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Orthogonality in normed linear spaces

By StEN OrLoF CARLSSON

1. Introduction

Let B be a real normed linear space. We will say that B is Euclidean if
there is a symmetric bilinear functional (u,v) (called the inner product of u
and v) defined for u, v € B, such that (u, u)=||«|* for every u€B. In a Eu-
clidean space we have the customary definition of orthogonality, viz. an element
% 18 orthogonal to an element » (in notation u#Llwv) if and only if (u, v)=0. It
is an immediate consequence of this definition that orthogonality has the fol-
lowing properties:

(@) If uLlv then v.lu (Symmetry);

(b) If wlv, then Aulw for all real A (Homogeneity);

fe) If wlw and vLlw, then (u-+v)lw (Additivity);

(d) For every pair u, v € B there is a number a such that i (au+v).

Ifa,, b, c,v=1,2,...,m, are real numbers satisfying
m m m
Sabl=72acd=0 2 abec=1, (1.1)
v=1 p=1 y=1

we have the following identity

m
2 (u, v) = Zla,,||b,u+cvv]|2 for u, v € B.

This means that the definition of orthogonality in a Euclidean space may be
reformulated in the following way:
utv if and only if X a,||bu+cv|*=0.
v=1
Since this new definition makes no use of the inmer product but only of the

norm and linear structure of B, it is applicable even in the case of an arbitrary
normed linear space B. For this reason we make the following definition:

Definition 1.1. Let B be a normed linear space and a,, b,, ¢,, »=1,2, ..., m,

a fixed collection of real numbers satisfying relations (1.1). An element u of B
is said to be orthogonal to an element v of B (in notation w.lwv) if

m
Zla,, |6, %+, v|>=0
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S. 0. CARLSSON, Orthogonality in normed linear spaces

Now the question arises, whether the orthogonality so defined has any of the
properties (a), (b), {¢) or (d). It may have property (a), as illustrated by two
special cases considered by R. C. James [7]. He defined two types of ortho-
gonality, viz.

“Pythagorean orthogonality”: ulv if ||u—v|>=|{=|*+|v|?
and “Isosceles orthogonality”: ulw if ||u+v)|=]u—7].

James showed that these two types of orthogonality always have property (d).
while if one of them has property (b) or (c), then B must be a Euclidean
space. The main result of this paper is that these propositions remain true in
the case of the more general type of orthogonality defined above.

Our plan of investigation is as follows. In Section 2 we collect some defini-
tions and lemmas which will be needed later.

In Section 3 we first show that orthogonality always has property (d). Then
we study a normed linear space in which orthogonality satisfies a certain condi-
tion, apparently weaker than homogeneity and additivity. We show that this
condition implies that orthogonality has properties (a), (b) and (c). Furthermore,
it implies several properties of B, which, if the dimension of B is at least three,
permit us to conclude that B iz Euclidean.

There remains now an investigation of the two-dimensional case. This is pre-
pared in Section 4, where we remark that the problem it essentially equivalent

to proving the uniqueness under certain conditions of a solution of a functional
equation

>, Fgx)=C+ 0y’
p=1

In Section 5 we remind the reader of the definition and fundamental prop-
erties of the F-series of a function f(x) associated with a function

N
k()= D d, e,
u=1

By means of the results of Section 5, we show in Section 6 that if orthogo-
nality is homogeneous in a normed linear space B, then B is Euclidean.
In Section 7 we use the same method as in Section 6 to prove a certain

generalization of the well-known Jordan—von Neumann characterization of Eu-
clidean spaces.

2. Preliminaries
We state without proof the following lemma by James ([7], Lemma 4.4):

Lemma 2.1. If u and v are elements of a normed linear space then

Jim [l @ +a)uto]~flzutoll=alju].

With the aid of Lemma 2.1 the following result is immediately verified:
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Lemma 2.2. If u and v are elements of a normed lLnear space, then

lim 27 [z +a)u+v|>—||zu-+v|*]=2a] «|>
T>to0

There is another type of orthogonality which was studied by Birkhoff [1],
Fortet [5], [6] and James [8], [9]. Following Fortet we will here call it nor-
mality.

Definition 2.3. An element u of a normed linear space is normal to an ele-
ment v (in notation uNwv) if

|u+Av||=|u| for every A.
Birkhoff [1] gave the following characterization of Euclidean spaces:

Lemma 24. Let B be a normed linear space, whose dimension is greater than
two. If normality is symmetric and unique in B, t.e. if

(a) uNv implies vNu, w€B, v€B, and
(b) to every pair of elements u, v€B there is a unique number a such that
uN (au+v),

then B is Euclidean.

The assumption concerning the dimension of B is essential in Lemma 2.4.
On the other hand, M.M. Day [3] and James [9] have shown that the assump-
tion of uniqueness is superfluous.

We now state the definition of Gateaux differentiability.

Definition 2.5. The norm of a normed linear space B is said to be Gateaux
differentiable if, for every pair of elements u, v€ B, uw=+0, the limit

Bim At Ao~ ufl
exists. In this ease the limit is denoted by N (u; v) and called the Gateaux differ-
ential at » in the direction of ».

It is an immediate consequence of the convexity of the norm that N (%; v),
when it exists, is a linear funetional in v. Even if N (u; v) does not exist, the
corresponding right and left limits exist. We will denote them by N, (u; v)
and N. (u; v) respectively.

Lemma 2.6. For Apu>0 we have
N, (Au; pv)=|pu| Ny (w; v), N_(Au; po)=|p| N-(u; v)
and for Au<0
N, (Aw; pv)y= —|pu| N_(u; v), N_(Au; uv)= —|p| N, (u; v).
Proof. For Au>0 we have by definition
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S. 0. CARLSSON, Orthogonality in normed linear spaces

N_(Au; ur)y= hlimo R Aw+huv|—|Au|]

~Jjull

_lli 3 -1 + —
2]t 3 Gt ol =l

=|A| lim 27! {
h>=0

u+h%v

=|u| N (u; ).

In the same way the second relation is proved. The two remaining relations
then follow if we observe that N_ (u; —v)= —N_(u; v).

Lemma 2.7, If B is a normed linear space and there exist two real numbers A,
uowith 2+p=+0, such that AN_(u; v)+uN_(u; v) is a continuous funclion of
u, VE€EB, u=0. then the norm of B is Gateaux differentiable.

Proof. We accept without proof the fact that if ¢(x) is a continuous, convex
function for — oo <ax< — oo and ¢- (x), ¢- (x) its right and left derivatives re-
spectively, then, for everv z,,

lim ¢. (x)=¢. (z,) and lim . (x) =@~ ().

I—-1,-0 T-pIy—0

Let u» and v be linearly independent elements of B, #+0, and consider the
function @ (x)=|lu+2av|. -~ <ax< +co. This function is clearly continuous
and convex for all . Now we have

¢- ()= lhm ' [lutzv+holl—|lut+zv|]=N,(w+zv;v)
h>-0

and - (x)= lim A ' [lu+av+hv|—||lu+zof]]=N_(ut+2zv; v).
h—>-0

Our hypothesis then implies that A¢. (x) + x @~ () is a continuous function of z.
Thus we have

A+ 1) " (@) = lm (A} (@) +pe- (@)
= lim (¢’ (@) +pg- (@)

T>Ty+
= (A+p) @4 (%)-
Since A+u+0, we get
P+ () = @ (%)

for every x,. Putting z,=0 we see that
N, (u; v)=N_ (u; v).

If v and v are linearly dependent, i.e. v==Fku, it follows directly from the
definition that N (u; v) exists and is equal to k|lu||. Hence the lemma is proved.

The following theorem establishes a connection between the Gateaux differ-
ential and the notion of normality.
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Theorem 2.8. If the norm of B is Gateaux differentiable, then an element w € B
is normal to an element v € B if and only if N (u; v)=0 (cf. James [8]).

We omit the proof of Theorem 2.8, since it is a simple consequence of the
definitions.

In Section 6 we will need the following characterization of Euclidean spaces
due to F. A. Ficken [4].

Lemma 2.9. Let B be a real normed linear space satisfying the following condition:
If weB, v€B and ||u+v||=]|u—v]||, then for all real x

[u+zv|=|lu—=zv].

Then B is a Euclidean space.

3. Property (H) and its consequences
When we speak of orthogonality in the following, we will always mean the

orthogonality of Definition 1.1. We begin by proving that orthogonality has
property (d) of the Introduction.

Theorem 3.1. If u and v are elements of a normed linear space B, there is a
number a such that w1l (au+v).

Proof. Put
flx)= _Zl(Jz,||b,,u+c,(:cu+v)”2

for — oo <z< +o0. Then we have to show that f(a)=0 for some a. Obviously,
f(x) is a continuous function of x.

If we put E={r|1<y<m, ¢,+0} and F={v|1<v<m, ¢,=0}, we have
f@at=a"13 a,||butc, (zut+v)|?
p=1
m
=zt Zla,. b u+e @ut+v)|P—|zcu+ev|f]
=gz71 %a, N@+b e Yheutev|f—||zc,utev|]+z" 3 a, b u]?
ve veF
Here we have used the assumption 3%, a, ¢} =0. Applying Lemma 2.2, we see that
Em f(x)z~!= %2@, boeteullP=2[[«|? > a.b,c, =2 u]
I->300 ve y=1

Hence it follows that f(z) is positive for large positive values of z and nega-
tive for large negative values of x. Being a continuous function f(x) must be
zero for some value of x, which was to be proved.
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Definition 3.2. Orthogonality is said to have property (H) in a normed linear
space B if v 1lv implies that

lim »7! Y a,||nbu+cv|F=0 (n positive integer). (3.1)
n—>+oo v=1

Clearly, if orthogonality is homogeneous or additive in B, then it has prop-
erty (H) in B.
We now proceed tc show that if orthogonality has property (H) in B, the
number & in Theorem 3.1 is uniquely determined and may be expressed as a
linear combination of N, (u; v) and N_(u; v).

Theorem 3.3. If orthogonality has property (H) in B and if ul(au+v), u=+0,
then

a=—|lul| [pN, (w; v) +gN_ (u; v)], (3.2)
where p= > abec and q= 2 abec,.
1grm igrgm
b,c,>0 b,c,<0

Proof. Our assumptions imply that

n—>+o0

lim n~1 %1 a,||nb,u+e, (@u+v)|E=0. (3.3)

If b,+0 we have by Lemma 2.2
lnbute @utv)|P=||nbu+tecv|t+2nab,c|lul?+ne (n), (3.4)

where ¢,(n)—>0 when n-— + oo, The same holds trivially when b, =0. Taking
the sum of the relations (3.4) multiplied by a, for »=1,2, ..., m, dividing by =,
and letting » tend to infinity, we get, by (3.3) and (1.1)

2a ||u|f= - lim n7! Zla,,llnb,,u+c,v||2. (3.5)
n—>+oco y=

The limit in the right-hand member of (3.5) may be evaluated in the following
way. Because of (1.1) we may write

n‘lvga,”nb,,u-%c,v”z=n‘1§1a,{||nb,u+c,v||2—-Hnb,u"z]

= éla.,[||nb,u+c,v||—”nb,u]l]n‘l Ulnb w+e ||+ nd x|l
Letting n tend to infinity we get
lim n‘l'i a, Ilnb‘,u+c,v||2='gw,,N+ (b,u; c,v) 2| b, ]|

n—>+ 00
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and by (3.5) = —llull 3 a1, ¥, 0,5 o). (3.6)
If we now put p= 2 abec, ¢g= 2 abec,

igvgm igrgm

b,c,>0 byc,<0

and make use of Lemma 2.6, it follows that

a= [l 3 alblla|N. @ o)+l 3 alb]e]N- @)
boc, S0 byoss0

=~ ||| [p N4 (u; v) +qN_ (5 v)],

which was to be proved.

From Theorems 3.1 and 3.3 it follows that to every pair of elements u and
v of B, with 40, there is a uniquely determined number a such that
ul(au+v), We will denote this number by a(u; v).

Lemma 3.4. If orthogonality kas property (H) in B, then a(u; v} is a continuous
function of w and v, u=+0.

Proof. Let (u,)? and (v,)¥ be two sequences of elements of B such that
4, +0 for all » and u,—> %+0, v,~7 when n—>oo. We have to show that
@ (U, ¥,) > a(U; ) when n->o0,

It is an immediate consequence of the definition of N, (u; v) and N_ (u; ») that

| N, (u; v)|<||v]], |N-(u; v)|<||v]] for w€B, u+0, v€B.

Using this fact and (3.2) we see that the sequence of real numbers (a,); =
={a (Us; v,))T is bounded. Let (8 be an arbitrary subsequence of (x,)i". Then
we may select from (8)T a subsequence («,,)i° which converges to a number c.
From the definition of orthogonality it follows that if w,lv, n=1,2, ..., and
Un—>%, U, —>v When n-—>oo, then w_lv. Consequently, since Uny L (0tn; Un,+Vn)),
=1,2, ..., we may take the limit as I->oc of each side of this relation and get

wlecu+v.

But then we must have c=a (@ #).. Thus we may select from every subsequence
of (@(un; v,))7° a subsequence which converges to a(@; %), which implies that
a (%n; ¥p) = a (%; %) when »—oo. Hence the lemma is proved.

If a(u; v) is continuous in u; v for =0, then, by (3.2), the same holds for
PN, (u; v)+¢N_(u; v). An application of Lemma 2.7 then shows that the
norm of B is Gateaux differentiable. Furthermore, we see that w v if and only
if N(u;v)=0, ie. if and only if » is normal to ». We collect these results in
the following theorem.

Theorem 3.5. If orthogonality has property (H) in B, then the norm of B is
Gateaux differentiable and w Lv holds if and only if N (u; v)=0.
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Let us say, for a moment, that % is anti-orthogonal to v (in notation « 7 v)
if v is orthogonal to w. I.e. we have w7 v if and only if v L« or if and only if

S alle,utb,o|t=0.
v=1

We have just shown that if orthogonality has property (H) then it is equi-
valent to normality and therefore homogeneous, i.e. u Lv implies Au.luv for
all A, u. Hence it follows in particular that anti-orthogonality has property (H).
Now it is obvious that Theorems 3.1, 3.3 and 3.5 remain true if we replace or-
thogonality by anti-orthogonality. Assuming that N (u; v) =0 we have w.lv or
vTu and hence, by the analogue of Theorem 3.5 for anti-orthogonality, that
N (v; ) =0. This means that the relation of normality is symmetric in B. Thus,
we have

Theorem 3.6. If orthogonality has property (H) in B, then it is symmetric and
equivalent to mormality in B.
An application of Lemma 2.4 and Theorems 3.3 and 3.6 gives

Corollary 3.7. If the dimension of B is greater than two and orthogonality has
property (H) in B, then B is Euclidean.

Since homogeneity and additivity of orthogonality each implies property (H),
we also have the following corollary.

Corollary 3.8. If the dimension of B is greater than two and orthogonality is
homogeneous or additive in B, then B is Euclidean.

4. The two-dimensional problem

We have defined w1lv to mean that
> allbutev|f=0.
v=1

Now we change our notation a little by introducing constants p,, ¢,, »=1,2, ..., 7,
and C;, C, so that

r

m
2albuter|= 3 pllutgolf-Cillul~Cello|P

»=1
r

T r
and le,=()’1, glp,.q,2,=02, 'le,,q,,=l', ¢,+0. 4.1)

=

Let B be a two-dimensional normed linear space in which orthogonality is
homogeneous. Taking two elements u and v of B, such that Ly, ||u| =]|v||=1,
we then have

levllu+vav||2=Cl+02x2 for —oo <z < + o0,
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This means that the function ¢ (x)=||u+2zv|]® is a solution of the functional
equation

>0, F(rg)=C,+Chx® for —oo <x< + 00" 4.2)
v=1

We know from Section 3 that g (2) is continuously differentiable for — co <x < + oo,
The behaviour of ¢(x) for large and small values of |z| is given by the fol-
lowing lemma.

Lemma 4.1. The function ¢ (x) satisfies the conditions
@ (x)=1+0(x) when x—>0 (4.3)
and @ (x) =2+ O (x) when z— * oo. (4.4)

Proof. For every = we have

lo @ —1]={llu+zo|— |||
=lu+zoll=ullfflutzoll+lul) <{z|@+]z),

which proves (4.3). We also have

lp @)~ =[lle+zo|*—[=o||
=llluw+zo]=lleoll| (lutzo] +|lzo]) <1+2]2],

from which (4.4) follows.
If » is suitably chosen, it is possible to strengthen the result (4.3) in the
following way.

Lemma 4.2. Let B be a two-dimensional normed linear space and denote by C
the set {u|u€B, ||ul|=1}. Then there is a dense subset D of C such that if u € D
and uNv, the funclion @ (x)=|u+zv|® satisfies

@ (@) =1+0 (% when x— 0. (4.5)

Proof. Let us introduce polar coordinates (r, y) so that the closed convex
curve C has the equation r=r(y), 0<yp<2mz. For all y, except at most count-
ably many, C has a unique tangent at the point (r(yp), p). This tangent makes
an angle 0 (y) with the polar axis. If y, is an exceptional value of y, we define
0(yp,) so that 8(y) is continuous to the left for y=1y, Then 6(y) is defined
and non-decreasing for 0 <y <2x. From a well-known theorem it follows that
0 (y) has a derivative 8 (y) for almost all y in (0, 2z).

We define D to be the set of all w €C such that 6 (p) exists where yp is
the polar angle of u. It is obvious that D is a dense subset of €. Now let »
and » be elements of B such that w €D and wNwv. Let the endpoint P of the
vector » have coordinates (r(y,), y,)- The curve C has a unique tangent at P
and from the definition of normality it follows that v lies along this tangent.
Let the endpoint @ of the vector w-+zv have coordinates (g (d), y, + ) and let
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R be the point (r(y,+46), po+06). In the triangle PQR we denote the angle
QRP by & and the angle RPQ by 7. Then as z—0 we have

6=0(z)
and (sin &)"1=0(1).
Since @' (y,) exists, it is obvious that
7=0(06) when 6 >0
and consequently 7 =0 (z) when z—0.

Finally, we have when x—0

. e . o) —riy+d)

||u+$2)“ ! 7 (o +6) ! 7 (ot 9)

_ _om \zllivll sin g

—0M @ ~riye+0)] =0() o
=0 (z?).

Applying this result we also have

gy —1=|lutzo|P~1=(|u+zv]|-1)(lut+zv]|+1)

=0(z*) when z—0.

Hence Lemma 4.2 is proved.

In our treatment of equation (4.2) in Section 6 we will distinguish between
two cases; we say that the equation is symmetrical if it may be written in
the form

$ 8
Zlk’.’F(l"x) —‘Zl k,F(—1,x)=C,+C,7%

Otherwise the equation is non-symmetrical. We observe that if (4.2) is sym-
metrical, then it follows from the relations (4.1) that C;=C,=0.

We are interested in those solutions ¢(z) of (4.2) which are continuously
differentiable and satisfy the conditions (4.4) and (4.5). It turns out that, in
the case of a non-symmetrical equation (4.2), there is only one such solution,
viz. @(z)=1+a2® Of course, this is no longer true if the equation is symmet-
rical because then every even funetion is a solution. However, in this case we
prove that, conversely, every solution of (4.2) satisfying (4.4) and (4.5) must
be even. These results, together with the fact that they imply that B is Eu-
clidean, will be obtained in Section 6.

5. F-series

Let us consider the functional equation

gldﬁf(x+“u) =0,
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where d,, o, are complex numbers. Clearly, this equation admits as solutions the
functions

x"'et"’, 'm=0, 1: 2, “rey ms—I’ 8=172’ Tt (5.1)

where ¢, ¢, ... are the zeros of the function A ()= DN.;d, e’ and m, is the
multiplicity of the zero ¢, The theory of F-series (see Moore [12], [13]) investi-
gates the possibility of expanding a function f(x) in a series of the functions (5.1).

For our purpose it is sufficient to assume that d, and «, are real numbers,
#=1,2,.... N. In this case the F-series is a special case of Kitagawa’s Cauchy
series. (See Kitagawa [11].) Let us also assume that o; <o, < ... <ay.

Carmichael [2] has proved the existence of contours C,, s=1, 2, ..., about the
origin in the complex plane, with the properties

(a) there exists an £>0 such that
|k (t)e~2t|>& for o <r<ay t€C, s=1,2, ..., (5.2)

(b) C; lies along the circle with radius s and centre at the origin, except
for portions of bounded length lying within a bounded distance of the
imaginary axis,

(c) no point of O, lies outside C,,,.

Let us denote by £, k=1,2,...,6, the zeros of h(t) lying between C._,
and C; (for =1 inside C,). Let C,, be a small circle passing through no zero
of k() and containing only the zero #,, of h(f) in its interior. If f(x) is integrable
over the interval («;, ay) We define its F-series in the following way.

Definition 5.1 (Moore [12]). The F-series for f(x) associated with h(f) is the
series
o Gy 1 N

21 dy f“ﬂ f(xl)f elout et {n G dtdz, (6.3)
a Cks

8=1 k=1 27[’: pn=
where «, <a<ay.

We remark that this definition is correct, that is, the series (5.3) is inde-
pendent of the choice of a. In fact, we have

N o
S [T rte [ cmerot hioytaras,

N

- Zld“f ”f(xl) fc et} dtda,
p= a’ ks

=f f(xl)f e dtda,
a Chs
=0,

by Cauchy’s theorem.
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The following lemma is a special case of a result due to Carmichael [2] and
we state it without proof.

Lemma 5.2. When s—> oo the integral

f etH{h )y e dt
Cs

tends wniformly to zero with respect to x in every interval o+ 8 <z<ay—90",
6'>0,6">0.

Theorem 5.3. If f(x) has a continuous derivative in the interval o, < x< ay, then
the series (5.3) converges to f(x) in the open interval o; <x < oty.

Moore ([12], Theorem 2) has proved a much more general theorem. We give,
however, a special proof of Theorem 5.3 since it is particularly simple in this case.

Proof. The sth partial sum of the series (5.3) may be written

S; (f; x) f f:cl)f eCrt= W p ()} M dt d .

27”/,,“1

Put Qs (z)= fc eCutE=mELp (i} dt.

As we have seen above, we may replace a by z in the expression for S, (f; z).
Doing this and integrating by parts with respect to x,, we get

s.0:0=5m 3 adre [ win |- [T e [" o ans)
n= oy x z LM
S g d I‘(w){f st {h (t)}“lt‘ldt—f et {h (t)}“t“dt}
2mi, 0" Cs Cs
2_!'_ % d” f:'”f, (xl) J; {e(“y+z“11)t __ezt} {h (t)}—l t—l dtdxl

f(w)+—— Z d, f f (x)f AR YO R e A X 2N

o3 ﬂ/m)f e {h () 1 d L,

271 421
The integral f et {h}y 1t dt
Ce

tends to zero for a; <x<ay by Lemma 5.2. Putting
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Us (xl) =fl (xl )J; e(u#+z-rl)t {h (t)}_l tAl dt

and making use of properties (a), (b) of C; and Lemma 5.2, we see that, for
o <x <oy, the sequence U (x,) is uniformly bounded in the interval (x, «,) and
tends uniformly to zero in any interval whose endpoints are interior points of
(x,x,). Hence it follows that the second term in the last expression for S;(f; x)
tends to zero when o, <a<wuy. This completes the proof of Theorem 5.3.

Lemma 5.4. If f(x) satisfies the equation D p.1d,f(x+a,) =0 for — co << + oo,
we have

N o
Zl dﬂf ”f () fc;; e(a’ﬁzvzl)t{k (t)}_ldtdxl
p= a 3

N :x'u+K
=3 d, f f(xﬂf TR (1)} dt da, (54)
u=1 a’ Cks

where a, o’ and K are arbitrary real numbers.

Proof. According to the remark following Definition 5.1, the left-hand side of
(5.4) is independent of a. Thus, the difference between the two sides of (5.4)
may be written

N ay+X
> duf f(xl)f et =Wt (N d )
n=1 %y Crs

v K
=2 d,,f f (u—i—ac,,)f W (1)} Tdtdu,
p=1 0] Cks

which is equal to zero because -1, f(u+a.)=0.

Theorem 5.5. If f(x) has a continuous derivative and sabisfies the equation
2i1duf@+a)=0 for —oo<x< + oo, then the series (5.3) converges to f (x) for
all z.

Proof. Suppose o; <x <oy and let K be an arbitrary real number. Put f(x)
=f(z+ K). Then we have using Lemma 54

Ss(f;z+K)= sz,,f fx) f Gt Koty iyt dt d
=é—l__ %’: J‘ f(xl“l‘K f e(aﬂ+r—~x,)t {h (t)}_l dtdxl
mgai 2 [ Tie [ et oy dtaz,
=Ss(f; x),

309



8. 0. CARLSSON, Orthogonality in normed linear spaces

which tends to f(z)=f(x+ K) by Theorem 5.3. Thus we have
lim S;(f;z+ K)=f(z+K) for every K,
500

which proves the theorem.

Lemma 5.6. (Moore [12], Theorem 1.) The funclions z™ es*, m=0, 1, ... , mys — 1,
k=1,2,...,0,8=1,2,..., where m,, ts the multiplicity of t,,, satisfy the following
“biorthogonality relations”

s 4, [ 0 if byt bir
i Z dpf “xi" eihz.f e(au+z—z.)t {h (t)}—l dt dml ={ .f ks 1
a ir

2niu=1 C| x"‘e"“" 'l:]‘ tk‘,:t“-.

6. Solution of the two-dimensional problem
We now apply the results of Section 5 to prove the following theorem.

Theorem 6.1. If f(x) is a continuously differentiable solution of the non-trivial
functional equation

éld,,f(x+rx,,)=0, — oo << + oo, (6.1)
satisfying (4, B real constants)
f(x)=A+0 (%) when z— — co (6.2)
and f(@)=Be** + 0 (¢°) when z— + oo, (6.3)
then f(x)=A+Be®® for — oo << + oo,
Proof. As in Section 5 we put h(f)=>r_,d,e™". Let us denote by Ty (f; %)

the term of the F-series for f(x) corresponding to the zero ¢, of A(t), ie.
(s <a<ay),

1 X L _ _
Tws (s ®) ~9ni ZId,‘f f(xl)fChe%“ Wi ()} L dtda,.
n= a

Then we know by Theorem 5.5 that

o s

f@)=> 3 Ty (f; ) for — oo <z < + 00, (6.4)

Sml k=l

We now calculate T, (f;z) for the various zeros &, of k(). We distinguish
between two cases.
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{1) Suppose that Re (t,,) <%.

By (6.2) we may write f(z,)=A-+e*™y(x,), where 7 (z,) is bounded when
&> — oo, say

|9 (x,)] < M, for », < w,. (6.5)

Let us put, for the moment, g(z,)=4 and h(z,)=¢>7(z,), so that f(z,)
=g () +h(x),— 0 <z < + 00, Then we have

Ts (fs 2) = Ts (g ) + T (b ). (6.6)

If A=0 then T,.(g9;2)=0. If A+0, we substitute the expression (6.2) for f (z,)
in equation (6.1) and get, when 2> — oo, 3, d,=0. This means that in this
case {~=0 is a zero of A () and we have, by Lemma 5.6, that

Tis(g;2)=4 if 8,=0, Trs (g5 2) =0 if t,,+0.

Thus, in any case we have

A+ Ty (h;2) if 4,=0,

(6.7)
Ty (h; ) if t,,0.

Tks(f;x)={

We next show that T (h;x)=0 for every z if Re(f;)<2. Choose the radius
r of the circle €, so small that

Re(@2—t)=c>0 for t €0y, (6.8)
For fixed z and r there is a constant M, such that
[t D b ()} | <M, for p=1, ..., N, t€Cy,. (6.9)
Now let & be an arbitrary positive number and choose w, so that
<0, wy<w; and e <¢ for z, < w,. (6.10)

Since h () =¢* 7 (2) is a solution of (6.1) we have by Lemma 5.4

a, + K
Tys (b 7) —2i S d, f” e“‘n(xl)f Wt ) Y dide,  (6.11)
Chs

T p=y e+ K

where K is arbitrary. If we choose K so that ay+K<w, we get, using the
estimates (6.5), (6.8), (6.9), and (6.10),

1 N
|kshx)l E—Z

N
f M M,edx,|2nr<e M, M,r(av—a,) 2 |d|
p=1
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Since ¢ was arbitrary, we conclude that T, (h;x)=0 for every x. Thus, we
have proved that

T (f; @) = {A if b =0, (6.12)
0 if Be (tes) <2, by +=0.

(2) Suppose that Re(f;,)> 2.

In this case we have
Be® if t,,=2

T ()= 6.13
w(f52) {OifRe(tks)>2,t,m=i=2. (6.13)

The proof of this differs very little from the proof of (6.12), except that we
now use condition (6.3) instead of (6.2). We omit the details.
Combining (6.4), (6.12), and (6.13) we finally have

f(x)=A+ Be* for — oo << + oo,

which is the desired result.

Corollary 6.2. If ¢ (x) is a continuously differentiable solution of the mon-trivial
functional equation

=
(M=

d, F(q.x)=0, x>0, (6.14)

1
where ¢,>0, p=1, ..., N, satisfying

@ (x) =4 + 0 (2%) when z— +0 (6.15)
and @ () = Bx®+ O (x) when t— + oo, (6.16)

then ¢ (x)=A+ B2* for x> 0.
This result follows at once from Theorem 6.1 if we put ¢, =e¢* and f (x) =g (€).

Theorem 6.3. Let ¢ (x) be a continuously differentiable solution of the non-sym-
metrical equation

S F(g2)=C,+0C,a% —oco<z<+oo, (6.17)
r=1
where >o=0, 2p¢=0, 2pg¢=1, ¢+0,v=1,..,r (6.18)
y=1 v=1 v=1
If @ (x) satisfies
@ (x)=1+0 (2*) when —0 (6.19)
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and @ (@) =2*+0 (x) when x— + oo, (6.20)
then @ (z)=1+2% for —oco <z < + oo,
Proof. Let us define the function v (x) by
p@)=p@)—1—2a® for —cc<x< + 0. (6.21)

Then ¢ (z) is a solution of

T

zva((va)ZO’ —oo << + oo, (622)
]l
satisfying y (x) =0 (z*) when 2—0 (6.23)
and v {z)=0 (x) when —> £ oo. (6.24)

Let M be the linear space of all real-valued functions defined for z>0. We
now define two linear operators T,:M~>M and T,: M—M by

(TIF)(:C)= zva(QVx), x>0:

and (TZF) (x)=1<z< pF(—qzx), x>0
oo

Put o, (x)=y (x), py(x)=y(—=) for x>0. Then the fact that v (z) is a solu-
tion of (6.22) may be expressed by the two conditions

T, v @)+ (Tap,) () =0, =z>0,

and (Ty o) (@) +(Ty 1) (2) =0, >0,
or, equivalently, by

(Ty+T,) (pr+ ) (@) =0, 2>0, (6.25)
and (Ty=T) (1 —ys) (%) =0, x>0. (6.26)

The assumption that (6.17) is non-symmetrical implies that 7+ T,+0. The
same conclusion concerning the operator T, - T, may be drawn from the fact
that >7.1p,4,+0. Consequently, the equations (6.25) and (6.26) are of the
type considered in Corollary 6.2. Furthermore, from (6.23) and (6.24) it follows
that the functions v, () -y, (z) and v, (z) + 1y, (x) satisfy

¥ (%) + v, (%) = O (%) when z—+0 (6.27)
and ¥, () £y, (%) =0 () when z— + oo. (6.28)
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Hence, from the same corollary we get
P, (&) Ty, () =0 for >0
and consequently y (z)=0 for — oo <z < + oo, Thus, (6.21) gives
g@)=1+a® for —oco<a< + oo,

which was to be proved.

Next, we turn to the case of a symmetrical equation (6.17) satisfying the
first two of the conditions (6.18). As we remarked in Section 4, we then have

C,=C,=0.

Theorem 6.4, If @ (x) is a continuously differentiable solution of the non-trivial
symmelrical equation

zlp,F(q,,x)=0, — oo << + 00, (6.29)
satisfying @ (x)=1+0 (2*) when z—0 (6.30)
and @ (x) =2+ 0 (x) when z— + oo, (8.31)

then @ (z)=@ (—x) for —oco<zx< + oo,

Proof. Define the function y(z) for >0 by p(x)=¢ (¥) ~@ (—2). Since
equation (6.29) is symmetrical it may be written in the form

8 S
SkF(lx)—>kF(-Lz)=0, 2>0,,,>0,»=1,...,s. (6.32)
v=1 y=1
Since ¢ (z) is a solution of (6.32) we see that () is a solution of the equation
8
> kF(z)=0 x>0. (6.33)
y=1

Moreover, from (6.30) and (6.31) it follows that
y (x) =0 (¢°) when z— +0 (6.34)
and w(x)=0 (z) when x— + oo, (6.35)
An application of Corollary 6.2 then gives us y (x)=0 or
g@)=@(—x) for —oco<r< + 00,

We are now able to prove that the assumption concerning the dimension of
B is superfluous in Corollary 3.7.
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Theorem 6.5. If B is a normed linear space in which orthogonality has property
(H), then B is Euclidean.

Proof. It is sufficient to assume that B has dimension two. Let C'={u|u€ B,
[lu||=1} and D the subset of C figuring in Lemma 4.2. From the results in
Section 3 it follows that orthogonality is homogeneous if it has property (H).

Now let €D and u L v, ||v||=1. Then we know from Sections 3 and 4 that
@ () =||lu+2v|? is a continuously differentiable function satisfying an equation

20F(g2)=C+0,2%, —oo<z< + o0, (6.36)
v=1
r r r
with _le,,=01, zlp,qf=02, zlp,,q,,=l, ¢,+0,v=1,...,1.

Furthermore, we have by Lemmas 4.1 and 4.2
@ (x)=1+0 (2*) when z—>0 (6.37)
and @ (x) =2*+ 0 (xr) when z—> + oo. (6.38)

First, let us suppose that equation (6.36) is non-symmetrical. Then ¢ ()
satisfies the hypothesis of Theorem 6.3 and consequently ¢ (x) =1 +2® for
—oo<x< +oo. If we choose 4 and v as unit vectors of a coordinate system
in the plane B and write w=zu+yv we see that ||w|=1 if and only if
2*+y*=1. This means that the curve ' has the equation 2*+y®*=1 and so is
an ellipse. But this is precisely the condition that B be Euclidean.

Now suppose that equation (6.36) is symmetrical. Then it follows from The-
orem 6.4 that ¢ (#)=¢ (—=z) for all x or

f|u+zv||=||u—=v| for all real . (6.39)

The relation (6.39) holds for each pair of elements u and v of B, such that
u€D and » Lv. Since D is a dense subset of C, it is easy to see that (6.39)
even holds if w€B and # 1l v. Geometrically speaking, this means that all
chords of C' parallel to a fixed direction have their midpoints on a straight line
through the origin. Now let » and v be two elements of B such that ||u+v||
=|lu—v||. The chords of C parallel to v have their midpoints on a straight
line through the origin containing a vector »*=0. This is equivalent to ||u* +zv||
=||u* —=2v| for all . A special such chord is the one joining the points
{(u+v)/|lutv| and (u—v)/||lu—v| of C. The midpoint of this chord is u/||u+v]|.
Consequently u and u* are parallel. From this it follows that [|u+zv|| =|ju—2v||
for all . An application of Lemma 2.9 now shows that B is Euclidean, which
completes the proof of Theorem 6.5.

Since orthogonality has property (H) if it is homogeneous or additive we
also have

Corollary 6.6." If B is a normed linear space in which orthogonality is homo-
geneous or additive, then B is Euclidean.
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7. A generalization of the Jordan—von Neumann condition

Jordan and von Neumann [10] proved that a normed linear space B must
be Euclidean if it satisfies the condition

llw+ o)+ lu—v|*=2 (||«|?+||»|]*) for all u,v€B. (7.1)

In analogy with our definition of orthogonality in Section 1, it is natural to
ask if this remains true when condition (7.1) is replaced by

>a||boutc,v]f=0 for all u,v€B, (7.2)
v=1

where a,%+0, b,, ¢,, v=1....m, are real numbers. In order to avoid that (7.2)
is trivial, we further assume that the vectors (b, ¢,) and (b,,c,) are linearly
independent for »<+u. We will show that the question thus raised is to be
answered in the affirmative. It is sufficient to assume that B is two-dimen-
sional.

First, as is easily seen, condition (7.2) is equivalent to a condition of the form

> o lutgv|f=0 for all u,v€B, (7.3)
y=1

where p,=0,v=1,2,...,r, and ¢,#+¢, for v+ u. Further, for every real number
A (7.3) is equivalent to

> o |lu+(g+2A)v|*=0 for all u,v€B, (7.4)
v=1

as is seen by replacing u by u+Aiv in {7.3). Now, for every u=+0 and » in
B we have, using (7.4),

’le,.n‘l[||nu+(q,+l)v|]2—|]nu||2]=0, (7.5)

where » is an arbitrary natural number. Letting » tend to infinity in (7.5)
we get

I

P N (u; (g, +4)v)=0. (7.6)

From Lemma 2.6 it now follows that
PA)N, (u;v)+q(A) N_ (u; ) =0, (1.7)

where we have put

p(l)=1<§gpv (g+4) and ¢(A)= erv (¢ +2).

<Lr
2,+2>0 Q,+A<0
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If we put vu=0, v+0 in (74) we get >,_1p (¢, +4)?=0. In the same way
u+0, v=0 gives >,_1p,=0 and u=v=+0 gives >,-1p, (1 +¢,+2)>=0. Hence it
follows that >,.1p,(g,+A) =0 or p(A)+q(A)=0. We may now choose 4 so that
the sequence ¢, +4, v=1, ..., 7, contains exactly one negative term. For this choice
of A we then have p(Ad)= —¢q(A)+0. Consequently, (7.7) gives

N, (u;v)=N_(u;v)
which means that the norm of B is Gateaux differentiable.
Now choose A in (7.4) so that ¢,+i=gq,>0 for v=1,...,7. Let u € D, where

D is the set introduced in Lemma 4.2, and let uNw, ||v||=1. Then ¢ (z)
=|lu+=v|? is a continuously differentiable solution of the equation

3 pFEn=0, 220,
where ¢,>0, v=1,...,r, satisfying
¢ (@)=1+0(2*) when 2—> +0

and @ (xr) =2+ 0 (x) when x— + oo.
Consequently Corollary 6.2 gives

@ (x)=1+2* for z>0.
Changing » to —v we see in the same way that

@ @) =1+a® for z<0.

As in Theorem 6.5 this means that B is Euclidean. We have thus proved the
following result.

Theorem 7.1. Let a,+0,b,, ¢,, v=1, ..., m, be real numbers such that (b,, c,) and
(bu, ¢,) are linearly independent for v+ u. If B is a normed linear space satisfying
the condition

m
Salb,utc,v|f=0 for u,v€B,
y=1
then B is Buclidean.
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