Read 12 October 1960

On the sum of two integral squares in certain quadratic fields

By TRYGVE NAGELL

§ 1. Introduction

1. Let α be an integer $\neq 0$ in the algebraic field Ω . If α is representable as the sum of two integral squares in Ω , we say, for the sake of brevity, that α is an A-number in Ω . We say that

$$\alpha=\xi^2+\eta^2,$$

where ξ and η are integers in Ω , is a primitive representation if the ideal (ξ, η) is the unit ideal, and otherwise an imprimitive representation.

In a previous paper [1] I have determined the A-numbers in the quadratic fields $K(\sqrt{D})$, where $D=-1, \pm 2, \pm 3, \pm 7, \pm 11, \pm 19, \pm 43, \pm 67$ and ± 163 . In the present paper we shall continue the investigations and treat the cases $D=\pm 5$ and $D=\pm 13$. The following developments are in general based on the results obtained in [1].

It is well known that the number of ideal classes is =1 in the fields $K(\sqrt[V]{5})$, $K(\sqrt[V]{13})$ and $K(\sqrt[V]{37})$ and =2 in the fields $K(\sqrt[V]{-5})$, $K(\sqrt[V]{-13})$ and $K(\sqrt[V]{-37})$; see [2].

From a general theorem due to Dirichlet [3] we get

Lemma 1. The number of ideal classes in the Dirichlet field $K(\sqrt{D}, \sqrt{-D})$ of the fourth degree is =1, when D=5, 13 and 37.

2. We also need the following lemmata:

Lemma 2. Let D be a square-free rational integer which is $\equiv 2$ or $\equiv 3 \pmod{4}$. If x and y are rational integers, and if $x+y\sqrt{D}$ is an A-number in the field $\mathbf{K}(\sqrt{D})$, then y is even.

Lemma 3. If α is an integer in the Dirichlet field $\mathbf{K}(\sqrt{D}, \sqrt{-D})$ with square-free D, the number 2α belongs to the ring $\mathbf{R}(1, \sqrt{-1}, \sqrt{D}, \sqrt{-D})$.

For the proofs see [1], p. 8-9. In [1] we also established the following results:

Lemma 4. Let α and π be A-numbers in the field Ω . If (π) is a prime ideal divisor of (α) , the quotient α/π is also an A-number in Ω . This result also holds if π is a unit (Theorem 4 in [1]).

Lemma 5. Let α , π , π_1 and η be integers ± 0 in the field Ω with the following properties. The number $\alpha/(\pi\pi_1)$ is an integer; the principal ideals (π) and (π_1) are prime ideal divisors of (α) ; π and η are relatively prime. The integers α , $\pi\pi_1$, $\pi\eta$ and $\pi_1\eta$ are A-numbers in Ω , such that

$$\pi \eta = f^2 + g^2,$$
 $\pi_1 \eta = f_1^2 + g_1^2,$

and

$$\pi \pi_1 = \left(\frac{ff_1 + gg_1}{\eta}\right)^2 + \left(\frac{fg_1 - gf_1}{\eta}\right)^2,$$

where f, g, f_1 , g_1 , $(ff_1+gg_1)/\eta$ and $(fg_1-gf_1)/\eta$ are integers in Ω . Then the quotient $\alpha/(\pi\pi_1)$ is also an A-number in Ω .

This result also holds when one of the numbers π and π_1 is a unit or when both of them are units (Theorem 5 in [1]).

§ 2. The imaginary field $K(\sqrt{-q})$ where q is either = 5 or = 13

3. Units and divisors of the rational primes 2 and q. The number -1 is an A-number in these fields since

$$-1 = 2^{2} + (\sqrt{-5})^{2}$$
$$-1 = 18^{2} + (5\sqrt{-13})^{2}.$$

and

Thus the numbers α and $-\alpha$ are simultaneously A-numbers or not.

It follows from Lemma 2 that the prime $\sqrt{-q}$ is not an A-number. Clearly, no irrational power of $\sqrt{-q}$ can be an A-number. The number -1 is a quadratic residue modulo $\sqrt{-q}$. The number $u+v\sqrt{-q}$, where u and v are rational integers, is never an A-number when v is odd.

In virtue of the relations

$$2\sqrt{-5} = 2^2 + (1 + \sqrt{-5})^2$$
$$2\sqrt{-13} = (4 + 2\sqrt{-13})^2 + (7 - \sqrt{-13})^2$$

and

we may state: the number $2\sqrt{-q}$ is always an A-number. We have

$$(2) = q^2 = (1^2 + 1^2),$$

where the prime ideal q is not principal. The number -1 is a quadratic residue modulo q.

4. The rational primes for which -q is a quadratic non-residue. Let p be an odd rational prime such that, in K(1),

$$\left(\frac{-1}{p}\right) = +1$$
 and $\left(\frac{-q}{p}\right) = -1$.

Then (p) is a prime ideal in the field and since

$$p=u^2+v^2,$$

where u and v are rational integers, p is an A-prime. Suppose next that p is an odd rational prime such that, in K(1),

$$\left(\frac{-1}{p}\right) = -1$$
 and $\left(\frac{-q}{p}\right) = -1$.

Then (p) is a prime ideal in $K(\sqrt{-q})$. Since $\left(\frac{q}{p}\right) = +1$, and since the field $K(\sqrt{q})$ is simple, the equation

$$4 p = x^2 - q y^2$$

is solvable in rational integers x and y. If x and y are both even, we get

$$p = x_1^2 + (\sqrt{-q} y_1)^2$$

where $x_1 = \frac{1}{2}x$ and $y_1 = \frac{1}{2}y_1$. Hence p is an A-prime. If x and y are both odd, we get, in the case q = 5,

$$\frac{1}{2}(x+\sqrt{5}y)\cdot\frac{1}{2}(\sqrt{5}\pm1)=\frac{1}{4}(5y\pm x)+\frac{1}{4}\sqrt{5}(x\pm y).$$

Here it is possible to choose the sign such that the numbers

$$u = \frac{1}{4} (5 y \pm x)$$
 and $v = \frac{1}{4} (y \pm y)$

are both integers.

In the case q = 13 we get, if x and y are both odd,

$$\frac{1}{2}(x+\sqrt{13}y)\cdot\frac{1}{2}(\sqrt{13}\pm3)=\frac{1}{4}(13y\pm3x)+\frac{1}{4}\sqrt{13}(x\pm3y).$$

Just as in the proceeding case, we may choose the sign such that the numbers

$$u = \frac{1}{4} (13 y \pm 3 x)$$
 and $v = \frac{1}{4} (x \pm 3 y)$

are both integers. Thus we have in both cases

$$-p = u^2 + (v\sqrt{-q})^2$$
.

Hence p is an A-prime. Thus the number -1 is a quadratic residue modulo p in the field $K(\sqrt{-q})$.

5. The rational primes $p \equiv -1 \pmod{4}$ for which -q is a quadratic residue. Let p be an odd prime such that, in K(1),

$$\left(\frac{-1}{p}\right) = -1$$
 and $\left(\frac{-q}{p}\right) = +1$.

Then we have

$$(p) = \mathfrak{p} \mathfrak{p}',$$

where \mathfrak{p} and \mathfrak{p}' are different prime ideals in the field $\mathbf{K}(\sqrt{-q})$. In this field we further have

$$\left(\frac{-1}{\mathfrak{p}}\right) = (-1)^{\frac{1}{2}(N\mathfrak{p}-1)} = -1. \tag{1}$$

The ideal \mathfrak{p} can never be principal. In fact, if we had $\mathfrak{p} = (x + y\sqrt{-q})$, with rational integers x and y, we should have

$$p = x^2 + q y^2.$$

But this equation clearly implies $p \equiv +1 \pmod{4}$.

Lemma 6. Let α and β be integers in $\mathbf{K}(\sqrt{-q})$, not both equal to zero. Further, let \mathfrak{p} be a prime ideal in the field satisfying relation (1). If the sum $\alpha^2 + \beta^2$ is divisible by the power \mathfrak{p}^m , we must have

$$\alpha \equiv \beta \equiv 0 \pmod{\mathfrak{p}^{\nu}},$$

where $v = [\frac{1}{2}(m+1)].$

Proof. We prove it by induction. In virtue of (1) the lemma is true for m=1. Hence we may suppose $m \ge 2$. Suppose it is true for all exponents $\le m$. Let ξ and η be integers in the field such that $\xi^2 + \eta^2$ is divisible by \mathfrak{p}^{m+1} . In virtue of (1) the numbers ξ and η are divisible by \mathfrak{p} . When \mathfrak{q} is the prime ideal which divides 2, we put

$$\mathfrak{q}(\xi) = \mathfrak{p}(\alpha)$$
 and $\mathfrak{q}(\eta) = \mathfrak{p}(\beta)$,

where α and β are integers in the field. Then we get

$$q^2 (\xi^2 + \eta^2) = 2 (\xi^2 + \eta^2) = p^2 (\alpha^2 + \beta^2).$$

Hence $\alpha^2 + \beta^2$ is divisible by \mathfrak{p}^{m-1} , and, by hypothesis, we have

$$\alpha \equiv \beta \equiv 0 \pmod{\mathfrak{p}^{\lambda}},$$

where $\lambda = [\frac{1}{2} m]$. From this relation follows

$$\xi \equiv \eta \equiv 0 \pmod{\mathfrak{p}^{\lambda+1}}.$$

This proves the lemma.

Lemma 7. Let \mathfrak{p} be a prime ideal satisfying relation (1). Then \mathfrak{p}^2 is a principal ideal = $(u + v\sqrt{-q})$, u and v rational integers, where u is even and v odd.

Proof. Suppose that $N \mathfrak{p} = p$. Then we have

$$p^2 = u^2 + q v^2.$$

If v were even, we should have

$$p \pm u = 2 u_1^2$$
, $p \mp u = 2 q v_1^2$

where u_1 and v_1 are rational integers. Hence

$$p = u_1^2 + q v_1^2,$$

which is impossible, since $p \equiv -1 \pmod{4}$. Thus u is even and v odd.

Lemma 8. Let \mathfrak{p} and \mathfrak{p}_1 be different prime ideals such that

$$\left(\frac{-1}{\mathfrak{p}}\right) = \left(\frac{-1}{\mathfrak{p}_1}\right) = -1.$$

Then $\mathfrak{p}\mathfrak{p}_1$ is a principal ideal $=(\alpha)$, where the integer α is not an A-number. The square $\mathfrak{p}^2\mathfrak{p}_1^2$ is a principal ideal $=(\omega)$, where the integer ω is an A-number.

Proof. If we had $\alpha = \xi^2 + \eta^2$, according to Lemma 6, the integers ξ and η should be divisible by \mathfrak{p} , which is impossible since $\mathfrak{p} \neq \mathfrak{p}_1$. Putting $\alpha = u + v\sqrt{-q}$, u and v rational integers, we get

$$(\mathfrak{p}\,\mathfrak{p}_1)^2 = (\omega) = (u + v\sqrt{-q})^2 + 0^2.$$

This proves the lemma.

As a consequence of Lemmata 7-8 we may state: Let $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_m$ be m prime ideals (different or not) such that $\left(\frac{-1}{\mathfrak{p}_i}\right) = -1$, and put

$$(\mathfrak{p}_1 \mathfrak{p}_2 \ldots \mathfrak{p}_m)^2 = (\omega),$$

where ω is an integer. Then ω is an A-number if and only if m is even.

Lemma 9. Let \mathfrak{p} be a prime ideal satisfying (1) and let $\mathfrak{p}^2 = (\omega)$, then 2ω is an A-number.

Proof. If $(2) = q^2$ we have $q p = (u + v \sqrt{-q})$, where u and v are odd rational integers. Hence

$$2 \omega = (u + v \sqrt{-q})^2 + 0^2.$$

Lemma 10. Let \mathfrak{p} be a prime ideal satisfying (1) and let $\mathfrak{p}^2 = (\omega)$, then $\sqrt{-q} \omega$ is an A-number.

Proof. From the preceding proof we get

$$\sqrt{-q} \omega = \frac{1}{2} \sqrt{-q} (u + v \sqrt{-q})^2$$
,

where u and v are odd rational integers. For q=5 we obtain

$$\sqrt{-5} \omega = \frac{1}{4} \left[u + v \sqrt{-5} \right]^2 \cdot \left[2^2 + \left(1 + \sqrt{-5} \right)^2 \right]
= \left[u + v \sqrt{-5} \right]^2 + \left[\frac{1}{2} \left(u - 5 v \right) + \frac{1}{2} \left(u + v \right) \sqrt{-5} \right]^2.$$

For q = 13 we have

$$\begin{aligned} \sqrt{-13} \, \omega &= \frac{1}{4} \left[u + v \sqrt{-13} \right]^2 \cdot \left[\left(4 + 2 \sqrt{-13} \right)^2 + \left(7 - \sqrt{-13} \right)^2 \right] \\ &= \left[2 \, u - 13 \, v + \left(u + 2 \, v \right) \sqrt{-13} \right]^2 + \left[\frac{1}{5} \left(7 \, u + 13 \, v \right) + \frac{1}{5} \left(7 \, v - u \right) \sqrt{-13} \right]^2. \end{aligned}$$

Since the numbers $\frac{1}{2}(u-5v)$, $\frac{1}{2}(u+v)$, $\frac{1}{2}(7u+13v)$ and $\frac{1}{2}(7v-u)$ are integers, the lemma is proved.

6. The rational primes $p \equiv +1 \pmod{4}$ for which -q is a quadratic residue. Consider finally the cases

$$\left(\frac{-1}{p}\right) = +1$$
 and $\left(\frac{-q}{p}\right) = +1$,

where p is an odd rational prime. Here we have

$$(p) = \mathfrak{p} \mathfrak{p}',$$

where $\mathfrak p$ and $\mathfrak p'$ are different prime ideals in the field. We shall show that these ideals are always principal.

In fact, suppose that \mathfrak{p} were not principal. We have $(2) = \mathfrak{q}^2$, where \mathfrak{q} is not principal. Then the product $\mathfrak{q}\mathfrak{p}$ is principal, since the number of ideal classes is =2. Hence the equation

$$N (q p) = 2 p = a^2 + q b^2$$

would be solvable in rational odd integers a and b. But this is impossible since $a^2+q\,b^2\equiv 1+q\equiv 6\pmod 8$ and $2\,p\equiv 2\pmod 8$. Hence $\mathfrak p$ is a principal ideal, and we have

$$p = u^2 + q v^2,$$

where u and v are rational integers. Then the numbers

$$\omega = u + v\sqrt{-q}$$
 and $\omega' = u - v\sqrt{-q}$

are conjugate prime factors of p in $K(\sqrt{-q})$. Since by Lemma 1 the field

 $\mathbf{K}(\sqrt{-q}, \sqrt{q})$ is simple, we have

$$\omega = \pi_1 \pi_2$$

where π_1 and π_2 are primes in that field. According to Lemma 3 we may suppose that

$$\pi_1 = \frac{1}{2} (a + c \sqrt{-q}) + i \frac{1}{2} (b + d \sqrt{-q})$$

and

$$\pi_2 = \frac{1}{2} (a + c\sqrt{-q}) - i \frac{1}{2} (b + d\sqrt{-q}),$$

where a, b, c and d are rational integers. Hence

$$\omega = \frac{1}{4} \left(a + c \sqrt{-q} \right)^2 + \frac{1}{4} \left(b + d \sqrt{-q} \right)^2, \tag{2}$$

which involves the equations

$$4 u = a^2 + b^2 - q c^2 - q d^2$$
 (3)

and

$$2 v = a c + b d$$
.

It follows from the latter of these relations that, if a is even, either b or d must be even. Suppose that a and b are even and c and d odd. Then we obtain from (3) modulo 4:

$$0 \equiv -q - q \equiv 2 \pmod{4},$$

which is impossible. Supposing that a and b are odd and c and d even, we get from (3):

$$0 \equiv 1 + 1 \pmod{4},$$

which is also impossible. Hence, the remaining possibilities are: (i) all the numbers a, b, c and d are even; (ii) all the numbers a, b, c and d are odd; (iii) a and d are even and b and c are odd. It is, of course, unnecessary to treat the case with b and c even and a and d odd.

If all the numbers a, b, c and d are even, ω is clearly an A-number since the numbers

$$\frac{1}{2}(a+c\sqrt{-q})$$
 and $\frac{1}{2}(b+d\sqrt{-q})$

are integers. If the numbers a, b, c and d are all odd, we get from (3)

$$4 u \equiv 1 + 1 - q - q \equiv 0 \pmod{8}$$
.

Hence u is even. But according to Lemma 2, u is odd when ω is an A-number. Suppose finally that a and d are even and b and c are odd. Then we get from (3)

$$4 u \equiv a^2 + 1 - q - q d^2 \pmod{8}$$
,

whence

$$4(u+1) \equiv a^2 + d^2 \pmod{8}$$
. (4)

When u is even, it follows from this relation that one of the numbers a/2 and d/2 is even and the other one odd. In this case ω is not an A-number.

When u is odd, it follows from (4) that the numbers a/2 and d/2 are either both odd or both even. We shall show that, in this case, ω is an A-number. If q=5 we multiply the integer

$$\pi_1 = \frac{1}{2} (a + c \sqrt{-5}) + i \frac{1}{2} (b + d \sqrt{-5})$$

by the unit $E = \frac{1}{2}(\sqrt{5} \pm 1)$. The product is equal to

$$\frac{1}{4}(a+d)\sqrt{5} + \frac{1}{4}(5c\pm b)i + \frac{1}{4}(b\pm c)\sqrt{5} + \frac{1}{4}(\pm a - 5d).$$

Here the numbers

$$\frac{1}{4}(a + d)$$
 and $\frac{1}{4}(\pm a - 5d)$

are always integers since a/2 and d/2 are of the same parity. Further, by an appropriate choice of the sign in the unit E, we may obtain that the number $b\pm c$ be divisible by 4. Then the number $5c\pm b$ is also divisible by 4. Hence the product $\pi_1 E$ belongs to the ring $\mathbf{R}(1, i, \sqrt{5}, \sqrt{-5})$, and thus it is permitted to suppose that, in π_1 , the numbers a, b, c and d are all even. Then we have

$$\omega = (a_1 + c_1 \sqrt{-5})^2 + (b_1 + d_1 \sqrt{-5})^2$$

where a_1 , b_1 , c_1 and d_1 are rational integers. Hence ω and ω' are A-numbers. Consider next the case q=13. Multiplying the integer

$$\pi_1 = \frac{1}{2} \left(a + c \sqrt{-13} \right) + i \frac{1}{2} \left(b + d \sqrt{-13} \right)$$

by the unit $E = \frac{1}{2}(\sqrt{13} \pm 3)$ we get the product

$$\frac{1}{4}(a \mp 3 d) \sqrt{13} + \frac{1}{4}(\pm 3 b + 13 c) i + \frac{1}{4}(\pm 3 c + b) \sqrt{-13} + \frac{1}{4}(\pm 3 a - 13 d).$$

Here the numbers

$$\frac{1}{4}(a \mp 3 d)$$
 and $\frac{1}{4}(\pm 3 a - 13 d)$

are always integers since a/2 and d/2 are of the same parity. Further, by an appropriate choice of the sign in the unit E, we may obtain that the number $\pm 3 c + b$ be divisible by 4. Then the number $\pm 3 b + 13 c$ is also divisible by 4. Hence the product $\pi_1 E$ belongs to the ring $\mathbf{R}(1, i, \sqrt{13}, \sqrt{-13})$, and thus it is permitted to suppose that, in π_1 , the numbers a, b, c and d are all even. Then we have

$$\omega = (a_1 + c_1 \sqrt{-13})^2 + (b_1 + d_1 \sqrt{-13})^2,$$

where a_1 , b_1 , c_1 and d_1 are rational integers. Hence ω and ω' are A-numbers.

7. Definition of C-primes. Further lemmata. Let ω be a prime in $\mathbf{K}(\sqrt[4]{-q})$ of the form $\omega = u + v\sqrt[4]{-q}$ where u and v are rational integers. According to the preceding section, ω is an A-number in the field, if u is odd and v even. If u is even and v odd, ω is never an A-number and in this case we call ω a C-prime.

If ω is a C-prime is follows from relation (2) in Section 6 that 4ω is an A-number. But we can furthermore prove the following lemma.

Lemma 11. If ω is a C-prime, the number 2ω is an A-number.

Proof. We put $\omega = u + v\sqrt{-q}$, where u and v are rational integers; u is even and v odd. Then we have

$$\omega = \frac{1}{4} \alpha^2 + \frac{1}{4} \beta^2,$$

where α and β are integers in $K(\sqrt{-q})$. Multiplying by 2 we get

$$2\omega = \left(\frac{a+c\sqrt{-q}}{2}\right)^2 + \left(\frac{b+d\sqrt{-q}}{2}\right)^2$$
 ,

where a, b, c and d are rational integers. Hence

$$8 u = a^2 + b^2 - q c^2 - q d^2, (5)$$

$$4 v = a c + b d. ag{6}$$

If a, b, c and d are all even, the number 2ω is an A-number. Suppose next that a and b are even and c and d odd. Then we get from (5) $a^2 + b^2 \equiv 2 \pmod{8}$ which is impossible. Consider next the case when a and d are even and b and c odd. Then it follows from (5)

$$(a/2)^2 - 5 (d/2)^2 \equiv 1 \pmod{2}$$
.

Hence one of the numbers a/2 and d/2 is odd and the other one is even. But this is impossible because of the relation (6).

Finally we consider the remaining case when a, b, c and d are all odd. When q=5 we multiply 2ω by the number $-1=\frac{1}{4}(1^2+(\sqrt{-5}))^2$. The product -2ω is equal to (in virtue of Lemma 1 in [1])

$$\frac{1}{16} \left[a + c\sqrt{-5} \pm (b\sqrt{-5} - 5d) \right]^2 + \frac{1}{16} \left[a\sqrt{-5} - 5c \mp (b + d\sqrt{-5}) \right]^2$$

$$= \frac{1}{16} \left[(a \mp 5d) + (c \pm b)\sqrt{-5} \right]^2 + \frac{1}{16} \left[(-5c \mp b) + (a \mp d)\sqrt{-5} \right]^2.$$

By choosing the sign in an appropriate way the number $\frac{1}{4}(a \mp d)$ will be an integer and so will $\frac{1}{4}(a \mp 5d)$. Then it follows from relation (6) that

$$ac+bd\equiv ac\pm ab\equiv 0 \pmod{4}$$
.

Hence

$$c \pm b \equiv 0 \pmod{4}$$
,

and thus the numbers

$$\frac{1}{4}(c \pm b)$$
 and $\frac{1}{4}(-5c \mp b)$

are both integers. Consequently -2ω is an A-number. This proves Lemma 11 when q=5.

When q=13, we multiply 2ω by the number $-1=\frac{1}{4}(3^2+(\sqrt{-13})^2)$. The product will be

$$\frac{1}{16} \left[(3 \, a \mp 13 \, d) + (3 \, c \pm b) \, \sqrt{-13} \right]^2 + \frac{1}{16} \left[(-13 \, c \mp 3 \, b) + (a \mp 3 \, d) \, \sqrt{-13} \right]^2.$$

Here we may choose the sign in a way such that the numbers

$$3a \pm 13d$$
, $3c + b$, $-13c \pm 3b$, $a \pm 3d$

are all divisible by 4. Hence -2ω is an A-number, and the proof of Lemma 11 is complete.

We next prove

Lemma 12. The product of two C-primes is an A-number.

Proof. Let ω and ω_1 be two C-primes

$$\omega = u + r\sqrt{-q}, \quad \omega_1 = u_1 + v_1\sqrt{-q},$$

where u, v, u_1 and v_1 are rational integers, u and u_1 even, v and v_1 odd. We put

$$\omega \omega_1 = U + V \sqrt{-q},$$

where U and V are rational integers; U is clearly odd and V even. According to Lemma 11, we have

$$4 \omega \omega_1 = (a + c\sqrt{-q})^2 + (b + d\sqrt{-q})^2$$
,

where a, b, c and d are rational integers. We get

$$4U = a^2 + b^2 - q c^2 - q d^2, (7)$$

$$2 V = a c + b d. \tag{8}$$

If the numbers a, b, c and d are all odd, we get from (7)

$$4U \equiv 1 + 1 - q - q \equiv 0 \pmod{8}$$

which is impossible since U is odd. If all the numbers a, b, c and d are even, Lemma 12 is proved.

Suppose next that a and b are even and c and d odd. Then we get from (7)

$$2q+4 \equiv a^2+b^2 \equiv 6 \pmod{8},$$

which is clearly impossible.

Consider finally the case that a and d are even and b and c are odd. Then it follows from (7) that

$$a^2 \equiv q d^2 \pmod{8}.$$

Hence we conclude that $a \equiv d \pmod{4}$.

When q=5, we multiply the number $4\omega\omega_1$ by $-4=1^2+(\sqrt{-5})^2$. The product is equal to

$$-16\,\omega\,\omega_1 = \left[(a + 5\,d) + (c + b)\,\sqrt{-5} \right]^2 + \left[(-5\,c + b) + (a + d)\,\sqrt{-5} \right]^2.$$

Here we may choose the sign such that the numbers

$$c \pm b$$
 and $-5c \mp b$

will both be divisible by 4. Since the numbers

$$a \mp 5d$$
 and $a \mp d$

are also divisible by 4, we see that the number $-\omega \omega_1$ is an A-number.

When q=13, we multiply the number $4\omega\omega_1$ by $-4=3^2+(\sqrt{-13})^2$, and the proof of Lemma 12 proceeds in an analogous manner.

Lemma 13. If ω is a C-prime, the number $\sqrt{-q}\omega$ is an A-number.

Proof. According to Lemma 11, the number 2ω is an A-number. Hence

$$2\omega = 2u + 2v\sqrt{-q} = (a + c\sqrt{-q})^2 + (b + d\sqrt{-q})^2$$

where u, v, a, b, c and d are rational integers; u is even, v odd. Then we get

$$2u = a^2 + b^2 - qc^2 - qd^2$$
, $v = ac + bd$.

Hence we may suppose that ac is even. This implies that b and d are odd and that a and c are both even. Suppose first q=5. Using the identity

$$2\sqrt{-5} = 2^2 + (1 + \sqrt{-5})^2$$

we get

$$2\omega \cdot 2\sqrt{-5} = [2a+b-5d+\sqrt{-5}(d+b+2c)]^2 + [-a+5c-2b+\sqrt{-5}(-a-c-2d)]^2.$$

Here the numbers 2a+b-5d, d+b+2c, a-5c-2b and a+c-2d are all even. Hence $\omega\sqrt{-5}$ is an A-number.

Suppose next q = 13. Using the identity

$$2\sqrt{-13} = (4+2\sqrt{-13})^2 + (7-\sqrt{-13})^2$$
.

we get

$$2\omega \cdot 2\sqrt{-13} = [4a - 26c + 7b - 13d + \sqrt{-13}(4c + 2a + 7d - b)]^{2} + [7a + 13c - 4b + 26d + \sqrt{-13}(7c - a - 4d - 2b)]^{2}.$$

As in the preceding case we see then that $\omega \sqrt{-13}$ is an A-number.

Lemma 14. Let \mathfrak{p} be a prime ideal satisfying (1) and $\mathfrak{p}^2 = (\gamma)$, and let ω be a C-prime. Then the product $\omega \gamma$ is an A-number.

Proof. We have

$$2\omega = (a + c\sqrt{-q})^2 + (b + d\sqrt{-q})^2$$

where, according to the proof of Lemma 13, we may suppose that a and c are even and that b and d are odd. According to Lemma 9, we have

$$2 \gamma = (a_1 + c_1 \sqrt{-q})^2$$

where a_i and c_i clearly are odd. Hence we get

$$4\omega \gamma = [a a_1 - q c c_1 + \sqrt{-q} (a c_1 + a_1 c)]^2 + [a_1 b - q c_1 d + \sqrt{-q} (a_1 d + b c_1)]^2.$$

Since the numbers $a a_1 - q c c_1$, $a c_1 + a_1 c$, $a_1 b - q c_1 d$ and $a_1 d + b c_1$ are all even, the lemma is proved.

8. Summary and proof of the main result. As a consequence of the discussions in Sections 3-6, we may state the following results.

Theorem 1. All the prime ideals in $\mathbf{K}(\sqrt{-q})$ are principal except the prime ideal divisors of 2 and of the odd rational primes p satisfying the relations, in $\mathbf{K}(1)$,

$$\left(\frac{-1}{p}\right) = -1, \left(\frac{-q}{p}\right) = +1.$$

Theorem 2. The prime ω in $\mathbf{K}(\sqrt{-q})$ is an A-number only in the following cases:

(i) $\omega = \pm p$ where p is an odd rational prime such that, in K(1),

$$\left(\frac{-q}{p}\right) = -1.$$

(ii) ω is of the form $u+v\sqrt{-q}$, where u and v are rational integers, u odd, v even, such that u^2+qv^2 is a rational prime.

The prime ω in the field is a C-prime only when $\omega = u + v\sqrt{-q}$, where u and v are rational integers, u even, v odd, such that $u^2 + qv^2$ is a rational prime.

We further need the result:

Lemma 15. Let \mathfrak{q} be the prime ideal which divides 2, and let ξ be an A-number which is divisible by \mathfrak{q}^m and not by \mathfrak{q}^{m+1} . Then m is even.

Proof. Suppose that $\xi = \alpha^2 + \beta^2$, where α and β are integers. If m were odd, it is evident that ξ should be divisible by the power \mathfrak{p}^{ν} of a non-principal prime ideal $\mathfrak{p} + \mathfrak{q}$ with an odd exponent ν . But, according to Theorem 1 and Lemma 6, the exponent ν must be even.

We are now in position to establish our main result.

Theorem 3. The integer α in the field $\mathbf{K}(\sqrt{-q})$ is an A-number if and only if

$$\alpha = \beta \gamma \delta (\sqrt{-5})^n \cdot 2^k,$$

where β , γ and δ are integers in the field with the following properties: β is either $=\pm 1$ or =a product of A-primes, different or not; γ is either $=\pm 1$ or =a product of v C-primes, different or not; δ is either $=\pm 1$ or =a product of m numbers ω_i , different or not, defined by the equations $(\omega_i) = \mathfrak{p}_i^2$, \mathfrak{p}_i being a non-principal prime ideal not dividing 2.

The numbers v, m, n and k are rational integers $\geqslant 0$ satisfying one of the following conditions:

```
v even \geq 0, m even \geq 0, n even \geq 0, k \geq 0; v even \geq 0, m even \geq 0, n odd, k \geq 1; v even \geq 0, m odd, n even \geq 0, k \geq 1; v even \geq 0, m odd, n odd, k \geq 0; v odd, m even \geq 0, n odd, k \geq 0; v odd, m even \geq 0, n even \geq 0, k \geq 1, v odd, m odd, n even \geq 0, k \geq 0; v odd, m odd, n odd, k \geq 1.
```

Proof. It is evident that the conditions in this theorem are sufficient. If α is an A-number we may, in virtue of Lemma 4, neglect the A-prime divisors. In virtue of Lemmata 5 and 12 we may suppose that ν is either ν is either ν is either ν is divisible by ν , where ν is a non-principal prime ideal not dividing 2. Then, according to Lemma 6, it is sufficient to suppose ν is an according to Lemma 6, it is sufficient to suppose ν is an according to Lemma 7, 8, 9, 10, 11, 13, 14, 15 and to observe the following fact. Let ν is an according to Lemmata 7, 8, 9, 10, 11, 13, 14, 15 and ν odd. Then the product of the two numbers $2u + v\sqrt{-q}$ and ν and ν odd. Then the product of the two numbers $2u + v\sqrt{-q}$ and ν is of the form $2u_2 + v_2\sqrt{-q}$, where ν is odd, and thus it cannot be an A-number. Then it is easily seen that the eight cases indicated in the theorem are the only possible ones.

9. On the primitivity of the representations as a sum of two integral squares. Finally we shall determine the A-numbers in the quadratic fields $K(\sqrt{-5})$ and $K(\sqrt{-13})$ which have at least one primitive representation. By Theorems 29-31 in [1] it suffices to examine the numbers which are products of prime ideal factors of 2. In the actual case we have only to examine the powers of 2. Consider the equation

$$2^{h} = (a + c\sqrt{-q})^{2} + (b + d\sqrt{-q})^{2},$$
 (9)

where a, b, c and d are rational integers. For h=1 and h=2 we have the primitive representations

$$2 = 1^{2} + 1^{2},$$

$$2^{2} = 3^{2} + (\sqrt{-5})^{2},$$

$$2^{2} = 11^{2} + 3(\sqrt{-13})^{2}.$$

We shall show that there are no primitive representations for $h \ge 3$. If the representation (9) is primitive it is clear that the numbers a, b, c, d cannot be all odd. From (9) we obtain

$$2^{h} = a^{2} + b^{2} - q(c^{2} + d^{2}), (10)$$

and

$$ac = -bd. (11)$$

From (10) it follows that two of the numbers a, b, c, d are odd and two of them are even. If d=0 we must have either a=0 or c=0. When a=0 we get from (10)

$$2^h = b^2 - q c^2,$$

where b and c are odd. But this is impossible when $h \ge 3$. When c = 0 we get from (10)

$$2^h = a^2 + b^2.$$

where a and b are odd. Since $h \ge 3$ this equation is impossible too. Hence we may suppose $cd \ne 0$. By elimination of b we obtain from (10) and (11)

$$2^h d^2 = (a^2 - q d^2) (c^2 + d^2).$$

Put $c = g_1 c_1$, $d = g_1 d_1$, where $(c_1, d_1) = 1$. Then we get

$$2^h d_1^2 = (a^2 - q g_1^2 d_1^2) (c_1^2 + d_1^2).$$

It follows from this equation that a is divisible by d_1 . Putting $\ddot{a} = d_1 f_1$ we obtain

$$2^h = (f_1^2 - q \, g_1^2) \, (c_1^2 + d_1^2).$$

Since $(c_1, d) = 1$ and since $c_1^2 + d_1^2$ is a power of 2, we must have $c_1^2 = d_1^2 = 1$. Hence

$$2^{h-1} = f_1^2 - q g_1^2.$$

Since $q \equiv 5 \pmod{8}$, h-1 is even and =2n+2 with $n \ge 0$. Then f_1 and g_1 are divisible by 2^n . Hence the representation (9) must have the form

$$2^h = 2^{2n+3} = \left(f_1 + g_1\sqrt{-q}\right)^2 + \left(f_1 - g_1\sqrt{-q}\right)^2.$$

But this representation is always imprimitive, since f_1 and g_1 are of the same parity.

§ 3. The real field $K(\sqrt{q})$ where q is either = 5 or = 13

10. Units and divisors of the rational primes 2 and q. Every A-number in this field must be positive and have a positive norm. The fundamental unit ε in $\mathbf{K}(\sqrt[l]{q})$ is $\frac{1}{2}(\sqrt[l]{5}+1)$ or $\frac{1}{2}(\sqrt[l]{13}+3)$ according as q=5 or 13. Since $N(\varepsilon)=-1$ in this field, ε is never an A-number. The nth power of ε is an A-number if and only if n is even. The number 2 is a prime in the field and, of course, an A-number.

Since the prime \sqrt{q} has the negative norm -q it cannot be an A-number. The number -1 is a quadratic residue modulo \sqrt{q} . From the relations

$$\frac{1}{2}(\sqrt{5}+1)\sqrt{5}=1^2+\frac{1}{4}(\sqrt{5}+1)^2$$
,

and

$$\frac{1}{2}(\sqrt{13}+3)\sqrt{13}=1^2+\frac{1}{4}(\sqrt{13}+1)^2$$

it follows that the product $\varepsilon \sqrt{q}$ is always an A-number. Then it is evident that the number

$$\varepsilon^m (\sqrt{q})^n$$
,

where m and n are rational integers. $n \ge 0$, is an A-number if and only if m+n is even.

11. The rational primes for which q is a quadratic non-residue. Let p be an odd rational prime such that, in K(1),

$$\left(\frac{-1}{p}\right) = +1$$
 and $\left(\frac{q}{p}\right) = -1$.

Then p is a prime in the field and since

$$p=u^2+v^2,$$

where u and v are rational integers, p is an A-prime.

Suppose next that p is an odd rational prime such that, in K(1),

$$\left(\frac{-1}{p}\right) = -1$$
 and $\left(\frac{q}{p}\right) = -1$.

Then p is a prime in $K(\sqrt{q})$. Since $\left(\frac{-q}{p}\right) = +1$ we have in $K(\sqrt{-q})$

$$(p) = \mathfrak{p} \, \mathfrak{p}'$$
,

where \mathfrak{p} and \mathfrak{p}' are different prime ideals. We showed in Section 5 that these prime ideals are not principal when q=5 or =13. If \mathfrak{q} is the prime ideal divisor of 2 in $\mathbf{K}(\sqrt[4]{-q})$, the product $\mathfrak{p}\mathfrak{q}$ is a principal ideal. Hence

$$2p = x^2 + qy^2$$
,

where x and y are rational odd integers. Since this relation may be written

$$p = \frac{1}{4} (x + y \sqrt{q})^2 + \frac{1}{4} (x - y \sqrt{q})^2$$

the number p is an A-prime in $K(\sqrt{q})$. Hence in this field the number -1 is a quadratic residue modulo p.

12. The rational primes for which q is a quadratic residue. Let p an odd rational prime such that, in K(1),

$$\left(\frac{-1}{p}\right) = -1$$
 and $\left(\frac{q}{p}\right) = +1$.

In this case we have

$$p = \omega \omega'$$

where ω and ω' are different primes. Since

$$\left(\frac{-1}{\omega}\right) = (-1)^{\frac{1}{2}(|N\omega|-1)} = -1,$$

the prime ω is not an A-number.

Finally, we consider an odd rational prime p such that, in K(1),

$$\left(\frac{-1}{p}\right) = +1$$
 and $\left(\frac{q}{p}\right) = +1$.

Since the field is simple, and since the norm of the fundamental unit ε is =-1, we have always

$$4 p = u^2 - q v^2$$
,

where u and v are rational integers. If u and v are even, p may be written in the form

$$p = (u/2)^2 - q(v/2)^2$$
.

Suppose next that u and v are both odd. The number ε^2 is of the form $\frac{1}{2}(a+b\sqrt{q})$, where a and b are odd integers; when q=5, we have a=3, b=1; when q=13, we have a=11, b=3. Consider the product

$$\frac{1}{2} (a \pm b \sqrt{q}) \cdot \frac{1}{2} (u + v \sqrt{q}) = \frac{1}{4} (a u \pm q b v) + \frac{1}{4} (a v \pm b u) \sqrt{q}.$$

Here we may choose the sign such that the number $au \pm qbv$ be divisible by 4. Then the number $av \pm bu$ is also divisible by 4, since $q \equiv 1 \pmod{4}$. Hence, we conclude: the prime p may always be written in the form

$$p = u^2 - q v^2,$$

where u and v are rational integers. Then the numbers

$$\omega = u + v\sqrt{q}$$
 and $\omega' = u - v\sqrt{q}$

are conjugate prime factors of p in the field. If we suppose u>0, the numbers ω and ω' are positive. Since by Lemma 1 the field $K(\sqrt{q}, \sqrt{-1})$ is simple, we have

$$\omega = \pi_1 \, \pi_2 \, \eta,$$

where η is a unit and π_1 and π_2 are primes in that field. According to Lemma 3, we may suppose that

$$\pi_1 = \frac{1}{2} \left(a + c \sqrt{q} \right) + \frac{1}{2} i \left(b + d \sqrt{q} \right)$$

and

$$\pi_2 = \frac{1}{2} (a + c \sqrt{q}) - \frac{1}{2} i (b + d \sqrt{q}),$$

a, b, c and d being rational integers. The unit η belongs to the field $\mathbf{K}(\sqrt[r]{q})$, since the product $\pi_1\pi_2$ belongs to this field. Since ω is positive, η is so. The norm of ω is positive and the norm of $\pi_1\pi_2$ is also positive. Hence the norm of η is positive. Thus we have

$$\eta = \varepsilon^{2m}$$
.

Putting

$$\psi_1 = \pi_1 \varepsilon^m$$
 and $\psi_2 = \pi_2 \varepsilon^m$,

we get

$$\omega = \psi_1 \psi_2$$

where ψ_1 and ψ_2 are primes in $K(\sqrt{q}, \sqrt{-q})$ such that ψ_1 is transformed into ψ_2 when i is substituted by -i and vice versa. Consequently we may suppose that $\eta = 1$. Hence

$$\omega = \frac{1}{4} \left(a + c \sqrt{q} \right)^2 + \frac{1}{4} \left(b + d \sqrt{q} \right)^2, \tag{12}$$

which involves the relations

$$4u = a^2 + b^2 + q(c^2 + d^2)$$
 (13)

and

$$2v = ac + bd. (14)$$

If the integers a, b, c and d are all odd or all even, it is evident that ω is an A-number. If the number $\frac{1}{2}(a+c\sqrt{q})$ is an integer, it follows from (12) that the number $\frac{1}{2}(b+d\sqrt{q})$ is also an integer: hence ω is an A-number. Then it remains to consider the following cases: (i) a is even, c is odd; (ii) a is odd, c is even. In both cases bd is even in virtue of (14); thus one of the numbers b and d is even and the other one is odd. In the first case we get from (13) modulo 4:

$$b^2 + 1 + d^2 \equiv 0 \pmod{4}$$
.

But this congruence is clearly impossible. In the second case we get from (13) the same congruence modulo 4. Hence ω and ω' are always A-numbers.

13. Summary and proof of the main result. As a consequence of the discussions in Sections 10-12 we may state the following result.

Theorem 4. The prime ω in $\mathbf{K}(\sqrt{q})$ is an A-number only in the following cases: (i) $\omega = 2 \varepsilon^{2m}$; (ii) $\omega = \sqrt{q} \cdot \varepsilon^{2m+1}$; (iii) $\omega = p \varepsilon^{2m}$, where p is an odd rational prime such that $\left(\frac{q}{p}\right) = -1$; (iv) ω is of the form $\frac{1}{2}(u+v\sqrt{q})$, where u and v are rational integers such that $\frac{1}{4}(u^2-qv^2)$ is a rational prime $\equiv 1 \pmod{4}$.

We are now in position to establish our main result.

Theorem 5. The integer α in the field $\mathbf{K}(\sqrt{q})$ is an A-number if and only if

$$\alpha = \beta \gamma^2 (\sqrt{q})^m \cdot \varepsilon^n$$

where β and γ are integers in the field with the following properties: β and γ are prime to \sqrt{q} ; β is either =1 or = a product of A-primes, different or not; γ is either a unit or = a product of primes π such that in $K(\sqrt{q})$

$$\left(\frac{-1}{\pi}\right) = -1.$$

m and n are rational integers, $m \ge 0$, such that m + n is even. ε is the fundamental unit, chosen > 1.

Proof. It is evident that the conditions are sufficient. Suppose that α is an A-number and that

$$\alpha = \xi \eta (\sqrt{q})^m$$

where ξ and η are integers in the field with the following properties: they are prime to \sqrt{q} ; ξ is either =1 or = product of primes π such that, in $K(\sqrt{q})$,

$$\left(\frac{-1}{\pi}\right) = -1;$$

m is a rational integer $\geqslant 0$. Then we must have $\eta = \varrho \gamma^2$, where γ is an integer in the field and ϱ a unit; thus the number α/γ^2 is an A-number. Now applying Lemma 4 a certain number of times to the prime factors π of ξ , we find that the number

$$\frac{\alpha}{\gamma^2 \xi} = \varrho \, (\sqrt{q})^m$$

must be an A-number. Finally, applying a result in Section 10 we achieve the proof.

Note. The fields $K(\sqrt{\pm 37})$ have in the main the same properties as the fields $K(\sqrt{\pm 5})$ and $K(\sqrt{\pm 13})$. There is, however, an essential difference: The fundamental unit has the form $6+\sqrt{37}$. Thus the equations $x^2-37y^2=\pm 4$ have no solutions in odd (rational) integers. This fact necessitates a modification of the

methods used in this paper. We shall treat the fields $K(\sqrt{\pm 37})$ in a following paper.

14. Numerical examples. The number $3+2\sqrt{-5}$ is an A-prime in $K(\sqrt{-5})$ since

$$3+2\sqrt{-5}=(3+\sqrt{-5})^2+(2-\sqrt{-5})^2$$

and since

$$N(3+2\sqrt{-5})=29.$$

The number $3+2\sqrt{-13}$ is an A-prime in $K(\sqrt{-13})$ since

$$3+2\sqrt{-13}=(11+5\sqrt{-13})^2+(18-3\sqrt{-13})^2$$

and since

$$N(3+2\sqrt{-13})=61.$$

The number $6+\sqrt{-5}$ is a C-prime in $K(\sqrt{-5})$ since

$$N(6+\sqrt{-5})=41 \equiv 1 \pmod{4}$$
.

The number $3+\sqrt{-13}$ is a C-prime in $K(\sqrt{-13})$ since

$$N\left(2+\sqrt{-13}\right)=17\equiv 1\pmod{4}$$
.

We have

$$(2+\sqrt{-5})=\mathfrak{p}^2,$$

where \mathfrak{p} is a prime ideal dividing 3 in $K(\sqrt{-5})$. We have

$$(6+\sqrt{-13})=\mathfrak{p}^2.$$

where $\mathfrak p$ is a prime ideal dividing 7 in $\mathbf K(\sqrt{-13})$. The number 7 is an A-prime in $\mathbf K(\sqrt{5})$ since

$$7 = \frac{1}{4} (3 + \sqrt{5})^2 + \frac{1}{4} (3 - \sqrt{5})^2$$
.

The number 7 is an A-prime in $K(\sqrt{13})$ since

$$7 = \frac{1}{4} \left(1 + \sqrt{13} \right)^2 + \frac{1}{4} \left(1 - \sqrt{13} \right)^2.$$

The number $7+2\sqrt{5}$ is an A-prime in $K(\sqrt{5})$ since

$$7+2\sqrt{5}=1^2+(1+\sqrt{5})^2$$

and since

$$N\left(7+2\sqrt{5}\right)=29.$$

The number $15+2\sqrt{13}$ is an A-prime in $K(\sqrt{13})$ since

$$15 + 2\sqrt{13} = 1^2 + (1 + \sqrt{13})^2$$

and since

$$N(15+2\sqrt{13})=173$$

is a prime.

15. Addition to paper [1]. The proof of the last part of Theorem 17 in [1],
p. 54, is not in order and may be replaced by the following correct proof:
Let ω be an A-number with the representation

$$\omega = \alpha^2 + \beta^2,$$

 α and β being integers in Ω . Suppose that equation (30) has an infinity of solutions $x = \xi_n$ and $y = \eta_n$ given by (18) and (29). Put for n = 1, 2, 3, ...,

$$\alpha_n + \beta_n i = (\xi_n + \eta_n i) (\alpha + \beta i),$$

where

$$\alpha_n = \alpha \, \xi_n - \beta \, \eta_n$$
 and $\beta_n = \alpha \, \eta_n + \beta \, \xi_n$.

Then we have

$$\alpha_n - \beta_n i = (\xi_n - \eta_n i) (\alpha - \beta i)$$

and

$$(\alpha_n + \beta_n i) (\alpha_n - \beta_n i) = (\xi_n^2 + \eta_n^2) (\alpha^2 + \beta^2).$$

Hence

$$\omega = \alpha_n^2 + \beta_n^2.$$

It is easy to see that, in this way, we get an infinity of representations of ω . In fact, supposing

$$\alpha_m = \alpha_n, \quad \beta_m = \beta_n,$$

we get

$$\xi_n + \eta_n i = \xi_m + \eta_m i.$$

But, in the proof of Theorem 15 we showed that this relation is possible only for m = n.

REFERENCES

- NAGELL, T., On the representations of integers as the sum of two integral squares in algebraic, mainly quadratic fields. Nova Acta Soc. Sci. upsal., Ser. IV, Vol. 15, No. 11. Uppsala 1953.
- 2. Sommer, J., Vorlesungen über Zahlentheorie, S. 346-354. Leipzig 1907.
- Dirichlet, L., Recherches sur les formes quadratiques à coefficients et à indétermininées complexes. Werke I, p. 578-588.

Tryckt den 22 februari 1961