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On the sum of two integral squares in certain quadratic fields

By TrycveE NAGELL

§ 1. Introduction

1. Let o be an integer =0 in the algebraic field Q. If « is representable
as the sum of two integral squares in £, we say, for the sake of brevity, that
o is an A-number in . We say that

a=E+n?

where £ and % are integers in £, is a primitive representation if the ideal (£, n)
is the unit ideal, and otherwise an imprimitive representation.

In a previous paper [1] I have determined the A-numbers in the quadratic
fields K(VD), where D= -1, +2, +3, +7, +11, +19, +43, 67 and +163.
In the present paper we shall continue the investigations and treat the cases
D= 15 and D= 113. The following developments are in general based on the
results obtained in [1]. ‘

It is well known that the number of ideal classes is =1 in the fields K(Vg),
K (/13) and K (/37) and =2 in the fields K (/—5), K (/' —13) and K (/ - 37);
see [2].

From a general theorem due to Dirichlet [3] we get

Lemma 1. The number of ideal classes in the Dirichlet field K (VB, Vjﬁ) of the
fourth degree is =1, when D=5, 13 and 37.

2. We also need the following lemmata:

Lemma 2. Let D be a square-free rational integer which is =2 or =3 (mod 4).
If = and y are rational integers, and if x+yVD is an A-number in the field
K(VD), then y is even.

Lemma 3. If o is an integer in the Dirichlet field K@, E) with square-
free D, the number 2 a belongs to the ring R (1, V' —1, VD, V-D).

For the proofs see [1], p. 89. In [1] we also established the following results:

Lemma 4. Let o and n be A-numbers in the field Q. If (7) s a prime ideal
divisor of (). the quotient x/m ts also an A-number in Q. This result also holds
if @ is a unit (Theorem 4 in [1}).
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T. NAGELL, On the sum of two integral squares

Lemma 5. Let o, 7, nr; and 7 be integers +0 in the field Q with the following
properties. The number o/(mwm,) is an integer; the principal ideals (n) and (m;) are
prime ideal divisors of (a); m and n are relatively prime. The integers «, wmy, Y
and 7w, are A-numbers in S, such that

mn=f+g,
mn=fi+gh
2 _ 2
and nn1=(ﬁl+ggl) +(f91n9f1) ’
n

where f, g, f1, 91 (Ffitgg)/n and (fg,—gf)/n are integers in Q. Then the quo-
tient o/ (nm;) ts also an A-number in K.

This result also holds when one of the numbers ;m and 7, is a unit or when
both of them are wunits (Theorem b in [1]).

2. The imaginary field K (}/ — g ) where q is either =5 or =13
gmary q q

3. Units and divisors of the rational primes 2 and q. The number —1 is an
A-number in these fields since

~1=22+(/=5)"
and —1-18+(5V/ =13)".

Thus the numbers « and —o are simultaneously A-numbers or not.
It follows from Lemma 2 that the prime V——q is not an A-number. Clearly,
no irrational power of V —¢ can be an A-number. The number —1 is a quad-

ratic residue modulo } —g. The number u+w) —q, where » and v are rational
integers, is never an A-number when v is odd.
In virtue of the relations

2V "5=22+(1+V—5)"
and 2V:——1§=(4+2V?1_?;)2+(7—th_3)2
we may state: the number 2V —-_q s always an A-number. We have
(2)=q* = (1°+1%),

where the prime ideal q is not principal. The number —1 is a quadratic re-
sidue modulo q.

4. The rational primes for which —q is a quadratic non-residue. Let p be an
odd rational prime such that, in K(1),
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() )

Then (p) is a prime ideal in the field and since
p=u?+v%

where u and v are rational integers, p is an A-prime.
Suppose next that p is an odd rational prime such that, in K (1),

()5

Then (p) is a prime ideal in K(V_———q) Since (2%) = + 1, and since the field
K (Vg) is simple, the equation
4p=2'—qy’
is solvable in rational integers x and y. If x and y are both even, we get
— \2
p=2t+(/~qy)’,

where z,=12 and y,=1y,. Hence p is an A-prime.
If x and y are both odd, we get, in the case ¢=35,

HetV5y) 3(/521) =1 GyLa)+1V5 @ 1y).
Here it is possible to choose the sign such that the numbers

"=i}(5yix) and v:%(yiy)

are both integers.
In the case ¢=13 we get, if 2 and y are both odd,

1(=+V13y) -1 (V13+3)=1(13y+32) +1V13 (& £3y).
Just as in the proceeding case, we may choose the sign such that the numbers
=1(13y+L32) and v=1(xx3y)
are both integers. Thus we have in both cases
—p=u?+ (V=g

Hence p is an A-prime. Thus the number —1 is a quadratic residue modulo
p in the field K (/ —gq).
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5. The rational primes p= —1 {mod 4) for which —q is a quadratic residue.
Let p be an odd prime such that, in K (1),

(i)= —1 and (_—_q)= + 1.
P P
Then we have P)=pd,

where p and )’ are different prime ideals in the field K (/' —g). In this field
we further have

(%):(_1)§(Np—l)= —1. (88

The ideal p can never be principal. In fact, if we had p= (x+yV —¢q), with ra-
tional integers x and y, we should have

p=2"+qy"
But this equation clearly implies p=+1 (mod 4).
Lemma 6. Let « and f be integers in K(V:~q_), not both equal to zero. Further,

let p be a prime ideal in the field satisfying relation (1). If the sum o*+ B® is
divisible by the power p™, we must have

a=pf=0 (mod p"),
where v=[1(m-+1)].
Proof. We prove it by induction. In virtue of (1) the lemma is true for
m=1. Hence we may suppose m>2. Suppose it is true for all exponents <m.
Let & and 7 be integers in the field such that &2-+7* is divisible by p™*. In

virtue of (1) the numbers £ and % are divisible by p. When q is the prime
ideal which divides 2, we put

(&)= () and q(n)=Pp(B),
where o and f§ are integers in the field. Then we get
0 (8477 =2 (2 +77) = 1F (2 + 7).
Hence o+ g% is divisible by p™ !, and, by hypothesis, we have
a=f=0 (mod h,
where A=[1m]. From this relation follows

§=7=0 (mod p**").
This proves the lemma.
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Lemma 7. Let p be a prime ideal satisfying relation (1). Then p* is a prin-
cipal ideal = (u+vl/—q): u and v rational integers, where u is even and v odd.

Proof. Suppose that N p=p. Then we have
pP=u’+qot
If v were even, we should have
p%_u=2u%, fp¥u=2qwi
where %, and v, are rational integers. Hence
p=ul+qvi,
which is impossible, since p= —1 (mod 4). Thus » is even and » odd.

Lemma 8. Let p and b, be different prime ideals such that

(:_E) - (;}) -1
b b
Then VP, is a principal ideal = (x), where the integer « is not an A-number.

The square P*Pi is a principal ideal =(w), where the integer w is an A-number.

Proof. If we had a=§+7?% according to Lemma 6, the integers & and %
should be divisible by p, which is impossible since p = §,. Putting a=u+v)— q,

% and v rational integers, we get
0P =(w)=(u+vl —g)2+0%

This proves the lemma.
As a consequence of Lemmata 7-8 we may state: Let Py, Py, ..., P be m

—~1
prime ideals (different or not) such that (~p—) = —1, and put

(P Pa - Pm)* = (@),
where  is an integer. Then @ is an A-number if and only if m is even.

Lemma 9. Let p be a prime ideal satisfying (1) and let p*=(w), then 2w is
an A-number.

Proof. If (2)=0q* we have qp=(u+vV?é), where » and v are odd rational
integers. Hence

2w=(u+vl —q)*+02

Lemma 10. Let p be a prime ideal satisfying (1) and let p*=(w), then V — g
is an A-number.

271



T. NAGELL, On the sum of wo iniegral squares
Proof. From the preceding proof we get
V—go=4V-q+ol-gp
where u and v are odd rational integers. For ¢=5 we obtain
V—bw=1[ut+vV -5 [22+(1+V-5)]
=[u+oV =582+ [t (u—50)+}(u+v)V/ -5
For ¢g=13 we have
V=13w=1fu+oV/ 13} - [(4+2V—13)2+ (7-V =13)]
=[2u—13v+(w+20)V —13P+ L (Tu+130)+L(Tv—u)V/ —13]%

Since the numbers J(x—5v), L(u-+v), 3(Tu+13v) and }(7v—u) are integers,
the lemma is proved.

6. The rational primes p= +1 (mod 4) for which —q is a quadratic residue.
Consider finally the cases

(_—1)=+1 and (_—q)=+l,
p p

where p is an odd rational prime. Here we have

(p)=py,

where p and p’ are different prime ideals in the field. We shall show that these
ideals are always principal.

In fact, suppose that p were not principal. We have (2)=q? where q is not
principal. Then the product qp is principal, since the number of ideal classes
is =2. Hence the equation

N(gp)=2p=a’+gqb®
would be solvable in rational odd integers @ and b. But this is impossible since
a*+qb*=1+¢=6 (mod 8) and 2p=2 (mod 8). Hence p is a principal ideal,
and we have
p=uZ+qvh,
where 4 and v are rational integers. Then the numbers
w=utvlV—q and o' =u—2vV—¢q

are conjugate prime factors of p in K(/—¢). Since by Lemma 1 the field
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K({~q Vq) is simple, we have
W =Ty 7y,

where 7, and m, are primes in that field. According to Lemma 3 we may sup-
pose that

a=1(a+cV—gq) +i§(b+dl/——q)
and m=tlatcV —q)—it(b+dV~q),
where a, b, ¢ and d are rational integers. Hence
w=?;(a+cl/——q)2+%(b+dl/.——q)2, (2)
which involves the equations
du=a®+b*—-qc®—qd? 3)
and 2v=ac+bd.

It follows from the latter of these relations that, if ¢ is even, either b or d
must be even. Suppose that o and b are even and ¢ and d odd. Then we
obtain from (3) modulo 4:

0= —g—q¢=2 (mod 4),

which is impossible. Supposing that a and b are odd and ¢ and d even, we
get from (3):

0=1+4+1 (mod 4),

which is also impossible. Hence, the remaining possibilities are: (i) all the numbers
a, b, ¢ and d are even; (ii) all the numbers a, b, ¢ and d are odd; (iii) @ and &
are even and b and ¢ are odd. It is, of course, unnecessary to treat the case
with b and ¢ even and ¢ and d odd.

If all the numbers a, b, ¢ and d are even, w is clearly an A-number since
the numbers

Ha+cV —q) and }(6+dV —q)
are integers. If the numbers a, b, ¢ and d are all odd, we get from (3)
4u=1+1—¢—¢=0 (mod 8).
Henee u is even. But according to Lemma 2, u is odd when o is an A-number.
. Buppose finally that a and ‘d are even and b and ¢ are odd. Then we get
from (3)
18:2 273



T. NAGELL, On the sum of two integral squares
4u=a’+1—qg—qd® (mod 8),
whence 4 (u+1)=a*+d® (mod 8). 4)

When « is even, it follows from this relation that one of the numbers a/2 and
d/2 is even and the other one odd. In this case w is not an A-number.

When % is odd, it follows from (4) that the numbers a/2 and d/2 are either
both odd or both even. We shall show that, in this case, @ is an A-number.
If ¢g=5 we multiply the integer

m=3a+cV=5)+ii(b+dV-5)
by the unit E=1(V5+1). The product is equal to
1aTd)V5+1(Getb)i+i(b+a)V5+1(ta—-5d).

Here the numbers
1(eFd) and 1(ta—5d)

are always integers since a/2 and d/2 are of the same parity. Further, by an
appropriate choice of the sign in the unit E, we may obtain that the number
bt c be divisible by 4. Then the number 5¢tb is also divisible by 4. Hence

the product m, E belongs to the ring R(1, 4, V5, V' —5), and thus it is permitted
to suppose that, in z;, the numbers a, b, ¢ and d are all even. Then we have

w="{a,+¢,V =572+ (b, +d,V—5)%,

where a,, by, ¢, and d, are rational integers. Hence w and o’ are A-numbers.
Consider next the case ¢=13. Multiplying the integer

my=ila+cV—13)+il(b+dV —13)
by the unit E=1(/13+3) we get the product
1@F3d)V13+1(£3b+13¢)i+1(+£8¢c+b)V/ —13+1(+3a—134d).

Here the numbers
i(@F3d) and 1 (+3a—-134d)

are always integers since a/2 and d/2 are of the same parity. Further, by an
appropriate choice of the sign in the unit E, we may obtain that the number
+3¢+b be divisible by 4. Then the number +3b+13c¢ is also divisible by 4.
Hence the product 7; E belongs to the ring R (1, 4, Y13,V ~13), and thus it is
permitted to suppose that, in 7;, the numbers @, b, ¢ and d are all even. Then
we hive
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w=(a1+cll/:—l~3)2 (® +d]f—l3)
where a,, b,, ¢, and d, are rational integers. Hence w and «’ are A-numbers.

7. Definition of C-primes. Further lemmata. Let o be a prime in K(V:;)

of the form w=u+vV —¢ g where u and v are rational mtegers According to
the preceding section, ® is an A-number in the field, if » is odd and » even.
If v is even and v odd, @ is never an A-number and in this case we call @
a C-prime.

If w is a C-prime is follows from relation (2) in Section 6 that 4 is an
A-number. But we can furthermore prove the following lemma.

Lemma 11. If w is a C-prime, the number 2w is an A-number.

Proof. We put w=u+vl/—_q, where u and v are rational integers; u is even
and v odd. Then we have

where @ and f are integers in K (/ —g). Multiplying by 2 we get

9o (a+c2l/?§)2 N (b+d2l/:—q—)2,

where a, b, ¢ and d are rational integers. Hence

Bu=a?+b—qc®—qd?, (5)
4dv=ac+bdd. (6}

If a, b, ¢ and d are all even, the number 2¢ is an A-number. Suppose next
that o and b are even and ¢ and d odd. Then we get from (5) a®+52=2 (mod 8)
which is impossible. Consider next the case when ¢ and d are even and b and
¢ odd. Then it follows from (5)

(@/2)2—5 (d/2)?=1 (mod 2).
Hence one of the numbers 2/2 and d/2 is odd and the other one is even. But

this is impossible because of the relation (8).
Finally we consider the remaining case when a, b, ¢ and d are all odd. When

¢=>5 we multiply 2w by the number —1=1(1*+(/ ~5))2. The product —2
is equal to (in virtue of Lemma-1 in [1])

LlateV/ =6+ —5-5d) ] +&laV-5-5cF(b+dV=5)]
=Ll@F5d)+(c+b)V 5P+ L[(—5cFb)+(@Fd) )/ —5].
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By choosing the sign in an appropriate way the number }(aFd) will be an
integer and so will 1 (¢F5d). Then it follows from relation (6) that

ac+bd=actab=0 (mod 4).
Hence ¢+ b=0 (mod 4),
and thus the numbers l(ctb) and I(—5c¢Fd)

are both integers. Consequently —2e is an A-number. This proves Lemma 11
when ¢=>5.

When ¢=13, we multiply 2w by the number ~1=1(32+(/-13)?). The
product will be

L[BaT13d)+(3ctd)V — 132+ 4[(—13¢F3b) +(@F3d)V/ 13~
Here we may choose the sign in a way such that the numbers
3aT13d, 3c+b, —13¢+3b, a+3d
are all divisible by 4. Hence — 2w is an A-number, and the proof of Lemma 11
is complete.

We next prove

Lemma 12. The product of two C-primes is an A-number.
Proof. Let w and w, be two C-primes

w=u+rV_:, o, =u,+v,V —gq,
where %, v, 4, and », are rational integers,  and u, even, v and v, odd. We put

where U and V are rational integers; U is clearly odd and V even. According
to Lemma 11, we have

dow,=(a+cV =g+ b+dV —q)?
where a, b, ¢ and d are rational integers. We get
4U=a?+b*—qc*—qd?, (7)
2V=ac+bd. (8)
If the numbers a, b, ¢ and d are all odd, we get from (7)
4U=1+1-¢—g=0 (mod 8),
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which is impossible since U is odd. If all the numbers a, b, ¢ and d are even,

Lemma 12 is proved.
Suppose next that @ and b are even and ¢ and d odd. Then we get from (7)

2¢+4=a*+b>=6 (mod 8),
which is clearly impossible.

Consider finally the case that a and d are even and ‘b and ¢ are odd. Then
it follows from (7) that

a® = qd® (mod 8).
Hence we conclude that a = d (mod 4).
When ¢=5, we multiply the number 4ww, by —4=1%+ (Y —5)%. The prod-
uct is equal to
~18ww,=[(@F5d)+(ctb)V =5+ [(~5cTb)+(@Fd)V —5]%
Here we may choose the sign such that the numbers
ctb and —5¢Fb
will both be divisible by 4. Since the numbers
a+5d and aFd
are also divisible by 4, we see that the number —ww, is an A-number.

When ¢=13, we multiply the number 4wew, by —4=32+(/—13)% and the
proof of Lemma 12 proceeds in an analogous manner.

Lemma 13. If w is a C-prime, the number V —qew 13 an A-number.

Proof. According to Lemma 11, the number 2w is an 4-number. Hence
2o=2u+2vV—g=(a+cV =g+ (d+dV—g)
where «, v, a,b, ¢ and d are rational integers; » is even, v odd. Then we get
2u=a+b—qc®—qd? v=ac+bd.

Hence we may suppose that ac is even. This implies that b and d are odd and
that a and ¢ are both even. Suppose first ¢g=5. Using the identity

2V ~5=2+(1+V—-5)

we get
202V —B5=[2a+b—6d+V —5(d+b+2¢)P+[—a+5c-2b+V -5 (-a-c-2d)P.
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Here the numbers 2a+b—5d, d+b+2¢, a—5¢—2b and a+c—2d are all

even. Hence w) —5 is an A-number.
Suppose next ¢=13. Using the identity

2V —18=(4+2V/ - 13)*+(7-V—13)%
we get
202V —13=[4a—26c+7b—13d+V — 13 (4c+2a+T7d—b)]?

+[7Ta+13c~4b+26d+V —13(Tc—a—4d—2b)P
As in the preceding case we see then that wV —13 is an A-number.

Lemma 14, Let p be a prime ideal satisfying (1) and p*=(y), and let @ be a
C-prime. Then the product wy is an A-number.

Proof. We have
20=(a+cV =2+ {b+dV =g,

where, according to the proof of Lemma 13, we may suppose that a and ¢ are
even and that b and d are odd. According to Lemma 9, we have

2y =(a,+¢,V —q2,
where a;, and ¢; clearly are odd. Hence we get
dowy=[aa,—qce,+V —q(ac,+a,0)
+[a,b—ge,d+V —q (g, d+bey)P.

Since the numbers aa,—gcec,;, ac,+ay¢, a;b—qgec,d and a,d+bc, are all even,
the lemma is proved.

8. Summary and proof of the main resuli. As a consequence of the discussions
in Sections 3-6, we may state the following results.

Theorem 1. All the prime ideals in K(V——_E) are principal except the prime
tdeal divisors of 2 and of the odd rational primes p satisfying the relations, in K (1),

(11)= ~1, (—_q): + 1.
p p
Theorem 2. The prime o in K(V——_q) is an A-number only in the following

cases:

(i) o= X p where p is an odd rational prime such that, in K(1),

)

(ii) o ts of the form u—H)V—_q, where u and v are rational integers, u odd,
v even, such that w*+ qv® is a rational prime.
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The prime w in the field is a C-prime only when w=u+vl/:_q, where u and
v are rational integers, u even, v odd, such that u®+gv® is a rational prime.

We further need the result:

Lemma 15. Let q be the prime ideal which divides 2, and let & be an A-number
which is divisible by o™ and not by q™'. Then m is even.

Proof. Suppose that &=o®+ 4% where « and 8 are integers. If m were odd,
it' is evident that & should be divisible by the power p* of a non-principal
prime ideal p=+q with an odd exponent ». But, according to Theorem 1 and
Lemma 6, the exponent » must be even.

We are now in position to establish our main result.

Theorem 3. The integer a in the field K(/ —q) is an A-number if and only if
a=Byd (/= B) 2,

where B, y and O are infegers in the field with the following properties: B is
either = =1 or =a product of A-primes, different or not; y is either = +1or =a
product of v C-primes, different or not; & is either = +1 or =a product of m
numbers w;, different or not, defined by the equations (w,)=pf, p; being a non-
principal prime ideal not dividing 2.

The numbers v, m, n and k are rational integers >0 salisfying one of the
following conditions:

vy even =0, m even =0, n even >0, k>0,
v even 20, m even >0, n odd, k>1;

v 'even =20, m odd, n even >0, k>1;

v even =0, m odd, n odd, k=0;

vy odd, m even >0, n odd, k>0,

v odd, m even 20, n even =0, k>1,
y odd, m odd, n even >0, k>0;

v odd, m odd, n odd, k>1.

Proof. It is evident that the conditions in this theorem are sufficient. If « is
an A-number we may, in virtue of Lemma 4, neglect the A-prime divisors. In
virtue of Lemmata 5 and 12 we may suppose that » is either =0 or =1.
Suppose that o« is divisible by p”*, where p is a non-principal prime ideal not
dividing 2. Then, according to Lemma 6, it is sufficient to suppose h=2. For
the rest of the proof we only have to apply Lemmata 7, 8, 9, 10, 11, 13, 14, 15
and to observe the following fact. Let », v, u; and v, be rational integers, u;

and v odd. Then the product of the two numbers 2u ~|-vl/:§ and u; +2v,; = q

is of the form 2u,+w, V—q. where v, is odd, and thus it cannot be an
A-number. Then it is easily seen that the eight cases indicated in the theorem
are the only possible ones.
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9. On the primitivity of the representations as a sum of two inlegral squares.
Finally we shall determine the A-numbers in the quadratic fields K (/' —5) and

K (/ —13) which have at least one primitive representation. By Theorems 29-31
in [1] it suffices to examine the numbers which are products of prime ideal
factors of 2. In the actual case we have only to examine the powers of 2.
Consider the equation

2= (at+cV =g +(B+dV g7 9)

where a, b, ¢ and d are rational integers. For h=1 and A=2 we have the
primitive representations

2=1"+1%

22=32+ (V- 5)%,

22=112+3(/—13)%
We shall show that there are no primitive representations for >3, If the
representation (9) is primitive it is clear that the numbers a, b, ¢, d cannot be
all odd. From (9) we obtain

2 =a?+ b —q (2 +d7), (10)
and ac= —bd. (11)
From (10) it follows that two of the numbers @, b, ¢, d are odd and two of

them are even. If d=0 we must have either a=0 or ¢=0. When a=0 we get
from (10)

2h — b2 —q cz’
where b and ¢ are odd. But this is impossible when £>3. When ¢=0 we get
from (10)

2% = q? + b2,

where ¢ and b are odd. Since k>3 this equation is impossible too. Hence we
may suppose ¢d=+0. By elimination of b we obtain from (10) and (11)

2" d? = (a®— qd?) (* + dY).

Put c=g,¢,, d=g,d,, where (c,, d;)=1. Then we get

2" di = (a® — qgi d}) (¢} + d)).
It follows from this equation that a is divisible by d,. Putting a=d, f, we obtain

2"=(fi—qg}) (1 +di).
Since (c,, d)=1 snd since cf +d} is a power of 2, we must like.c} =df=1. Hence
2"t =fl—qik
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Since ¢ =5 (mod 8), 2—1 is even and =2x+2 with n>0. Then {, and g; are
divisible by 2". Hence the representation (9) must have the form

=23 = (f, 49,V =g+ (f,— 9,V )"
But this representation is always imprimitive, since f, and g, are of the same
parity.
§ 3. The real field K (/g) where g is either =5 or =13

10. Units and divisors of the rational primes 2 and q. Every A-number in
this field must be positive and have a positive norm. The fundamental unit
in K(l/q) is %(V5+1) or %(V13+3) according as ¢=>5 or 13. Since N (g)= —1
in this field, ¢ is never an A-number. The nth power of ¢ is an A-number if
and only if » is even. The number 2 is a prime in the field and, of course, an
A-number.

Since the prime Vg has the negative norm — g it cannot be an A-number.
The number —1 is a quadratic residue modulo Vq. From the relations

P05 +1)V5=12+}(/5+1),
and 1(/13+3)V18=12+3 (/13 + 1)},

it follows that the product el/g ts always an A-number. Then it is evident that
the number
e (Vé)n,

where m and n are rational integers. »>0, is an A-number if and only if
m+n is even.

11. The rational primes for whickh q is a quadratic non-residue. Let p be
an odd rational prime.such that, in K (1),

()0 v e

Then p is a prime in the field and since
p=u®+%,

where 4 and v are rational integers, p is an A-prime.
Suppose next that p is an odd rational prime such that, in K(1),

(:—1)= ~1 and (2)= —1
p V2
Then p is a prime in K (/). Since (—?q) — +1 we have in K(/~q)

(py=pp,
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where p and p’ are different prime ideals. We showed in Section 5 that these
prime ideals are not principal when ¢=5 or =13. If q is the prime ideal divisor

of 2 in K(/—g), the product 1q is a principal ideal. Hence
2p=2’+qy’,
where x and y are rational odd integers. Since this relation may be written
p=tltyVe+i(e—yVe®

the number p is an A-prime in K ()'g). Hence in this field the number —1 is
a quadratic residue modulo p.

12. The rational primes for which ¢ is a gquadratic residue. Let p an odd
rational prime such that, in K (1),

) oo

In this case we have p=wao,

where w and ' are different primes. Since
(;1) — (=1 Fel-D - g
w b

the prime w is not an A-number.
Finally, we consider an ndd rational prime p such that, in K (1),

) o

Since the field is simple, and since the norm of the fundamental unit ¢ is = — 1,
we have always

4 p=u®—qv?
where v and v are rational integers. If % and » are even, p may be written
in the form
p=(u/2~q(v/2)"

Suppose next that w and » are both odd. The number &* is of the form

%(a%—bl@), where @ and b are odd integers; when ¢=25, we have =3, b=1;
when ¢=13, we have - a=11, b=3. Consider the product

1(a+bVg) 3 (u+vVg)=}(@utqbv)+1(avtbu)lq.

Here we may choose the sign such that the number au+ gbwv be divisible by 4.
Then the number avtbu is also divisible by 4, since ¢ =1 (mod 4). Hence,
we conclude: the prime p may always be written in the form

2 2
p=ut—qv,
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where v and v are rational integers. Then the numbers
a)=u+vV§ and o' =u—vlyg

are conjugate prime factors of p in the field. If we suppose u >0, the numbers
w and ' are positive. Since by Lemma 1 the field K (g, V —1) is simple, we
have

W =T A7},

where % is a unit and =, and n, are primes in that field. According to Lemma

3, we may suppose that

=4 {a+clVg)+1i(B+dVe)
and ny=%(@+eVg)—1i(b+dVg),

a, b, ¢ and d being rational integers. The unit n belongs to the field K (Vq),
since the product m;7, belongs to this field. Since w is positive, % is so. The
norm of w is positive and the norm of z,7, is also positive. Hence the norm
of n is positive. Thus we have

7= SZm.
Putting y=me" and y,=m,e",
we get W= Y19,

where and are primes in K f, Y =4q) such that is transformed into
¥ Y2 p q Y1

w, when ¢ is substituted by —¢ and vice versa. Consequently we may suppose

that 9= 1. Hence

w=3(a+cVg)P+1(b+dVg), (12)

which involves the relations
du=a’+b+q{*+d% (13)
and 2v=ac+bd. (14)

If the integers a, b, ¢ and d are all odd or all even, it is evident that w is
an A-number. If the number } (a+cVg) is an integer, it follows from (12) that
the number 3 (b+dVg) is also an integer: hence w is an A4-number. Then i$
remains to consider the following cases: (i) a is even, ¢ is odd; (ii) a is odd,
¢ is even. In both cases bd is even in virtue of (14); thus one of the numbers

b and d is even and the other one is odd. In the first case we get from (13)
modulo 4:

B+ 1+d* =0 (mod 4).

But this congruence is clearly impossible. In the second case we get from (13)
the same congruence modulo 4. Hence w and ' are always A-numbers.
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13. Summary and proof of the main result. As a consequence of the discussions
in Sections 10-12 we may state the following result.

Theorem 4. The prime w in K (l/ ;) 18 an A-number only in the following cases:
(i) =26 (ii) w=Vg-e®™*; (iii) w=pe®™, where p is an odd rational prime
such that (1) = —1; (iv)w is of the form %(u—*—vl@), where uw and v are rational
integers sucz that } (u®—qv®) is a rattonal prime =1 (mod 4).

We are now in position to establish our main result.

Theorem 5. The integer o in the field K (Vg;) is an A-number if and only if
a=py* (g e",

where f and y are integers in the field with the following properties: f§ and y are
prime to l/q; B is either =1 or = a product of A-primes, different or not; y is
either a unit or = a product of primes m such that in K (Vé)

()

m and n are rational integers, m >0, such that m-+n is even. ¢ is the fundamental
unit, chosen > 1.

Proof. It is evident that the conditions are sufficient. Suppose that « is an
A-number and that
a=£&n(Vg)m,

where & and 7 are integers in the field with the following properties: they are
prime to Vg; & is either =1 or = product of primes s such that, in K (Vé),

m is a rational integer >0. Then we must have 5 =gy*, where y is an integer
in the field and ¢ a unit; thus the number a«/y* is an A-number. Now applying
Lemma 4 a certain number of times to the prime factors m of £, we find

that the number
_* Vo)™
,yz z e ( 9)

must be an A-number. Finally, applying a result in Section 10 we achieve
the proof.

Note. The fields K (/ £37) have in the main the same properties as the fields
K(Vi5) and K(Vi 13). There is, however, an essential difference: The funda-

mental unit has the form 6+437. Thus the equations 2*—37y®= +4 have no
solutions in odd (rational) integers. This fact necessitates a modification of the
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methods used in this paper. We shall treat the fields K (/' +37) in a following
paper.

14. Numerical examples. The number 3 -2 V=5 is an A-prime in K (l—:TS) since
3+21—5=(3+1=5)?2+(2-V-5)
and since N(3+2V/ -5)=29.
The number 3-+2) —13 is an A-prime in K (/—13) since
3:-2)V -13=(11+5V—13)2+ (18 -3V —13)?

and since N (3+2)-13)=6l.

The number 6-+}—5 is a C-prime in K (/' —5) since
N{6+}—5)=41=1 (mod 4).

The number 3+} —13 is a C-prime in K (} — 13) since
N(2+V-13)=17=1 (mod 4).

We have 2+ V—:g) =p%

where p is a prime ideal dividing 3 in K (/' —5). We have

(6+1—13)=yp?

where p is a prime ideal dividing 7 in K (/- 13). The number 7 is an A-prime
in K (V5) since

7=3(3+V5)*+31(3-V5)
The number 7 is an A-prime in K (/13) since
7=3(1+V13)2+}(1-V13)2
The number 7+2V5 is an A-prime in K (V5) since
7+2V5=12+(1+V5)
and since N (1+2V5)=29.

The number 15+2113 is an A4-prime in K (/13) since
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15+2V13=1%+(1 + V13)?
and since N(15+2V13)=173
is a prime.
15. Addition to paper [1]. The proof of the last part of Theorem 17 in [1],
p. 54, is not in order and may be replaced by the following correct proof:
Let w be an A-number with the representation
w=0o"+ g,

o and B being integers in . Suppose that equation (30) has an infinity of
solutions z=§, and y=1y, given by (18) and (29). Put for n=1, 2, 3, ...,

oty + fri=(Entnni) (a+B1),

where on=oé,~fn, and B,=an,+pE,.
Then we have oy~ Bt = (&n—Nnt) (x— B1)
and (0t + Br ) (aty = Bnt) = (63 +77) (@ + BP).
Hence w=o%+ B2

It is easy to see that, in this way, we get an infinity of representations of w.
In fact, supposing
Oy = Oy ﬂm’__lgm

we get Entpi=En+ nmt.

But, in the proof of Theorem 15 we showed that this relation is possible only
for m=mn.
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