 2. 
(6.13) 

The proof of this differs very little from the proof of (6.12), except tha t  we 
now use condition (6.3) instead of (6.2). We omit the details. 

Combining (6.4), (6.12), and (6.13) we finally have 

/ ( x ) = A + B e  ~ f o r  - o o < x <  + o %  

which is the desired result. 

Eorollary 6.2. I]  T (x) is a cont inuously  di//erentiable solution o/ the non-tr ivial  
]unctional equation 

N 
d ~ , F ( q , x ) = O ,  x > O ,  (6.14) 

where q, > 0, # = 1 . . . . .  N ,  sa t i s /y ing  

qJ (x) = A + 0 (x 2) when x--> + 0 (6.15) 

and  q~ (x) = B x ~  + O (x) when x--> + ~ , (6.16) 

then q~ (x) = A + B x ~ /or x > O. 
This result follows at  once from Theorem 6.1 if we pu t  q~ = e~ and / (x) = T  (eX). 

Theorem 6.3. Let  q~ (x) be a cont inuously  di//erentiable solution o/ the non-sym.  
metrical  equation 

~p~F(q~x)=Cl+C~x ~, - o o < x <  + c ~ ,  (6.17) 

"where ~ p~=C1, ~pvq2=G,~, ~p~qv=l, q~:~:0, y = l  . . . . .  r. (6.18) 
~=1 v=l v=l 

I /  q~ (x) satisf ies 
q~ (x) = 1 + 0 (x ~) when x-->O (6.19) 
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.and r (x) = x 2 + 0 (x) when x---> + ~ ,  

then q g ( x ) = I + x  2 /or - o o < x <  + ~ .  

(6.20) 

Proo/. Let  us define the function ~ (x) by  

( x ) = ~ 0 ( x ) - l - x  2 for - ~ < x <  + ~ .  

'Then y3(x) is a soIution of 

(6.21) 

~p~F(q~x)=O, - ~ < x <  + ~ ,  (6.22) 

satisfying v/(x) = 0 (x 2) when x-->0 (6.23) 

a n d  ~o (x) = 0 (x) when x--> • ~ .  (6.24) 

Le t  M be the linear space of all real-valued functions defined for x >  0. We 
now define two linear operators  TI :M--~M and T2: M--->M by  

(T 1 F ) ( x ) -  ~ p~F(qvx) ,  x > 0 ,  
q~>0 

and  ( T 2 F ) ( x ) :  ~ p v F ( - q ~ x ) ,  x > O .  
qv<0 

P u t  Y)I ( x ) = ~  (x), ~o~ ( x ) = ~ o ( - x )  for x~>0. Then the  fact  t ha t  ~0 (x) is a solu- 
t ion of (6.22) m a y  be expressed by  the two conditions 

(T1 ~/)1) (x) ~- (T  2 ~)2) (x) = 0, x > 0, 

and 

or, equivalently,  by  

and 

(T1 VJ~) (x) + (T~ ~x) (x) = 0, x > O, 

(T1 + T2) (V,)l ~- ~2) (x) = 0, x > O, (6.25) 

(T1 --  T2) (~/)1 - ~)2) (x) = O, x > 0.  (6.26) 

The assumption t ha t  (6.17) is non-symmetr ical  implies t h a t  TI+T2~=O. The 
same conclusion concerning the operator  T 1 - T  2 m a y  be drawn from the fact  
t h a t  ~ = l p ,  qv#O. Consequently, the equations (6.25) and  (6.26) arc of the 
type  considered in Corollary 6.2. Fur thermore ,  f rom (6:23) and (6 .24) i t  follows 
t h a t  the functions ~1 (x) - v/2 (x) and  ~01 (x) + ~ (x) satisfy 

~fll (x) _+ Y)2 (x) = 0 (x z) when z--> q- O (6.27) 

and  ~1 (x) • ~P2 (x) = 0 (x) when x--> + ~ .  (6.28) 
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Hence, from the  same corol lary we get  

~01 (X) ~- ~0 2 (X) = 0 f o r  x > 0 

and  consequent ly  ~o(x)=0  for - oo < x <  + ~ .  Thus, (6.21) gives 

( x ) = l + x  ~ for - ~ < x <  + ~ ,  

which was to  be proved.  
Next ,  we tu rn  to the  case of a symmet r ica l  equat ion  (6.17) sat isfying t h e  

f irst  two of the  condit ions (6.18). As we remarked  in Section 4, we then  have  
C 1 = C 2 = 0 .  

Theorem 6.4, I /  qJ (x) is a continuously diHerentiable solution o/ the non, trivia[ 
symmetrical equation 

p, F (q, x) = 0, - c r  (6.29) 

satis/ying q~ (z) = 1 + 0 (z 2) when x-*O (6.30) 

and q~ (x) = x ~ + 0 (x) when x--> +_ oo, (6.31) 

then q ~ ( x ) = q ~ ( - x )  /or - ~ < x <  + ~ .  

Proof. Define the  funct ion ~p (x) for x > 0 by  y; (x) = ~ (x) - q ( - x). Sinc~ 
equat ion  (6.29) is symmetr ica l  i t  m a y  be wr i t t en  in the  form 

8 
k , F ( l ~ x ) - ~ k , F ( - 1 ,  x )=O,  x>O,  l ,>O, v = l  . . . .  , s .  

v=l v-1 
( 6 . 3 2 )  

Since ~ (x) is a solut ion of (6.32) we see t h a t  ~0 ( x ) i s  a solut ion of the  equa t ion  

k, F (l, x) = 0, x > 0. (6.33) 

Moreover,  from (6.30) and  (6.31) i t  follows t h a t  

v 2 (x) = 0 (x ~) when x-> + 0 (6.34) 

a n d  ~0 (x) -- 0 (x) when x--~ + cr (6.35) 

An  appl ica t ion  of Corol lary 6.2 then  gives us %o ( x ) = 0  or 

~ ( x ) = ~ ( - x )  for - o o < x < + ~ .  

We are now able to  prove t h a t  the  assumpt ion  concerning the  dimension of 
B is superfluous in Corollary 3.7. 
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T h e o r e m  6.5. I[ B is a normed linear space in which orthogonality has property 
(H), then B is Euclidean. 

Proo/. I t  is sufficient to  assume t h a t  B has dimension two. Le t  C = {u I u E B, 
HuH = 1} and  D the subset  of C figuring in L e m m a  4.2. F r o m  the  resul ts  in 
Sect ion 3 i t  follows t h a t  o r thogona l i ty  is homogeneous if i t  has  p rope r ty  (H). 

Now let  u e D  and  u •  [[v[[=l. Then we know from Sections 3 and  4 t h a t  
q~ (x)=][u+xv[[ ~ is a cont inuously  different iable funct ion sat isfying an  equat ion  

r F - o o  p,  (q, x) = C 1 + C 2 x 2, < x < + 0% (6.36) 
Y = I  

r r 

with  p~=C1, ~p,q~=C~, ~ p , q ~ = l ,  q,=~0, v = l  . . . .  , r .  

Fu r the rmore ,  we have by  Lemmas  4.1 and  4.2 

~0 (x) = 1 + 0 (x ~) when x-->0 (6.37) 

a n d  ~o (x) = x ~ + 0 (x) when x--> + oo. (6.38) 

F i rs t ,  le t  us suppose t h a t  equat ion (6.36) is non-symmetr ica l .  Then ~o(x) 
satisfies the  hypothesis  of Theorem 6.3 and  consequent ly  ~0(x)= 1 + x for 
- o o  < x < + oo. I f  we choose u and v as uni t  vectors  of a coordinate  sys tem 

in  the  plane B and  wri te  w = x u + y v  we see t h a t  Ilwll=l if and  only if 
x 2 + y  ~ =-1. This means  t ha t  the  curve C has the  equa t ion  x2+  y2=  1 and  so is 
an  ellipse. Bu t  this  is precisely the  condi t ion t h a t  B be Eucl idean.  

l~ow suppose t h a t  equat ion (6.36) is symmetr ica l .  Then i t  follows from The- 
orem 6.4 t h a t  ~ ( x ) = ~ 0 ( - x )  for al l  x or 

I I u + ~ l l = l l ~ - ~ l ]  for all real  x. (6.39) 

The  re la t ion (6.39) holds for each pa i r  of e lements  u and v of B, such t ha t  
u E D and  u _l_ v. Since D is a dense subset  of C, i t  is easy  to see t ha t  (6.39) 
even holds if u E B and  u A_ v. Geometr ica l ly  speaking,  this  means  t h a t  all 
chords of C paral le l  to  a f ixed direct ion have thei r  midpoin t s  on a s t ra igh t  line 
th rough  the origin. Now let  u and v be two elements  of B such t ha t  ]]u+v]l 
= l [ u - v l .  The chords of C paral le l  to  v have thei r  midpoin t s  on a s t ra igh t  

l ine th rough  the  origin containing a vector  u * *  0. This is equiva lent  to []u*+ x v 
=]u*-xv[]  for all  x. A special such chord is the  one joining the point's 
(u+v) / l l u+v  and ( u - v ) ~  u-v[I  of C. The midpo in t  of this  chord is u/[[u+v][. 
Consequent ly  u and u* are paral lel .  F r o m  this  i t  follows t h a t  u + x v  I = u - x v ]  
for  al l  x. An  appl ica t ion  of L e m m a  2.9 now shows t h a t  B is Eucl idean,  which 
completes  the  proof  of Theorem 6.5. 

Since o r thogona l i ty  has p rope r ty  (H) if i t  is homogeneous or addi t ive  we 
also have 

Corollary 6.6. I /  B is a normed linear space in which orthogonality is homo- 
geneous or additive, then B is Euclidean, 
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7. A generalization of the Jordan-yon Neumann condition 

Jordan  and von Neumann  [10] proved tha t  a normed linear space B must. 
be Euclidean if it satisfies the condition 

Ilu + vll  + llu-vll = 2 <llull  + llvll > for all u, v 6 B .  (7.1~ 

In  analogy with our definition of or thogonali ty in Section 1, it is natural  t~ 
ask if this remains true when condition (7.1) is replaced by 

~ a~l[b~u+c,v[]~=O for all u, v E B ,  (7.2). 

where a ~ 4  O, b,, cv, v = 1 . . . .  m,  are real numbers. I n  order to avoid tha t  (7.2) 
is trivial, we further assume tha t  the vectors (b~, c,) and (b,, cg) are linearly 
independent for v ~  #. We will show tha t  the question thus raised is to be 
answered in the affirmative. I t  is sufficient to assume tha t  B is two-dimen- 
sional. 

First, as is easily seen, condition (7.2) is equivalent to a condition of the form 

r 

p, I I ,~+q~vl l  ~ = 0  for all u, v 6 B ,  (7.3} 
v = l  

where p, # 0, v = 1, 2 . . . . .  r, and q, # q, for v # ~u. Further,  for every real number  
t (7.3) is equivalent to 

~ p, liu+(q,+t)vll2=o for all u, v e B ,  (7.4) 

as is seen by replacing u by  u + i v  in (7.3). Now, for every u # 0  and v in 
B we have, using (7.4), 

p,n-' [llnu + <q,+l> v112-IIn ull =0, (7.5) 

where n is an arbi t rary natural  number.  Lett ing n tend to infinity in (7.5) 
we get 

p, N+ (u ; (q, + i )  v) = 0. (7.6) 

F rom Lemma 2.6 it now follows tha t  

p (1) 2v+ (u; v) + q (I) N_ (u; v) = o, (7.7) 

where we have put  

p ( 1 ) =  ~ p , ( q , + t )  and q ( 1 ) =  ~ p , ( q , + t ) .  
l ~ v ~ r  l~<v~<r 

qv+l>O q~+~<O 
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If we pu t  u = O ,  v~:O in (7.4) we get ~ r - l p ~ ( q ~ + 2 ) 2 = 0 .  I n  the same way 
u~:0 ,  v = 0  gives ~.~ffilp~=0 and  u = v * 0 g i v e s ~ = l p ~ ( l + q ~ + 2 ) 2 = 0 .  Hence it  
follows tha t  ~ r .  1 Pv (qv + ~) = 0 or p (~) -Jr" q (2) = 0. We may  now choose ~t so t h a t  
the sequence q, + $, v = 1, . . . ,  r, contains exactly one negative term. For this choice 
of ~ we then have p ( 2 ) = - q  ($)~:0. Consequently, (7.7) gives 

2% (u ; v) = 2% (u ; v) 

which means tha t  the norm of B is Gateaux differentiable. 
Now choose 2 in (7.4) so tha t  q , + ~ t = q : > 0  for v = l  . . . . .  r. L e t u E D ,  where 

D is the set introduced in  Lemma 4.2, and  let u N v ,  I ]v l [= l .  Then ~0(x) 
= ] lu+xvH ~ is a cont inuously differentiable solution of the equat ion 

p~F(q:x)=O, x > 0 ,  
~ffil 

where q: > 0, v = 1 . . . . .  r, satisfying 

and  

Consequently Corollary 6.2 gives 

~ o ( x ) = l + x  2 for x > 0 .  

Changing v to - v  we see in the same way tha t  

~ 0 ( x ) = l + x  2 for x < 0 .  

As in Theorem 6.5 this means tha t  B is Euclidean. 
following result. 

(x) = 1 § O (x 2) when x --> § 0 

(x) = x 2 § 0 (x) when x --> § c~. 

We have thus proved the  

Theorem 7.1. Let a~ ~ O, b~, c~, ~ = 1 . . . . .  m, be real numbers such that (b,, c,) and  
(bg, c,) are linearly independent /or v ~ /~. I / B  is a normed linear space satis/yincj 
the condition 

then B is Euclidean. 

~a~[[b~u+cvvl[2=O /or u, veB,  
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