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On a class of exponential equations
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In this note I shall prove the following theorem.

Theorem. Let I1;, Il2 be two finite sets of rational prime numbers and let Py, P be
the sets of positive integers all of whose prime factors are in Iy, Il; respectively. Then
for any fixed integer C'=+0 there are only a finite number of solutions of

X-Y=¢C, XeP, YEP,. (1)

These can all be determined in a finite number of steps.

The novelty of the theorem lies only in the last sentence. Without it, the theo-
rem is a well-known consequence of the theorem of Thue about the approximation
of algebraic numbers by rationals which was subsequently improved by Siegel
and Roth. We shall use instead a result (Lemma 1, below), given by Gelfond [2],
which is related to Mahler’s p-adic analogue of the Gelfond—Schneider theorem
about the transcendence of of, where o« and § are algebraic.

For the earlier history of the problem solved by our theorem we refer to Nagell
11 § 1. Nagell’s formulation is different from ours, but the two formulations are
readily seen to be identical.

The result which we require is given on page 157 of Gelfond’s book, and may
be formulated for our purposes as follows.

Lemma 1. Let a, b be elements of some algebraic number field X. Suppose that
a*=b" @)
with rational integers u, v implies that u=v=0. Let p be a prime ideal of X for which
a and b are p-adic units. Then there is a number 4= %y (a, b, p), which can be deter-
mined in a finite number of steps, with the following property:
For any x> x, the congruence
a*=b’ (mod p™) (3)
ts insoluble in rational integers u, v, m with
|u|+|v|<z, m>[log’ z]. (4)

We shall need to supplement this by the trivial Lemma 2,
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Lemma 2, Let . b be elements of some algebraic number ficld X. Suppose that b=1
and that there (3 a pair of coprime integers U,V such that

at=b", (3)
Let p be a prime deal of K for which a and b are p-adic units. Then there exists a
constant d=da. b.p). which can be determined in a finite number of steps. with the

followeing property:
17 the integers w, vom are such that

a*=b* (mod p™) (6)
and m >~ ¢* — ¢ max {log | u}. log | r|). M
then u=tl. r=tV 3)
for some rational integer t.
We sketch the simple proof. From (3) and (8) it follows that
br=1 (mod p™), )
where w=Vu—-Cr.
If (7) is true. we have
|u'|<" max (|U].| F|) max (| u]. |v|)
<2mas (|U].[V]exp(~¢+47 (10)

Here 2max (|U],|V]) is fixed. The theory of the p-adic logarithm now shows
immediately that (9) and (10) together imply w =0, provided that ¢ is chosen
large enough.

We are now in a position to prove the following lemma, of which the theo-
rem is an easy consequence.

Lemma 3. Let IT be a finite set of rational primes and let P be the set of positive in-
tegers all of whose prime factors are in I1. Let D> 0 and E + 0 be rational integers and
suppose that no prime factors of E is in I1. Then there are only a finite number of
solutions Z. Y of the equation

Z’-DY*=E, (11)
where Z is a rational integer and Y € P. These can all be obtained in a finite number
of steps.

When D is a perfect square the lemma is trivial, so we may assume without
loss of generality that the field X =k (D) generated by D' over the rational
field is a real quadratic field. Let 5>1 be the fundamental unit of k(D). Then
{11) implies that

Z-YD‘=ay", Z-YD'=o'(p) (12)

for some rational integer n, where « is one of a finite set of integers of k(D?)
and where a’, 7" are the conjugates of a,7 respectively. Hence

ang”—a ()" =2Y DL (13)
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By (12) there is a constant §=0(x, D)>0 such that

Y>6q". (14)
Since Y €P, we have
Y= ]I p (15)
1gogs
for some integers a,>0, where p,, ---, ps are the primes in the set II. Hence,

by (14)

Max g 2> YN,
I<ogs

where y=vy («, D, II)>0. We may suppose, without loss of generality, that
a, > yn. (16)

Let p be a prime ideal divisor of p, in k(D). Since E=Norma and p, 4 &,
by hypothesis, it follows that « and « are integers for p. Hence, by (13), (15)
and (16) we have

a=b" (mod p*™), (17
where a=a/a’, b=n'/y
are integers for p.
But now
yn>log’ n
and pn>dE+dlogn

for all sufficiently large n. Hence Lemma 3 follows from Lemma 2 or Lemma 1
according as a is an ordinary unit or not.

We can now deduce the theorem in a few lines. After dividing X, Y, C in (1)
be their common divisor, we may suppose without loss of generality that X, Y, O
are coprime in pairs. Hence we may suppose that the two sets II,, I, of primes
are disjoint and that C is not divisible by any prime in II; or IL,.

In (1) we may write

X-AXi, Y=BYi
where A and B are coprime. There are only a finite number of possible values
for 4 and B. Clearly
X, eP, Y, eP,.
But now
Z*-DYi=E,
where Z=A4X,, D=AB, E=AC.

We can now apply Lemma 3 with IT=1II,. Note that we do not use the fact
that X, €II,.

Trinity College, Cambridge, England.
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