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NOTATIONS
F (z) = distribution function = non-decreasing function, continuous to the right, and
which fulfills the conditions F (—oo)=0 and F (+oo)=1

+o0
F, (@)% Fy(@)= | F,(@@—y)dF, .

— o0

~qF’(ac-l-OH-F(ac—O)

I (z) =F’ (x) = frequency function if F (x) is absolutely continuous.
@ (t) = characteristic function
+o0
e~ [ “aF (@)
—o

Principal value. The general definition of an integral from —oo to +oco is

+o0 i} '’
| g@az=1m [g@da+ lim [g@adz
— o0 o0 . 2> g

supposing that these limits exist separately. In the present paper we will throughout define
such an integral as its principal value, that is

+o0 k4
f g(x)dx= lim J.g(x)dx.
_o0 -0y

Analogously we define for sums

+o0 n
Z a,= lim z ay.
—oQ

n—o0 —n
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SUMMARY

In this paper we discuss the numerical integration of an integral of the type

+o0

1
o] pdy

where @ (¢) is a characteristic function in the sense of probability theory. If @ (¢) is a charac-
teristic function, the same is true of the integrand of

+o0
1 —itr
— t)ydt
Py ®
-0
+00
and 1 sinht _;.
— | ——e (1 dt.
2r f hit 4
-0

These two integrals, which give the frequency function and the distribution function re-
spectively, are thus of the type considered in this paper.

Chapter 1. We investigate the class of characteristic functions which are equal to zero out-
side a finite interval (=T, T). If @(¢) is multiplied by such a function @, (¢), the result will be
a new characteristic function and the interval of integration will be reduced from (—co, + o)
to (—T, T). We deduce an inequality, which makes it possible to estimate the error obtained
by integrating @ - ¢, instead of ¢. We also deduce a characteristic function € (#), which is zero
for It > 1 and which from a certain point of view may be considered the best tool to use for
this truncation purpose.

Chapter 2. Let ¢ (t) be a characteristic function and suppose that is has been multiplied by
a function of the type considered in chapter 1. The corresponding frequency function is

T
1 itz
fla)y=— fe @(t)dt.

2ﬂ_T

It seems natural to try to approximate f(x) by first approximating @ (f) by ¢4 (¢) and then
performing the integration with ¢ replaced by @4. The approximation ¢4 should of course
be chosen so simple that an explicit expression for the integrated function is obtainable. The
interval (—T, T') is divided into sub-intervals by equally spaced points. Two approximations
@4 are investigated. (1) In each sub-interval ¢ (¢) is approximated by a straight line which
takes on the same values as ¢ (¢) at the end-points. (2) In each sub-interval ¢ (¢) is approxi-
mated by a second degree parabola which takes on the same values as @ (f) at the end-points
and at the mid-point of the interval.
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Note the difference between this technique and the usual numerical integration methods
If Simpson’s rule is applied to the above integral for example, the whole of the integrand

—itx
e

P
is first approximated by parabolas. After that the integration is performed.

Chapter 3. The main result of this chapter is the foilowing theorem:

If 1) @(¢) is a characteristic function,
2) There is a finite interval (—7', T') such that ¢ (¢) =0 for |2l,> T,
3) ¢’ (¢) and ¢”’ (¢) exist and are continuous for all ¢,

then the integral

+00
I= L d
“on @) dr
—o0
is approximated by
I4=T3(p)-R
and |I-14]<R
A
where Ta@)=—— 294
27,
28
R=—~—> T (Av).
16:13;(’? “»)

As R might be fairly complicated to calculate we deduce the following approximate expres-
sion for it

A v
R~ 3 ;(—1) @ (Av).

Chapter 4. Let f(x) be a frequency function and ¢ (¢) its characteristic function, Consider
the frequency function

2kntx
g(x)=2]‘(—) for |xl<7t.
Kk y 3
The Fourier series of g (z) reads

}' iy
g@)~—2 " @ (i)
27

We are in this chapter concerned with the problem of approximating g (x) by applying a
summation method on its F@urier series. We consider the well-known o, (z), obtained by
summation by arithmetic means, and a corresponding sum g, (x), obtained from the charac-
teristic function C (¢) in the same way as o, (z) is obtained from the function
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Bt = l—'tl for|t|<1,
0= 0 for’tl?l.

The asymptotic properties of ¢, and g, are deduced.

Chapter 5. In this chapter we chose a certain set of characteristic functions and calculate
the corresponding distribution functions, using the methods developed in chapter 3.

There are no references in the text. They have been brought together in the appendix at
the end of the paper.

CuarrER 1
A class of characteristic functions
In the present paper we are going to discuss various methods of integrating
numerically an integral of the type

+o0

Ip)=5- fw(t)

—o0

where @ (t) is a characteristic function in the sense of probability theory, and
where it is assumed that this integral exists.

The first difficulty which must be tackled concerns the “tails’” of the integral.
As a numerical integration formula cannot make use of an infinite number of
values of the integrand the integral must be “truncated”. We are going to use
the following procedure for this truncation.

Let ¢, (t) be a real characteristic function which fulfills the condition

P, (£)=0
for |¢|>T and T>0. Put
P2 () =y (£) - @ (2).

Then ¢, is also a characteristic function which fulfills the same condition as
@;. Instead of I(p) we consider the integral I (p,)

+o0 T

1 1
I(‘P2)=§"7EJ py(t)dt= 2—f
~ 00 -7

Since this integral is extended over a finite interval (—7, T) the desired
truncation has thus been arrived at. Instead of the original distribution func-
tion F (x) corresponding to ¢ (t) we are, however, now studying the distribution
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function F, (x) corresponding to @, (¢). In order that the procedure shall have
any meaning it will thus be necessary to estimate the error introduced by con-
sidering @, instead of @. This is done with the aid of the following inequality:

1.1. Let F(x) and F,(x) be distribution functions and suppose that F,(x) is
continuous and corresponds to a symmeirical distribution, i.e. F,(2)+F (—2)=1
for all x. Put

Fy (@)= F (2} F, (2).

Fy(yte)—Fy(x—¢)
2F, (e)—1

Then Fy)—F ()<

_1-Fy(y—e)+ Fy(z+te)
F, (¢)

and Fy)—F(z)=1
where £¢>0 and y> 2.

To prove this let X, ¥ and (X + Y) be random variables with distribution
functions ¥ (x), F, () and F, (z} respectively. Then

P{z—e<X+Y<yte}zPla<X<y} P{Y|<e}

Fy(y+e)—Fy(z—¢)
2F, (e)— 1

F(y)—F(x)<

The second inequality is deduced from
1-Pla+e<X+Y<y—¢e}=P{X+Y<z+e}+
+P{X+Y>y—e}zP{X<a} -P{Y<e}+
+P{X>y} - P{Y> —¢}=F (2)- F, (e) +[L - F ()] [1 - F1 (—e)]
1-Fy(y—e)+Fy(xt+e)>F,(e) [F(2)+1—F (y)]

from which the inequality follows.
In this connection we also prove a similar inequality.

1.2, If F,(x) and F,(x) are distribution funclions with characteristic functions
@1 () and @, (t) respectively, and

I‘P1(t)"¢2(t)l<)~'|t!
22

then Fz(x—a)—%éFI(x)<F2(x+a)+7
To prove this let

1] for |z]|<1,
g(x)—{o for |z]|>1,
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()

is a frequency function with the characteristic function

+ 00
1 it ( 1-— cos at
- % gt " *T
~ f e \ dx= ey

-0

in which case

The function
Fy(y+a)—F,(y+a),

considered as a function of z for fixed y, has the “characteristic” function

+00

f eitI{FI(x+y)_F2(x+y)}dx:
Z-% f eit.t {dFl(Z+y) dF x+y)}___ e lty(pz()lt(pl()

According to Parseval’s theorem

+0o0

f}y(g){Fl(x+y)~F2(x+y)}dx—§2—f w18 ol g () =g

o ol ¢
—o0

As |g,—@,|<1-|t| the right hand side has an absolute value less than
2 A

24 { 1—cos at

— | ——g—dt="=.

27 J ol o

— o0

Since F, and F, are distribution functions we get on the left hand side

+oo1
I= f &g(z) {Fl (x+y)_F2(x+?/)}dx

—0

- f%l_”_'{ﬁ'l(ﬁy)—ﬁ‘z(ﬂy)}dx

—o

n

f "‘;L”{F1 (y+o)—F,(y—o)} do=F, (y+a) — Fyly— ).
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Hence Fl(y—i-oz)—Fz(y—oc)?—%.
4
Putting yta==x
a=2aq,
2
we get Fl(x)>F2(x—a)——a&.

This is the left hand side of the inequality. Analogously we get

+a
—|x
I {“al |{Fl(?!*ot)'—Fz(y%-cx)}dx:Fl(y_a)_Fz(y+a)

-

and the proof of the right hand side of the inequality is immediate. This
proves 1.2

We now come upon the question how to make the best choice of g, (¢) for
this truncation purpose from the eclass of characteristic functions having the
property of being equal to zero outside the finite interval {— 7, T). Broadly
speaking the answer is: That function @, which deforms the given distribution
" as little as possible. This in turn implies that the distribution corresponding to
¢, shall be as concentrated as possible near the value zero. Taking the second
moment as a measure of concentration we then have the following problem:

1.3. To find a characteristic function ¢ (8), of it exists, which is equal to zero
for [t1=1 and for which

2—g(h)—p(-h)

lim 52

h—0
is as small as possible.

Note that if ¢(t) is a characteristic function and ¢ (£)=0 for |¢|>T then
@ (tT) is also a characteristic function and ¢ (tT)=0 for |t|>1.
Note also that if ¢/ (0) exists, then

lim 2 e =—¢"(0).
As a preparation to the solution of problem 1.3 we start by solving the fol-
lowing problem:
1.4, To find a frequency function P, (x) which fulfills the following conditions:
@) P, (x)=0 for |z|>um,

by P, (x) is a non-negative trigonometric polynomial of degree n for |x|<m,

105



H. BOHMAN, Approximate Fourier analysis of distribution functions
I
¢) og == f (2—2 cos x) P, (x)dx is as small as possible,
T

assuming that such a function exists.

To solve this problem we use the fact that P, (z) being non-negative, there
are constants wu,, u,, ..., 4, such that

1 1 .
Pn(x)=_ |u0+uleir+...+uneinxl2=§_ u, Hen(y‘”)-
Ty

2n

M=
T

0

b

P, (x) being a frequency function, we get

v=0

b4
f P,(x)dx=1= > |u %
We are thus interested in the minimum of

o= f (2—2 cos z) P, (x)d =,

under the side condition
>lw =1
The choice of x5 as a measure of concentration instead of the usual measure
k4
oy = fxz P,(x)dx
-

is merely a question of simplicity. It is easily seen that
, n
O S 0l S 7%

We note that for f(z) real and integrable in the interval (—u, )

T.(h=5= f f @) ug+u, €7+ - +u, e |Pda

-

defines for n=0, 1, ... the Toeplitz forms associated with f(z). To find the
smallest value of T, (f) under the side condition
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Sluwfr=1

means finding the smallest eigen-value of T, (f).

E4
1 [ o
As a=-— | (2=2cos 2)> > u, @, " Pdr=
27 S
—
n-1 n-1
c 2 - _ _ .
:22|uv‘ - uvu'v+1+uvuv+1:2'— z Uy Uyy1 T Uy Uy,
v »=0 v=0

we have to find the largest eigen-value of the Hermitian form
n-1

s - -
2—a2= z Uy uv+1+uvuv+l'
v=0

The characteristic equation of this form is

-2 1 0 - 0
1 -2 1 < 0
A, ()= =0.

0 1 -2 - 0
Expanding this determinant we obtain the recurrent relation
An(A)=~AAn 1 (A)—An_2(4).
As 0<2—2 cos z<4,

all eigen-values of the form oy lie in the interval (0, 4), and so the eigen-values
of (2—ap) lie in the interval (—2, 2). Then put

A= —2cos v, with 0<ov<n.
Then A,=2cosv-An_1— A, .
To solve this difference equation consider the equation

22=2xcosv—1
= cos vt Veosto—1,

x =e*,

From this follows that the general solution to the difference equation is
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A,=Ae™+ Be
where 4 and B are constants.
For n=0, Ay=—1=2cos v,
For n=1, A,=2*~1=4cos®v-1,
A4 B=2 cos v,
(A+B)cos v+4(4A—B)sinv=4 cos®* v—1,
t {(A—B) sin v= cos 2v,

A,=(A+B)cos nv+i(4—B)sin nv

cos 2v sin (n+2)v
=2 cos v cos nv-+—; sin Yy = ———7———
sin v sin v

The (n+1) zeros of A, are then

k
- k=1,2, ..., - 1).
v nt2™ (m+1)
Since A= -2 cos v, the largest eigen-value of the form (2 — o) is
n-+1 . b4
-2 cosn+2n—2 cosn+2,

and thus the smallest eigen-value of ay is

7T
2—2 cos .
n+ 2

As we are interested not only in the minimum value of as but also in the

corresponding trigonometric polynomial P, (x) we have now to determine the
eigenvector corresponding to this minimum eigenvalue. Put

g (@) =g+ u; e+ - +u, e,

_lgF

so that P, (x) .
27

The determinant of the following system of equations is A, (1)
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—Aug+u, =0

.........

Putting A=2 cos ;n— we have A,(1)=0 and the system will have solutions

+2

differing from the trivial one. Adding the side condition

Zlwl=1

the eigen-vector in question will be uniquely determined.
Multiply the second equation by e*, the third by ¢**, and so on. Finally,
adding the equations we obtain

~Ag+e % (g—uy) + €% (g — u, ™) =0,
(2 cos x—4) - g=wuge ¥ +u, V7,

Now u, is proportionate to the cofactor of the first element of the first row of
A, (4), ie. proportionate to A, (). But

sin (n + De
sin v

An_1(—2 cosv)=

n+1
n+2

sinwn sin {na+ n)
n+2 _ nm

and putting v= s this is equal to

Furthermore u, is proportionate to the cofactor of the last element of the
first row of A, (1), i.e. proportionate to (—1)™
Since %, and u, are both proportionate to (—1)" we have

eu:(n +1) + e—iz

gle)=K —— T,
CO8 T — COS

n+2

where K is a constant to be determined later. Since

9 (@) =ty + uy e+ - +uy e,

we have the equation
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iz(n+1) —iz n
2 +e i
2K =>ue"”,

. . 4
e +e ™ —2 cos ——
n+2

from which we get

Ug=U, =2 K,

7
Uy 1+ Uy 1 — 2, COS =0 for O<wv<n,
n+2

The equation

T

1+0°—2p cosn+2=0
has the roots
in
g:fﬁﬁ,
and so
iny iny
u,=Ae"*2+ Be nt2
or u,= (4 + B) cos njjrv2 +1:(A— B) sin nj-t{-vfz'
»=0 gives A+B=2K,
an TN
= ] . _ . ___=2K
y=n gives (A+B)cosn+2+z(A B)sm,’H_2 ,
2
t(4—B) sinnin2:2K[l+ cosn+n2]=4K cos? nZZ’
7
(A~ B)=2K cot
i ) et
u,=2K cos idd + 2K cot il 'sinﬂ,
n+2 n+2 n+2
2K .v+1
Uy = sin 7.
. 14 n+2
sin
n+2
i y+1
N =K’ ive .
ow g (x) ze ﬂnn+2n
n n
2 _ | w2 oy o P 1 - u+l
W‘ IKlpgnzﬁ mnn+2n mnn+2ﬂ

For k>0 we have

. v+l .op+l Y—u v+ut+2
v_%=k31nn+2n smn+2n—%Zcosn+2n cos o @
~k+1 k k+2 k+4 2n—k+1
=" 5 cosnfz*%{cos +27t+cos T2t teo —-——nn+2
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Now we make use of the following identity:

y N Y
— > cos (m+Nax—2nz)=}. > V241 5 o W-2m
n=0

n=0 n=0
: g: P -2m) _ iV e—zu(z'wl) -1 sin (N+1)z
neo P | sin «
which we apply to the sum
cos k2 +cos;k+4 + -+ +-cos 2n_k+275
+2™ nt2” n+2
with x=niz|_ 3 and N=n—k. This sum is therefore equal to
sinﬁ_k+1 s k+1
B v2 T T
sin sin ——
+2 n+2
Hence for >0
. k1
sin —— =
s sinv+ln-5inﬂ+l _'n—k—l—lcos km L n+2
v—p=k n+2 n+y2” 2 n+2 .
2 sin
n+2
n—k+2 kn : 7 kn
= 1 cot . gin ————.
g S pgtreot TSI

As |g?=|g|* the coefficient of ¢** is the same as the coefficient of e **.

9@ P= 3 Cue,

—|k|+2 kn x|k
wh — &' p{" | - -sin —— .
ere C.=|K'| { 3 cos ——— +} cot smn+2}
The condition Cy=1 gives
+2
1=|K’ 2, 2T 2
I | 9 ’

and the final result is

1 2 .
Pol@)=5_ 2 Cpe™
-1

&

T
_n—lkj+2 Icn+00tn+2si | kx|
n+2 n+2 n+2 L nre

e,

l
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Thus the problem 1.4 is solved. The polynomial has the property

[ (2-2 cos 2) P, (2)dz=2C,— C;—C-1=2—~C;—C_y=2~2 cos

-

n+2

and our solution of the problem gives us the following theorem:

1.5. If S a,

-n

is a non-negative trigonometric polynomial with ay=1 then

2—a,—a_122-2cos

n+2

We will now allow n to tend to oo in the formula for C,. Put k=t-n;

cot —=—
n+2—|tn| tnx n+2 .
Ctn': C +

o8 n[tnn[
n+2 n+2

n+2 n+2°

When #-—> oo a function of ¢ is obtained which we will denote by C(i):
1—|¢] e+ 1 i |t
c(t)= ( )cosm nsm b4

for |¢|<1
0

for |t]>1.
We deduce some properties of this function

1.6. C(t) is a characteristic function and it has continuous first and second
derivatives.

To prove the first part of the proposition put

1
1

f@)=5- f«f‘“o(t) dt
-1

and we have to prove that f(x)=>0.
Integrating by part gives

1 1
f(:l=)=—L fe““O(t)dt=} fcosxt-C(t)dt=
2n ;r;o

-1

1
. 1
nx 0 Tz
H
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1
[sin xt-(1—t)-sinxutdt=
o

8

1

=_)~13—CJ(1-—t){cos(x-n)t—cos(x+7z)t}dt:
"%
1
_[i—t{sin(x—z}t sin(z+m)t 1_(__1_[ sin(x—n)t_sin(x+yz2_t}dt=
e r—an X+ 7 o 2z r—m r+m
0
l—cos (x—m) 1-—cos (x+mn) 2x
= - = s (1+ .
2z (x— m)° 2x (x+m)? (22 —at)P (1+cos )

which is >0. This proves the first part of the proposition. As for the second
part we have for 0<t<1

C) =(1—¢) cos nt+—}z sin 7 t,
C'(t) = —m (1l —1t) sin zt,
C" (t)= —n* (1 —t) cos mt-+x sin nt,
C(1)=0 00)=1
C'(1-0)=0 C'0+0) =0
C”"(1-0)=0 C"(0+0)= —="
As C(ty=C(—t) implies
=0 (=) =C'(t)
0//(_t)=CII (t),
we have ¢'(0-0)=0

¢ (0—0)= — %

This proves the second part of the proposition. Next follows a proposition
which will be used in the solution of problem 1.3.

1.7. If ¢ (t) is a characteristic function and

8= 2 ¢@n)

n=-—o0
18 convergent, then S=>0.
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To prove this put 6=re”* with r<1. Then

400

7 (p(ln):r”f " A F (x fﬂ"dF

-

+o0 + 00
Srpan- | ZG"dF<x)=fL0dF<>
1 1
- too
Srg-in= | [T5dP@,
1 -
+0
+ 00 " 2
2 MMedn)= {1+ 0 }dF( f“ lBI = 0.
+ 00
Since > @(in)

is convergent it now follows from Abel’s theorem that

+00

lim 3 "™g@dn)= }go @(An)=0

r—>1 -o0

which was to be proved.
1.5 and 1.7 will now be used to prove the following theorem:

L8. If ¢(t) is a characteristic function and @ (t)=0 for |¢|>1 then

gh)—p(=h)

27l
hz

lim
h—0

To prove this note that ¢ (ht)e™ is a characteristic function and that
T= 3 @(hv)e™

is convergent since it has only a finite number of terms. According to 1.7 7'
is >0. Putting N= [%] it is evident that 7' is a trigonometric polynomial of

degree N or N—1. As @(f) is a characteristic function ¢ (0) is equal to 1. Ac-
cording to 1.5
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2—g(h)—@(—h)>2—2 cos ——

N+2’
T
22
2—gh)—g(—h) °% N2
=

h2 hz 3

Jm 3

=0

as was to be proved. »
We are now in a position to state that C(¢) is a solution to problem 1.3.
We have shown that " (0)= —n? i.e.

. 2=Ch)-C(—h)
" 2 -

and 1.8 tells us that this is the smallest possible value.

We have not proved that C{f) is the unique solution of problem 1.3 even
if this seems probable.

The fact that C(f) has continuous first and second derivatives turns out to
be essential for the way in which we are going to use C(f) in chapter 3. In
that chapter we will deduce approximation formulas with error bounds whose
validity will require that ¢ (f) has continuous first and second derivatives. As
has been pointed out earlier we suppose that the integral

+ o0
1
5 | v

is transformed into an integral from —7 to 7' by multiplying ¢ (f) by a char-
acteristic function ¢, (f) which is equal to zero for |¢/|>7. In order that the
error bounds of chapter 3 should be valid it will then be necessary that g, (f)
has continuous first and second derivatives. Note that the well-known charac-
teristic function

~l%' for |t|<T

0 for |t|>T,

gt)y=

which is often used for truncation purposes, does not have a continuous first
derivative.

In the following table we give some values of the distribution function cor-
responding to C(¢). For comparison some values of the normal distribution func-
tion have been added. They show that the agreement between the two distribu-
tions is fairly good.
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H. BOHMAN, Approximate Fourier analysis of distribution functions
Table of {F (x)— F(—2x)}.

Column II: Distribution corresponding to C(t/n), i.e. having mean 0 and
standard deviation 1.

Column III: Normal distribution having mean 0 and standard deviation 1.

x II II1

0.26558
0.50491
0.69840 0.68269
0.83732
0.92426
0.97009 0.95450
0.98912
0.99440
0.99494 0.99730
0.99520
0.99624
0.99756 0.99994
0.99849
0.99887
0.99892 1.00000

ot ROt RO 0o

o W GO 00 GO DD BD DD e e e 00RO CS

We conclude this chapter by demonstrating a method of constrvcting char-
acteristic functions which are equal to zero outside a finite interva' (--7, T').

1.9. Let f(x) be a function, satisfying the following conditions:

1) f(x)=0 forlx\|>§,

2) €L,

3) f&) =F(—1);

+ oo

[ 1t~ @ dx

o0
+oo

__[c|f}2dx

then P (t)=-

s a characteristic function and @ (t)=0 for |t|=>T.

To prove this put
+ o0
g(x)= f e " f(t)dt.
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Then g(x)=g(x) and hence g(x)?=>0.

+ 00 + 0

g@P= [ du [ e fu)f)dy =
-+ 00 400 + oo -+ oo
= [du [ e fuyfe—wdi= [ et{ [ f) fE—u) du}dt.

That g€ L follows from Parseval’s theorem. Except for a suitable factor the
function

+c0
| fwfE—u)du

is thus a characteristic function. The factor is to be chosen in such a way that
the function becomes equal to 1 for ¢=0. Thus

+ 00
[t fE—wdu

@ )=—%
|t f(~w)du

is a characteristic function and sines ¢ (f) is evidently equal to zero for |t|=T
the rasult follows.
As an example we chose

f {cosyzx for |z| <}
x“_“

0 for |z|>1.
Then for 0<t<1

+ 00 3
ff(t——x)f(x)dz= fcosn(t-x)-cosnxdx=
-0 -1

|3
: 1
=1 J {cos mt+cos w(2z—t)}dx=1 (1 —1¢) cos nt+% sin mé.
-%

t

That is, we obtain the characteristic function

C@t)y=(1-]¢)) cosnt+7—1_£sin|nt| for |¢|<1.
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CHAPTER 2

Approximation First—Integration Afterwards

Suppose that @ (¢) is a characteristic function and that there is a finite inter-
val (=T, T), such shat @ (t)=0 for |t|>T. We want to determine the frequency
function f(z), corresponding to g (t), where f(x) is given by

f(x)=$ fe“"’zp(t)dt.

In 1928 L. N. G. Filon suggested in a paper that such an integral should be
dealt with in a manner different from the ordinary methods of numerical in-
tegration.

Divide the interval (— 7, T') into 4 N equal parts and put 7'/2 N = 1. Then put

t,=—-T+v-2 O0<y<4N.

In each sub-interval (ty, t,,2) We approximate ¢ (f) by a parabola which for
t=1ts, l3»41 and fp,, takes on the same values as ¢ (t). The approximation ar-
rived at in this manner will thus consist of 2 N parabolic arcs. It is substituted
in the integral for () and an explicit expression for the value of the integral
may then be set forth. This method will be discussed in the present chapter,
the title of which indicates that ¢ (2) is first approximated by a suitable func-
tion @, (¢). The integral

T
1
P f et g, () dt
T

is then evaluated and is taken as the approximation f4(x) of f(x).

We will here consider two cases. First we are going to investigate the result
of approximating ¢ (¢) in each sub-interval (t,, £,+1) by a straight line. After that
we turn to Filon’s method of approximating ¢ (f) by parabolic-arcs,

Our investigation of the first-mentioned method will be based on the assump-
tion that ¢’ and ¢’ are continuous for |¢|<7'. We define the auxiliary func-
tion g (t):
1-|t] for |t|<1

)=
7¢) [ 0 for |t|>1.

Then ¢(t) is a characteristic function, corresponding to the frequency function

1—cosz

mat

The .approximation @4 (f) of @(f) by straight lines can be written

4N-1 _
r=3 pg (),
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for if t=1, then

4N-1 -
Qalt)= 2. qv(t»)g( 7 )=tp(t7.)
v=1

and in each interval (f,, f,,;) @4 (¢) is a linear function.
The approximation f,(z) of f(x) is thus equal to

1 i — 4. st 1 ‘ — i t—t
fA (ﬁ)z—;fe @A(t)dt= ,,gl ¢(t,,)é—n [e g(T) dt
-7 =

L+A
4v-1 1 t—t,
= > (p(t,,)'z—n f e_"’g(——*—l )dt=
v=1 -
4N-1 1 : 4N-1
iy ; 1—cos Az 2
— t, —it,x | ~izdd —_— t -U,,I’
21 ?l )2nfe g nat nAz® El e

A1
and this may, of course, be written

1—cos Az
m At

> @ (Av)e

We have now to estimate the error |f,(x)—f(2)|. We need the following in.
equality.

2.1. For real x and t and a<t<b

itz t—a

H(= T e 2T
(B)=|e"—3— e
Proof: For real y we have
2
e’y=1+iy-|-z/2—’l9,
where |9]<1.

t—a b—t
HB=|1—-—ZgC-br__ i(@—t)z
() ‘ L Py

_ t—a . b-—t? , )
——'l—m(l—i-‘l(b—t)x-l'——r 9,

_b-t i (@=tp 4
b_a(l-l-z(a Hx+ 2 P,

- —4\2 _ _n2
<(t—a) ®—t2+ (B-1) (a—t)zwzz(t—a) (b—t)m2
2(b—a) 2

as was to be proved.
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In each interval (4, £,,1) {¢ ({) —@a(t)} is equal to

+00
t—t, . tor—t ..
¢m—wﬂn:.f%“—~xmeuni%—w“1dF
+oo2 " 0)
pO-patr< [ 500 Gu-ndr@- =" et -0,

Now we can use this inequality to estimate the difference f(x)—f,(x):

|f(@)—fal0)| =

1 )
oy e‘”{q;(t/)f(p,,(t)}dt

-
=z

) 'i'-ﬁbq

2

1 _ < POy [L(Z‘;t)
<2nf|<p(t) palt)dt< T 41\' dt

2
=T
_ O B T (0)
2n 4N1L A 127 )
Summing up:
T
2.2. Exact value: /(x):—l— f e “o(t)dt.
27
-r
) 1-cos Az —idzw
Approximate value: f,(x)=——"—3—- 2 ¢(Av) e ",
A >
T2
E bound.: — < ———g"
rror oow |f(2) = fa (@) 127 (0)

We now turn to Filon’s approximation of ¢ (f) by parabolic arcs. Here we
assume that ¢, ¢” and ¢"’ are continuous for [¢|<T.
We define two auxiliary functions

0= 1-¢  for [t|<1
5971 00 for |e=1

¢
02 (0) = (1—-]t|)(1—‘§;) for |t]<2

0 for |t|>2.
Then
1 1 1
1 _ 1 2 . 2sin x—2x-cosx
pp fe it’gl(t)dt=7—t fcostx(1~t2)dt:;t_xfsm tx'tdt:;z—-xs—“’:
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2 2
and 1 e i (t\dt—lfcostx-(l—t)(l——)dt—
2n n
2 0
2
1 ) 3 3{1 —cos 2x)
—nxfsmtx(é t)ydt= m
0

sin2x—2xcos 2 3xr+x-cos2x— 2 sin 22

na® 2n 2’

By the aid of g, and g, the approximation @, (f) may be expressed as follows

a(t) = Z ‘P(tv)gl( ) Z” (P(t )9, (“‘}:’t') s

where 3’ and 3" denote summation with respect to odd and even values of »
respectively. That this is the desired approximation can be proved in the fol-
lowing way.

t—t
For t=15, we have gz( Azk») =1 and all the other functions g, and g, equal
to zero,
t—t .
For t=1t.,1 we have g, (-——;—""l) =1 and all the other functions ¢, and g,

equal to zero.
In the interval (fx, far+2) @4(f) is composed of three parabolas, namely

@ (for 1) 9y (t_?k“), and
the right hand half of
=
the left hand half of
@ (far42) " G, (t':—t;“k—ﬂ') :

Thus ¢4(t) has the desired properties. The approximation f,(z) of f(x) is
equal to

1
fa@=5_ | e ps()di=

'.i%»i

T
1 ”

t—t,
~itr v dt=
xl)° gz( A )

T
’ l ~—itxr 1 e
=>"p(t) 2—f i ( )dt+z ,)2
-T -T

Ay
N Y tv —izt,
2'gt)e 2n 7

2
J\e_i;_“gl (t)dt-i- z// (P(tv) e~irt,2_)'_ f ~iAzt (t)dt"‘
2
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28inlz—2Azxcosdx, iz
- Y 2 ) et

31x+1xcos 2Arx—2sin2lz
27 A o8

Z (p (t,,)_.e_m”.

To estimate the error we first note that if P, (t) is a second degree poly-
nomial, f(t) is real and P, (t)=f(¢) for t=a, b and ¢ then

(t—a) (=) (t—0)

1®=Py 1)+ .

1 (6)

2

where 0 is a point in the smallest interval including «, b, ¢ and ¢. Consider now
the difference

@ () —a(d).
In each sub-interval (fy, fsx52) the real and imaginary parts of this difference

are both equal to a function minus its approximation by a second degree
polynomial. Putting ¢ (¢)=u (f) +iv () we then have

(t - tgk) (t '_"t2k+1) (t - t2k+2) {un: (

5 6,)+iv"" (0,)}

) =ga(t)+

in each sub-interval (fa, tax.2). Since

[u” (6)+10™ (6,)]<2 M?x {l¢” ®},

we get |(p (t) — @4 (t) I < | (t_— t‘Zk) (t_ t2§+1) (t_ t2k+2)l Max {I ¢H/ (t) I}.
t

Now

T
lf(x)—fA(x)|=‘§l; fe“"{zp<t)—<pA<t)}dt’<
-7

T
1 N 11
<ﬂ_£|‘7’(““%(‘)ldt<g Max {|g (t)l}'J|t(t_1)(t~2l)]dt=-

'NA4 11 1
udrye Max {|¢'"" ()|} = 5= Max {l¢"”" @3-
¢
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CHAPTER 3
The Trapezoidal Rule

Let ¢ (t) be a characteristic function and suppose that the integral
+o0

1
I@ﬂ=§;J‘¢mdt

]

exists, In this chapter we will discuss to what extent the trapezoidal rule is
suitable for the calculation of an approximate value of this integral.

Let us first note that if ¢ (f) is a characteristic function then the same is
true of

P1t)=e " g (1)
sin ht o-ite

@ (£).

The frequency function f(zx) corresponding to ¢ () is given by the integral
+00
1
f@-1@)=5= [ pu0ds
if this integral exists. The increment of the distribution function is given by
+00
— . — 2k
F(x+h)-—F(x—h)=2h-I(<p2)=2—n @, (1) dt.

It follows that these integrals are both of the type considered in this chapter.
The so-called Poisson’s formula will play an essential réle in this chapter. Ac-
cording to this formula

+00
+00

Sgm=3 f &g (1) dt,

—o0
—o0

where ¢ (f) is a real or complex-valued function. Before we state any condi-
tions under which this formula holds we note that if

g)y=g(it),

where >0 and @ (f) is a characteristic function corresponding to the frequency
function f(z) and if Poisson’s formula holds

)‘ +00 +00 27!'1’
72 r00-31(7)
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We will then say that Poisson’s formula applies to (f,¢) with parameter
value A.

We start by stating two well-known theorems, providing sufficient conditions
for the validity of Poisson’s formula.

31 If 1) |g@)|€L(— o0, + o)
2) g (t) s of bounded variation in (— oo, + o)
3) 2g@y=gt+0)+g({t—0) for all t then Poisson’s formula holds.
+o00
32. If 1) G@)= Z g vty is uniformly convergent for |t|<}

2) Q) is o/ bounded variation in (—13,1
3) 29@)=g(+0)+g(t—0) for all t then Poisson’s formula holds.

Proof of (3.1) and (3.2): In both cases
+o0
G(t)=_zwg(v+t)
is integrable over {—},i) and of bounded variation. It follows that
7+°O
G(O)= 390
i1s equal to the sum of the Fourier coefficients of @ (f). That is
+3
+00
GO)y= 3 Jez"“”G(t)dt.
X
But

+3 3

+ 00

2"”"Cr‘(t)dl,‘«f Z g (yrt)dt=
1 o

+1 v+3 +00
+00 +00
= 2 fez"’"'g(v+t)dt= > g (t)dt= je“’“g(t)dt
v=—00 y=—00
~3 v—3% — 00

the inversion of the order of integration and summation being justified in (3.2)
by uniform convergence and in (3.1) by |g(¢)| belonging to L(— oo, + o).

+o0
Hence Z gv)=> f e g (t)dt
as was to be proved.

When we are dealing with a frequency function f and its characteristic fune-
tion @ the theorems (3.1) and (3.2) may be applied to either f or ¢ in order
to make certain that Poisson’s formula holds for the pair of functions (f, ¢). The
following (new) theorem applies only to characteristic functions.
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33. If 1) g() w a characteristic function
2) Gt Zg (v+1) is uniformly convergent for |t|<L then Poisson’s

formula holds

Proof: Since ¢ (t) is a characteristic function it is continuous and since the
series which defines G (#) converges uniformly G (¢) is continuous. It follows that
the Fourier series corresponding to G (¢) is summable (C, 1) to the sum G (¢).

+¥
Hence G0)= lim > (1—'—%—') feﬂ’"""ta(t)dt.
-

But G(0)= 2 g

and [t awdi- | &g @ dt

~3 -

as in the proof of the foregoing theorem. Hence

+o0
+o0
> g(»)=lim Z ( I:‘)Je2nim‘g(t)dt.

Since ¢ (1) is a characteristic function all integrals on the right hand side are
non-negative. Hence summation by arithmetic means leaves the same result as
ordinary summation. That is

+00

Z g )= Z e g (t) dt

‘DO
as was to be proved.
Our next task will be to deduce three corollaries to the theorems we have
just proved.

3.1, If g(t) fulfills the conditions (3.1) then

+ 00

z g(j’v Z 2nwt }.t)

for all 2>0.

3.2, If A>0 and g(At), considered as a function of t, fulfills the conditions

(3.2) then ‘
+oc Z'V) +o0 °°2 it (l t)
TV p dt
2ol Z el
for all integers p>=1.
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3.3. If 2>0 and g(At), considered as a function of t, fulfills the conditions

(3.3) then
ey 2 e Y At
4 2rivt
s =3 n “Vdt
g(P) ‘ g(?’)

V= —00 y=—00

for all integers p>=1.

If g (t) fulfills the conditions (3.1) the same is true of g (A#). This proves (3.1').
If g (At) fulfills the conditions (3.2) then

G(t)=+§g(2v+lt)

is equal to the sum of its Fourier series.

+3
+00
G(t)= Z eZnint f e-2m‘nuG(u)du.
o0 !

1 -1,
The sum of the @G (t) values for t=0, -, ..., pp - is equal to

200G 2 2 ()= 20 )

p=—00 m=0 y=—00

"3

[

+3
+o0 p~1 2mimn

i +oo
S Ser® fe‘z”""“G(u)du= > pfe“z””‘p“G(u)du=

I

n=-00 m=0

-t ~%
+00 +oo
+00 A 400 o int lt
= Z P f e~.2mnpug(;{u)du= Z f 2n g(;)dt,
neeo J n=-co J

where we make use of the fact that

p 1 Znimn [0 if n*0 (mod p)
e ? = .
m=0 lp if n=0 (mod p)

This proves (3.2). )
The proof of (3.3') is almost the same as the proof of (3.2'), the only dif-

ference being that we have to use summation by arithmetic means instead of
direct summation. Thus we get

+oo

+00 n

> g(%): lim > (1—%)1} f e 2P g (3 w)du.
y=—00 n—>0 k=-n

Since g (Au) is a characteristic function all terms on the right hand side are
non-negative. Hence
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+eo v +00 w
Zg(;)= S f ¢ Gy du

and the proof follows as in (3.2).
In (3.3') we assumed that there was a A>0 such that

Jrzo:otp(lv—}-t)

was uniformly convergent, and from this assumption we could conclude that
Poisson’s formula was valid for a certain set of A-values. It is impossible to
prove that the formula is valid for all A-values if it is valid for one A-value.
We will show this with the aid an example.

According to Polya’s well-known theorem the function

1
1+]¢f

is a characteristic function. Thus the same is true of

cos 2wt
£y =77
PO
With A=1
+00
Z(p(v)=+oo.

This means that Poisson’s formula does not hold for A =1. It holds, however,
for A=1:

+o0 +oo 2 +o0 _lw
S g (f_)ﬂ): 5 w”"“”‘ S __(_TL,
e W > 1+‘§+t\ P14 §+t|

This series is easily seen to be uniformly convergent for [¢[<} by considering
the sum of two consecutive terms i.e.

1 1
(=1 cos 2zt - 1 =(—1) cos 2t z
14240 147514, 1+2+¢ 1+”—+—1+t)
2 2 2 3

if v>0, and a similar result holds if ¥ <0. The result then follows from (3.3).
We are now going to prove some theorems with the aid of (3.1)~(3.3").

3.4. If F(x) is a distribulion function and @ (t) its characteristic function, then

A X sinkly _,,, - 2avy # 27y
n,,agw—l;—e q)(lv)——vgz_:wF(x‘*-h"‘T) _F(l‘“h+ j. )
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This is an immediate consequence of (3.1) and (3.1').

Fa+h+y)-Fx—h+y)
2h ’

considered as a function of y, is a frequency function of bounded variation in
(—~ o9, + o). The characteristic function corresponding to this frequency func-
tion is

. _
5% f eV{F(x+h+y)—F(x—h+y)}dy=

oo 00

1 ; — 1 ) —
=5hti f e“”dFy(x-hnLy)—z———hti j eVdF, (x+h+y)=
et —emih sin bt _,.
BT TR Ayl A0S

and the result follows.

3.5. If Poisson’s formula applies to (f, @) with parameter value 2, then

l +00
52 2PN 0

This is an immediate consequence of Poisson’s formula. We can also express
this result in a way that better illustrates its connection with our approxima-
tion problem

+o0

10=5= | swar.

—o0

If we calculate an approximate value of this integral according to the trape-
zoidal rule using values of the integrand at equally spaced points, starting at
t=0, we get

—l*qu(M),

27 5%

and (3.5) says that this approximate value is larger than or equal to the
exact value.

3.6. If Poisson’s formula applies to (f,¢) with parameter values A and pa
(p integer > 1), then

pA A
2n§¢(VPl)>2n§¢(vl)-
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Proof: s Srn=31(*7),

pa _ 2my
2727 (”M)h;f( pA )
From this we get
Ap A 2xy
. — = =0
s2Setin -5t Seon-31(32) >0,
where the last sum extends over v-values »% 0 (mod p). This completes the proof.

3.7. If ¢"(0) exists and Poisson’s formula applies to [f(x), @ (t)] and to
[2®f (x), —¢" (t)] with parameter value 1, then

L 3 o+ Heon<io

Proof: @)= fw e f(x)dx
¢ W)=~ [ e"af(x)

le” ) [<|g" (0)].

This means that ¢" (t)/¢’" (0) is a characteristic function, corresponding to
the frequency function

We apply Poisson’s formula:

Z (PII

702 () ()

2'3
S—nsgtp” )= —szf( )

27up 0)

Since ’2%%‘,9?(111 Z,(2nv)

2

2 2
we get -2~;Z<p(v1)+4ttz¢”(vl)=f(0) Z (v ~1)f( m)

Since the last sum is > 0 the result follows.
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The inequalities (3.5) and (3.6) are based on the assumption that Poisson’s
formula holds. We are now going to deduce the same inequalities from other
assumptions.

}' +
3.8. If Ti=5 AT

1
nd, - :
a I J @) d

- 00

are both convergent, then T,>1.

To prove this we apply theorem (3.3). As el is a characteristic function,
so is

p ()=o)
According to condition 2 of (3.3)

+o0 +o0

z ‘W(A’V—’r—t)z Z (P(2v+t)e‘8”-"”l

-0

should be uniformly convergent for |¢|<A1/2.
Since this series is absolutely less then

eIt o gl S oAl gde2 S g eAll < o

4 v 14

for |¢|<A/2, uniform convergence holds and (3.3) may be applied. Thus we get

+oo

A 1
;;Ze_“'"'gv(lv)>% ( e_sm(p(t)dt.

Ry
— o0

Since X AVED)

v

is convergent it follows from Abel’s theorem that the left hand side tends to
this limit as ¢—0.
Since further

_f @ () dt

is convergent, it follows that

[ eMowdi= foe‘f‘{q)(t)+<p<—t>}dt:
—00 0

o t + 00

=sfdtf e {pu)+p(—u)}du— f p@)dt

0 0 ~ 00



ARKIV FOR MATEMATIK. Bd 4 nr 10

+ 00
A 1

5 0. Thus — = t)dt
as e hus Zn;q;(lv) - f @ ()
as was to be proved.

Y

3.9. If TA:?T;;;Q?(Z”)

and =225 g i
pA 27Z qu p

are bolh convergent and p s a positive integer, then
Tp,l =T;.

As in the proof of (3.8) it follows from (3.3) that Poisson’s formula applies
to the characteristic function

pt)=eMe(t)

and the corresponding frequency function. Applying (3.6) we get
A A
5o (pA)>5 Sy ().
But this is equivalent to
pa —epri 5 A ~ehip)
2n§(p(p}w)e /Qngtp(lv)e .
When ¢—0 it follows from Abel’s theorem that

pA A ,
55,2 ? WANZ5 D¢y,
as was to be proved.
The theorems (1.7), (3.3) and (3.8) may be epitomized as follows. If the series
+00

A ,
g(t)=2—7—t§¢(/1v+t)

is convergent for {=0 then its sum g{0)>0. If the frequency function f{z}
exists for z=0 in the sense that

+o0

1
jo-5- [gwar,

— 00

then ¢(0)>£(0). If finally g (¢) converges uniformly for [¢|<1/2 then we can
also estimate how much larger g (0) is than f(0).
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As a first application of the theorems concerning the Poisson formula we will

consider the following problem.
Suppose we wish to calculate an approximate value of the integral

using Simpson’s rule. Suppose furthermore that we use the abscissas v1, with
spacing A so that there will be two different ways of applying Simpson’s rule:

:—Z‘P (2vA+2) +—E<,v 2v2),

H

W!N w

Z 2vl)+ﬂgtp(2vl+l),

v

According to the trapezoidal rule we get

A
Tz-—% ;‘P(”z)

PN

Tz;, = Z(p(2 'Vl)

2

with spacings 4 and 24 respectively.
We assume that these sums are both convergent. Then

8, =271 +}Tos=T1+%(Taa—Th),
8, =4T1—3To;=T:—3 (Taa—T).
According to (3.8) and (3.9)
TozTi=1.
Thus §;=2T=1
and S, < T

Hence it is evident that 7', is a better approximation than §;. If S, is a
better or worse approximation than 7'; cannot be ascertained is this way.

We now turn to the main problem of this chapter, which is the numerical
integration of

by use of the trapezoidal rule.
We have already pointed out that the numerical integration of this integral
involves fixing, sooner on later during the calculations, a finite interval (—T, T'),
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such that the approximate value of I will be based on values ¢ (t,) with [¢,|<T.
The tails of the integral from — oo to —7 and from 7' to + co are disregarded
and an estimation of the tails must thus be undertaken in order to control the
error introduced in this way. In chapter 1 we decided to truncate the integral
by multiplying the integrand by a characteristic function which is equal to zero
outside the finite interval (—7, T).

Throughout the rest of this chapter we will assume that this method has
been applied upon the integrand. We will further assume that the given cha-
racteristic function as well as the characteristic function by which it has been
multiplied have continuous first and second derivatives. We may thus re-
formulate our problem in the following way.

The integral

T
I L (tydt
2 ¢
-r
is to be integrated numerically, where
V1) @) is a characteristic function,
V2) @@)=0 for |t|>T

V3) ¢ (t) and ¢" () exist and are continuous.

Inspection of theorems (3.1)— (3.9) easily shows that these theorems all hold
for a characteristic function fulfilling the conditions V2 and V3. The para-
meter / may then take any value > 0 and the inequality (3.6) holds for every
integer p=>1.

According to the inequalities (3.5) and (3.7) we get

2

A A A
5;;‘77(/1”)4‘4—7:2(;) Av)< 2—2 @ (Av).

v

If we take the arithmetic mean of the upper and lower bounds we get the
following approximation formula.

T
1
3.10. E. : I=— .
xact value 3 f @ (t)dt

~

2

Approvimate value: 1,=T,(p)+ 8—1—2 T (")
7

Error bound: |I—1,|< ~8—;LT1 (@").
7
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In practica] application this formula has the disadvantage that 77 (¢’") will
as a rule be fairly complicated to calculate. Suppose for example that the
characteristic function @ fulfills condition V'3 but not V2. By multiplying by
the function C (¢/T) of chapter 1 the product will again be a characteristic func-
tion, which fulfills condition V2 and V3. We want to calculate the increment
of the corresponding distribution function over the interval (¢ —%, a+A). This
increment is given by the integral

T
1
2h-Igy =2k [ p0dt
- -T
sin ht _,,, t
where @ ()= T t (p(t)C(Zﬁ).

This integral is thus of the type considered here. Applying formula (3.10)
means calculating inter alia 73 (p:’). We will not enter upon the details but it
is evident from the expression of ¢, alone that ¢;" will be of fairly cumber-
some form. From a practical point of view it seems desirable to replace 7'y (¢")
in (3.10) by some approximate expression, if possible.

Since @" (¢)/¢"’ (0) is a characteristic function, theorem (3.9) gives

7’ 17 2}' rt
~Ta(9") < —=Taa(y )=—§;2¢ (2 Av).

v

In this expression we replace ¢" (2iv) by the approximation

RA)—@RAv+d)—pRiv—1)

’r 2
—¢" @An~=E =

27 ’r 1 1Y
Hence —ﬂ%ﬂp (QAV)anz,,:( 1V e (Av).

We are thus led to presume that
2 ’
32 (-e@r)

is an approximation on the ‘“safe side” of the error bound

22 1
e Ti(¢")-

Our next task will be to discuss to which extent this presumption is correct.
We will base this discussion upon the assumption that ¢ (f) fulfills not only
conditions V' 1—V 3 but also
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V4) The function ¢ ({)=¢ (t)+ @ (—*) has continuous derivatives up to order
2 p inclusive for 0 <¢< 7. At the endpoints the derivatives are defined as

p® (0) =9® (0+0),
P (1) =™ (T - 0).
V5) ?(T)—9®(0)=0 for odd values of » less than (2p— i), while
w(Zp‘l) (T) _ 1/)(217*1) (0) +0.

We will also assume that 7'/21 is an integer. Let us now deduce the Euler-
Maclaurin sum formula,.

y ¥
ey__ lexuzz;b_!.Bn (x))

where B, (x) is the n:th Bernoulli polynomial, B, (0)=B,= the n:th Bernoulli
number, and

BO (x) = 1’
B, (x)=nB,_, (z).

Put j, (x)= B, (x—[«]) so that j, (x) is periodic with period 1.
The integral

T T T
1 1 1
— fw(t)dt=§; ( {(p(t)+(p(—t)}dt=§-7; f yt)dt
T (1] 0

will be evaluated according to the Euler-Maclaurin sum formula. Divide the
interval (0, T') into sub-intervals of length A.

vA+A rA+A

. t vA+4 . t ,
[ voa=[i(})rvo] -2 [ 0(5)v o
vA i v vA

Successive partial integration gives

vA+A . i . yA+4
j (_ml)m. (t) B ]H (ﬂl)”f ' (ﬁ) (2)
dt=— o Y - ) 9% (t)dt.
! Y [MZI A v A AU " et ) fer \ 7] ¥57 )

Summing with respect to » and using the fact that
Ji (v =0)= —j, (» +0) =4,
jx () is continuous for k>1,

je (0)=B, for k>1,

we obtain
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T
ftpdt=
0

| oI

0)+4 2 p(iv)—

>0

2p ) A2r ¢ . t
(T) =™ P O)]+ @p) f Jon (;) P71 dt.
ey t
Now B,=0 for odd m>1 and
Y™ (T) = ™ (0) =

for even m <2p according to assumption V5.
Making use of the definition of y we may then write

& G W (M = (0]

T
527 f (t) @
- Jep \ 1Y {t)dt
!
(‘pr)-0 A

It is easily seen that the last integral tends to zero as A—0. Thus, using
the notation of (3.10)

T
Ao pwAd)= fwt)dt-l—lzp
-r

PO+ 1 S D O o),

—

1
T (<P)=%

N

The same formula with spacing 24 instead of A gives

1

Tz;. ((P) = E;c

Bsy
27 (2p)!

{—ﬁ'i

@) dt+ (22?27 [p®? P (t) + o (A2P).

']

Subtracting these expressions gives
Bsyp
27 (2p)!

Using the expansion of T(p) with ¢ instead of ¢ and (p~—1) instead of
P gives

3 (~ 1V g () =T ()~ Ta (p) = £ (22~ 1) W7 OF +o (A7),

T
4 zi 2p-2 B2n 2 @p-~1) (4 2p-2
Tilg") =5~ f¢ Ot AR T O +o (1Y),
-T
T T
but as f ¢’ (t)ydt= f@p" @ dt=y'(T)—v (0)=0,
-T
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B2p—2

Py 22p-2
we have Ti(¢")=14 Sm@p-2)

[y®7 2 (O +0 (22772,
Now we recall that our presumption was that

l 4 32 ’V}' 2 2{T21 (p T}*((p)}

¢

was an approximation on the “safe side” of

12
R2= - 8_7'5—2 Tz ((p, )

According to the above expansions R,/R, tends to the following limit as A—0:

1

5a (27 -1)

Bs, _8n2_27t(2p—2)!
2n

0= 27 (2p)! — By

B2p 2 2
T R — T
%= By pepy @7

The following table gives some values of @,

p= 2 3 4 5
Q= 1 6 251. 103}

By use of the expansion

i
21
Ser= 2,
@, can also be expressed as
1 8
=5 227 _
=3 Soa ( 1),

and it is easily seen from this formula that @, increases monotonously with p.
Thus we have found that
Bsy

Rlep.l'Rz'_—A“(220_1)47!3(22)),

@70 ()15 +o (A%7),

where %Lm @p1~@p=1. In this sense R, is an approximation of R, on the
0

“safe side”.
We exemplify the use of these results in the following way.
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Let @ (t) be a characteristic function with continuous derivatives up to order
4 inclusively. Put

n0-(g) o0,

where (' (t) is the characteristic function deduced in chapter 1. Then @, has
continuous first and second derivatives, while the third derivative is discontinuous
for ¢ equal to —7,0 and +7, except for special choices of ¢. If we leave
such special cases out of consideration we have

y!
R1=ZJFZ(“1)”(P1(M’)=O()~4)
2

B= g

Ta (1) =0(2%)

and E ~ R, when A—0.

This result is of special interest to us, since we have come to regard the
multiplication by C (t/T') as the “best” method to transform a given characteristic
function into one, which is equal to zero outside the interval (— T, T).

We summarize our results in the following approximation formula.

T
3.11. Exact value: I=§1; f¢(t)dt.
2T

Approximate value: I,=T;(¢)— R.

Error bound: |I—1,4|<R.

A

T (¢)=ﬂ2<p(lv)-

N ,
R= —‘Iﬁ—nsztp (}.V)

Approzimate value of R= 4Ln3 (=1 @A)

These formulas will be used in the numerical applications in chapter 5.

We will now conclude this chapter by comparing the approximation formulas
(3.10) and (2.2). We write the integral I, which we want to approximate, in
the following form

T T
1 1
I=—2—7—z fe“”’q)(t)dt=% f¢1(t)dt.
T -7

According to (2.2) we get the approximation

1—cos Az
QW—T).((PI).
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We have seen that if ¢, fulfills conditions ¥ 1— V5 we have the following
asymptotic expansion when A—0:

T (@) =I+0(A%%),

_ 2.2
1 cos/lmMI_/'L x_‘_o(#).

while 2 T B

For the approximation according to (2.2) we have thus the following asymp-
totic expansion

1— cos Ax 2 a?
2 TR Tilp)=1- T I+0 (2%
if p=2.
According to (3.10) we get the approximation
A2 ’
Tilp) + g 2 Talgr).
As Ts (1) =0 (A7)

we have the following asymptotic expansion

2'2 44
T (py) + 87 Ti(@i)=1+0(2%).

Now suppose that p>2. For 2 fixed and 10 we then conclude that (3.10)
is a better approximation than (2.2) in the sense that the error term of (3.10)
is 0(2*") while the érror term of (2.2) is 0 (42).

Now for 4 fixed we may consider the approximations as functions of x. Since

pr(t) =" g (t)
it is easily seen that the approximation according to (3.10) may be written
Ii=to@)+x- 1, () +2% 7, (),

where 7y, 7, and 7, are certain trigonometric polynomials. Since a trigonometric
polynomial is a periodic function and

2

A
T, (2) = ‘"S?Ta(%)<0

it follows that lim I~‘;

[£] o0

exists and is < 0. Since the integral I itself tends to zero as |x|—>co it is evi-
dent that I,, according to (3.10), does not provide useful information about I
when |z|—>oo.
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As for the approximation I, according to (2.2) it is 0(27%) when |z|->oo,
since T (p,) is a periodic function. This does not say anything, however, about
how fast the frequency function I tends to zero since the denominator 2* in
I, is common to all characteristic functions to which (2.2) may be applied.

The somewhat critical aspects on (2.2) developped here apply mutatis mu-
tandis to the other approximation formula studied in chapter 2, namely the
one based on approximation of ¢ by parabolas.

CHAPTER 4

Approximation from the point of view of Fourier series

Let f(x) be a frequency function and put

2kn+x

Zf(mw) for |z|<m.

Then g (x} is a frequency function and its n:th Fourier coefficient is

1 n_,m cing s (2Rt
& emamseegh e (2529
2kn-+n Z
1 —inx f - —
=§2—7~t f e f(l)dw 2n(p( An),
2kn—n

where ¢ (t) is the characteristic function of f{(z). Thus g (x) has the Fourier
series

)Nize—lnz‘ nl)

113

where the sign “~” indicates the purely formal relationship. We have not yet
made any assumptions which assure us that the series will converge.
Let P, (x) be a non-negative trigonometric polynomial of order =:

The convolution of g(x) and P, (z) is denoted g (z}*P, (x):

g (x)% P, (x)= fg(y)Pn @—y)dy=2 fg(y)a;ei”"“”dy=Z_Zna_m(M)e"”-

-7

We are in this chapter interested in the question to which extent this func-
tion is an approximation of g(z). We first prove the following lemma.
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41. If 1) p,(x)=0,
2) p, (®)EL(~m, 7),

3) fpn (x)dx—>1  when n—>oco,

-

4) f(l—cos z)p, (®Ydx—0  when n->oo,

then [ B @=9) pn () Ay~ (@),
if h is a continuous function.
Proof: f(l —cos y)p, (y)dy > f (1 —cos y) p, (y)dy = (1 —cos &) f . (y)dy.

|yf>e ly]>¢

Hence, according to assumptions 3 and 4

[ pa(y)dy—0

lvl>¢

[ oty dy—1

lyl<e

JrE-pewdy= [ha—yp.@dy+ [ k- p. (@) dy.

lyl>e lvi<e

Since % (x—y) is continuous there is a constant M such that the first integral
on the right hand side is less than

M j », dy—0.

lvl>¢

Since & (x—y) is continuous the second integral may be written

h(&) [ pa(y)dy.

lvi<e

If first n—>oo and then ¢—0 this tends to k(z), as was to be proved.
We turn now to the following choice of P, (z):

1 2 AP
Pn(x)=%zo(;)eiv »

0(3) = (1——'—”—') co8 ﬂ-}-—l sin
n N n oz

That this is a non-negative trigonometric polynomial follows from (1.7) and
the fact that
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C(t):(1—|t|)cosnt-‘risin]r’ct]

is a characteristic function.

F21

Now | Pa@)dz=C(0)=1.

-7

Hence conditions 1, 2 and 3 of (4.1) are fulfilled. Furthermore

n

2 f(l—cos z) P, (x)ydx= f(2*e”—e‘i’)Pn(x)dx:2_2O(}L)-

a1 4

—1 — cosig P, ()
el
n

is a non-negative trigonometric polynomial and

Hence

=

J_l;(igs_xpn (x)dx=1.
Furthermore
f (2—2cos x)* P, (x)dx

- 4 . 1 2
= f(6—4e”~4e"”+e2”+e'2“‘)Pn(:c)dx=6—80(;)+20(;L).

-

2
But ¢ 1) 1—1 cosz+lsin§=1—i2+o lz
n n nom m 2n n
2 1
and 0(2)7—1—2—7;—-*‘0(*‘5),
n n n
so that 6-80(1)-+2O(g)=0(—lé),
n n n

J (1--cos x) 1-cosz P, (x)dz—0 when n—+oo.
1
e 1-¢ (_)
n

We will now consider the convolution of g(z) and P, (x). We are going to
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deduce an asymptotic formula, assuming that ¢ (x) is continuous as well as its
first and second derivatives. Put

I () = g (2) % Py, (z}.
Then

2

gn (@)= fg(w y) P, ( “{g )+%g”(w—9?/)}Pn(y)dy

P,(y)dy—g¢ (2) JyPn(y)dw% fyzg” (x~0y) P, (y)dy.

b1

I
<
&
|
A t—

The first integral is equal to 1 and the second integral is equal to O since
P, (y)=P,(—y). The third integral is equal to

N [ . s 1--cos y
[I_O(Z)] J g = Gy) (l—cosy) O(I)P Wy
i n,

2

The function 9" (z—0y) Z(_I%I?o-s—y)

is continuous for |y|<z: and its value for y=0 is ¢’ (x).
The functions 1- cosli/
1-o(})

n

.1). Hence the integral tends to ¢’ (x). Since

P, (y)

fulfill the conditions of (4

we have proved that g, (x)=g(w)+~2n;29” (x)+0(nl)-
Our next choice of P, (x) will be
— 1 < Ivl ivx
Pn(x)—%_zn(l—z)e .

In this case we denote g*P, by o,.

k(4

l n n
O (% =%Zn(1—u)¢(l v)e ~-21— f%(h,;') " g(x—y)dy

-

k4
1 l—cosny 1 1—cosny
= - = z+y)+ d
27znf l~-cosyg(x y)dy fl—cosy{g Y +g@E—y)}dy.
% P
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n

Since 1 [locosmy, gy,
2an) l—cosy
0

we get

1 [l—cosny

O () — g (2) = {g@+y)tg@—y)—2g@)}dy.

27n l1-cosy
0

If we assume that g(z) is continuous as well as its first and second deriva-
tives it follows that

glety)+tgle—y)—29(z)
1—cosy

bz, y)=

is continuous for 0 <y <xn. Hence
o, (x)= x+~1— h )d ——Lfc sny-h(x,y)d
n gyt | h@y)dy—5— | cosny-h(z,y)ay.
a a

The last integral tends to zero as m—>co according to the Riemann-Lebesque
theorem. Hence

2 d 1
Un(x)=!](x)+mfh(x,y)dy-i—o(ﬁ).
0

Summing up our results we may state the following theorem. Nothing is said
about non-negativeness of ¢ (x), since we have not used this assumption in the
proof.

4.2. I 1) g(x) is periodic with period 2 m,
2) g(=), ¢’ (x) and g (x) are continuous,
3) the n: th Fourier coefficient of g (x) is a,, t.e.

. 1
then gn(x)=g(x)+2—nzg &x)+o e

1
!In(x)=9(x)+2——71;—;bfh(x,y)dy+o(;),

0
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1.

where C(t)=(1—[¢t])cosmt+= sin|at|,
A

and h(x)y)zg(x+y)‘w;fi(:0gz)~2g(x),

Our intention is now to investigate how the term o(1/z) in the expansion
of o, (r) depends on the analytical properties of g (x). We prove the following
theorem.

43. If 1) g(x) 95 periodic with period 2,

2) g (x) and its derivatives up to order p inclusive are continuous (p > 2),

- 1 f 1-p
then o,,(x)-g(x)+2ﬂnfh(x,y)dy+o(n )
8

Proof: From the proof of (4.2) we know that

1 i 1 ;
Gy (x)—g(x)+mfh(w, ?/)d?/“%“ cos ny-h(xz,y)dy.
g 0

1
Now g+y)=g@ +y-g @+y*[1—-)g" @+ty)de,
(1]
so that

i
— . 2
L]

l—cos y “1—cosy

From these formulas follows that % (z, y) considered as a function of y for x
fixed is periodic with period 2. Also, since
%

1—cosy

is regular for |y|<2ax, it follows that % (x,y) has continuous partial derivatives
with respect to y up to order (p—2) incl.
Now the integral

2_(003 rny-h{z,y)dy= fe‘“‘”k(x, y)dy.
0 —-n

Integrating by parts and using the fact that A (z,y) is periodic, this is easily
seen to be equal to
n

1 iny O 2h
—iny
(sm)P2 fe dy*? 4y,

-n
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and as k(x,y) has a continuous partial derivative with respect to y of order
(p—2) this is o(n*?). Thus

1 n
Gn(x)=9(-’v)+——fh(x,y)dy+0(nl””)
2nn
o

as was to be proved.
This formula explains why de la Vallée-Poussin’s approximation

Ton (%) = 2 020 (%) — 0, (2)
is much better than o, (x) itself. For (4.3} gives the result
Tan (2) =g () + 0 (7).
Actually it can be shown that
Ton (X) =g (2) + 0 (n77)

but this cannot be done with the methods developped here.

We are now going to compare the approximations obtained by (4.2) and (4.3)
with the approximation obtained by straightforward summation of the (n+1)
first terms of the Fourier series.

We say that T (2) is a trigonometric polynomial of degree n if

where |a,|+]a_.|+0. We denote by H, the class of trigonometric polynomials
of degree < n.
Now let g(x) be a continuous function for |z|<z. Put

E,= inf max |g(z)—~T (x)|.

TeHn |z|<n

E, is called the best approximation of g (x) by polynomials from H,. It can
be shown that there is a unique 7 (z) from H, for which

E,= max |g(x)-T (z)|.

lzi<n

This 7' () approximates g{x) better than all other polynomials from H,.
These ideas go back to Chebyshev. Jackson has studied how E, depends on the
analytic properties of g(x). From among his results we quote the following one.

4.4, If g(x) fulfills the conditions of (4.3), then
E,=o0(n7?).
As previously we denote the Fourier coefficients of g (x) by a,;
g (z)~ +z:a,. e
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The sum of the (n+1) first terms is denoted by 8, (x):

Lebesgue has shown that
| 8, (@) — g ()| < (3+log n) B,

As log n increases slowly with n this means that 8, (z) is “almost as good”
an approximation of g(x) as the best polynomial from H,. This is a valuable
result from the practical point of view.

If we combine Jackson’s and Lebesgue’s results we find

nﬂ

S, (x)=g(x)+o(log ")

Suppose now that @ (f) is a characteristic function and that the integral

+00

1
I=% f e o t)dt

- 00

exists.” We want to perform a numerical integration of this integral and for
this purpose we are going to use values of the integrand for ¢=»A4, where »
runs tnrough all positive and negative integers.

We have seen that

A

may be considered as the n:th Fourier coefficient of ¢ (x), where

2km+
0@ =322 fal<a
3
that is g(x)m—i%>° (wA)ye™*
Zyt_w(p ’

or, if g, (x)=g (A=), so that g, (z) is periodic with period 2x/2,

+o0

A ~tviz
n@~g- 3 el

If certain conditions are fulfilled g, (z) will be determined by its Fourier
coefficients. We quote just three theorems of this type.
If g, (x) is of bounded variation, then
+

_ A —iviz
gl(Z)=-2-;_wtp(M)e ik
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I’ 91 (.’l’) ’is continuous, then
Z +o0
2 z (F ('L 1) e e

—oQ

is summable (C,1) to g, (x).
If g, (x) belongs to L*(—mn/2, n/2), then

2_2'__ (2' ’V) e—iv,(:r

=M=

converges in mean to ¢, (x).

The essential point is, that under certain conditions g, (z) may be determined
from the discrete values @ (Av). Since g, () equals

0= 31(25%+a),

it is evident that different functions f(z) may correspond to the same function
¢, (). This means that the set of values @ (1v) may determine g, (x) but cannot
determine f(x)

Among the frequency functions whose characteristic function takes on the
values ¢ (Av) for t=21», we also find ¢, (x), for

f g (x)dx= fe"’“f(x Ydz =g ().

—nfA

This means that if we wish to determine the frequency function starting from
the discrete values @ (41v) of the characteristic function, we must make up our
mind which frequency function to chose. The most natural choice seems to be
the function

x)—Zf(zkn ) for |x|<%
fi{x)= -
0 for |z|> 7

Our problem may thus be formulated as follows. Given the discrete values
@ (Av) of the characteristic function ¢ (¢) there is a corresponding frequency
function which is zero outside the interval (— /A, n/},). An approximate value
of this function in terms of ¢ (A7), v= —n, ——n+1 ., », is to be found.

Consider then the integral

+00

_l_ —itz
o f e o t)dt.

Truncate the integral outside (—n 4, »2) and apply a numerical integration
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formula with abscissas v 4 and weights 1y, .. We obtain the following approximate
value of the integral

2’ < —iviz
%_Zyv.ne Mo (v ).

This is a trigonometric polynomial of degree <z. If we knew the explicit
expression of 7T (x) € H,, for which the best approximation of f, (x) is obtained,
then %, could, of course, be choosen aceordingly. Sinece we don’t dispose of
this explicit expression we have to be satisfied with something that is “next
to the best””. The foregoing discussions suggest the use of the (n+1) first terms
of the Fourier series, i.e. putting y,,=1. The following formula is then ob-
tained:

n

2’ —iviz
Fyp: 2. e g (dy).

-n

This- again may serve to support the impression that the trapezoidal rule
should be preferred for the numerical integration of Fourier integrals where
characteristic functions are involved.

CHAPTER 5

Numerieal illustration

An insurance business will be briefly characterized as follows. The policy-
holders pay their premiums to the company. If a policyholder meets with an
incident, which is <overed by his policy, he makes a claim on the company.
On each claim the company has to pay a certain amount, called the risk sum
of the policy, to the policyholder.

We assume that the number of claims has a Poisson distribution. If we con-
sider a period during which the expected number of claims is 7, the proba-
bility of getting exactly n claims will thus be

Tn

"%

al®

The risk sum has a known probability distribution. The probability that the

risk sum of a policy, chosen at random, shall be less than or equal to u is

P {u), where P{u) is a known distribution function. The characteristic function
correspounding to P (u) is denoted v (f):

+o0
)= [ &"dP(u).

-—00

The first two moments of P (u) about the origin are denoted p, and p, re-
spectively. Thus
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+oc

= [ wdP(u),

+ o0
po= [ w?dP(u).

— 00

Let Y (z) denote the total amount of claims paid by the company during a
period with an expected number of claims equal to r. Then Y (¢) will have a
compound Poisson distribution with characteristic function

exp {ry (t) —1}.

From this formula follows that the mean and the variance of Y (7) are p, T
and p,7 respectively. We will also consider the standardized variable X (7),
corresponding to Y (7). lLe.

_ Y (1) ~PhT

X (7) p=—
Vpat

2

with characteristic function

@ (t)=exp {‘np(#ﬂ;)—z— zt;;l)_:-}
2 2

Our intention is to calculate the distribution function corresponding to X (7).
As for the distribution function P (u) of risk sums we make the following
assumptions:

dP (u) o -

L =(1—p)—— % O<u<l,
du 1 p)e“—le v

dP(1)=p.

The corresponding characteristic function is

« e —ét

— _ . it
pE)=(1 p)a_” ezvlﬂw-
., l—-p 1-p
Th = — TP 7P,
en y 23 1y’ (0) x F_1'7P
' l1—p 1-p 1-p
= —y = - -2 +p.
P2 £ (0) 2 a2 e —1 o (t:l“ _ 1) p

We will consider nine cases by letting o take on the values 1 and 5 and 10
while p takes on the values 0 and 0.01 and 0.02. The corresponding values of
p, are shown in the following table:
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&
5 10
!

0 | 0.4180 0.1932 0.1000
0.01| 0.4238 0.2013 0.1090
0.02] 0.4297 0.2094 0.1180

The practical background to the probability mass p, situated at w =1, is the
following. Every insurance company has a certain upper limit L of the risk
sum of each individual policy. Should a policy have the risk sum 8 and 8> L
then the company retains the sum L while the sum (S- L) is covered by an-
other company. This process is called reinsurance. The effect of this is that
if 100 p % of the policies sold by the company need reinsurance, then from the
point of view of the company 100 p % of its policies in force will have the
risk sum L. From this it is evident that our choice of P (u) implies that P (u)
is the probability of the risk sum being less than or equal to u-L and that
the mean risk sum is p,- L.

Apart from the nine distributions mentioned above we will also consider the
following distribution obtained by letting x—>co and p—0. For Y (z) we had
the characteristic function

o it

o
exp{ A-p) 255

+rpe“—1r}-

Replacing t by «t gives

| i it
exp t(l—p)l_”~ ) +Tpe™ —11.

Now let a->o0 and p—0. We obtain

ex r —
PO

Replacing ¢ by £/V/27 and multiplying by

exp {‘V%}

gives the characteristic function of the corresponding standardized variable

T itT

|
= $ —r—E .
][ V2T

We want to calculate the distribution function corresponding to X (r) and we
are going to use the ini}egration formula (3.11). We truncate the characteristic
function by adding to X (r) a random variable Z with characteristic function
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t |t| xt 1 . lnt]
LA Y N A 224z = < 32.
0(32) ( 32) cos32+ns1n 32 for|t| 3

The characteristic function of X (v)+ Z is

t
#0-¢(55).

which is zero for |¢|>32. The distribution functlon of X (t)+Z is denoted F, (x)
and is given by the formula

32

1 sin bt ¢
Fy(x+h)—Fy(x—h) ~3. f 2»7— e (t)C (3—2) dt.

-32

The integrand is a characteristic function multiplied by 2A. Since 2% >0 we
may apply (3.11), denoting the integrand by g (¢) for short.

Exact value: I=i f g(t)di.
2n
32

Approximate value: I,=T,— R.

Approximate error: R.

=539 )

- S -y,

The calculations started with A=32 and were then repeated, each time with
half the foregoing A-value, until R <0.00005. This precision was as a rule at-
tained with A=}. The value I, was then rounded of to 4 decimals. If we dis-
regard the fact that R is itself an approximation we may then say that the
value I, arrived at has an error less than one unit in the fourth decimal.

Through the courtesy of The Swedish Board for Computing Machinery the
computations were performed on one of their computers.

The variance of the additional variable Z is

2
4
(3—2) =0.0096

and its standard deviation = 0.1 approximately.

As the values in the table below refer to the distribution function F, (x) of
X (z)+Z we have to apply corrections according to chapter 1 to get informa-
tion about the distribution function F (z) of X (7).

As an example let us find a lower bound of F (2)— F (—2) corresponding to
7=250, «=10 and p=001. We make use of (1.1) and chose ¢=mx/32. That
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means that ¢ is equal to the standard deviation of Z. The table of the distri-
bution function corresponding to C (¢/m) gives

F, (3%) =P{Z< ?%} = P{%g 1} ~0.8492.

Interpolating in the table of F,(x) below we get

T
F, (2 —ﬁ) — F, (0)~0.4519.
F,(0)—F, (3—”2 ~ 2) ~0.4385.

Then according to inequality (1.1)

1-0.4519— 0.4885
F@)—F(-2)>1- ° —0.9298,
@) —F(—-2)>1 0810 0.9298

while F, (2) - Fy (—2)=0.9540.

The following heuristic reasoning will support the impression that our result
is much better than these figures might indicate. If we compare the normal
distribution with the distribution corresponding to C(t) and the distribution F,
in our table we find that the latter are both approximately normal. Now, if
X+Z and Z are nprmally distributed then X is normally distributed. As the
variance of Z is approximately 0.01 and X is standardized the variance of X + Z
is 1.01. If X+Z and Z were not only approximately but exactly normally
distributed then it would be correct to say that F, is the distribution function
of the variable V/1.01-X. Now, this it not so, but the impression subsists that
the truth is somewhere in that direction.
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104 [F, (0) — F, (x)]

T o p z=

—3.00| —2.75| — 2.50[ — 2.25| — 2.00| — 1.75| ~ 1.50| — 1.25| — 1.00 *0.75' —0.50[ —0.25

5279 | 5277 | 5269 | 5242 | 5172 | 5021 | 4745 | 4309 | 3694 | 2909 | 1993 | 1002

25 |0} 0O
250 | o0 | 0 5081 | 5069 | 5044 | 4991 [ 4893 | 4722 | 4449 | 4045 | 3491 | 2782 | 1935 990
2500 { co } O 5016 | 5001 | 4970 {4911 | 4807 | 4633 | 4362 | 3968 | 3430 | 2742 {1916 | 985
25110 O 5277 | 5276 | 5267 | 5241 | 5170 | 5018 (4743 | 4306 | 3691 {2908 | 1992 | 1001
250 | 10 0 5080 | 5069 | 5043 | 4991 | 4802 | 4721 (4448 | 4045 | 3490 {2781 | 1935 990
2500 | 101 O 5016 | 5001 {4970 | 4911 {4806 | 4632 | 4362 | 39068 | 3430 {2742 (1916 | 985

25 | 10 | 0.01 [ 5416 | 5416 | 5414 | 5402 | 5358 | 5237 | 4979 | 4531 | 3872 | 3024 | 2046 | 1013
250 | 10 | 0.01 | 5124 | 5114 | 5093 | 5045 | 4951 [ 4783 | 4509 | 4100 | 3534 | 2810 | 1949 | 993 |
2500 | 10 | 0.01 | 5030 | 5015 | 4986 | 4928 | 4825 | 4651 [ 4380 | 3984 | 3443 (2750 | 1920 [ 986 .

25 | 10 | 0.02 | 5442 | 5441 | 5441 | 5434 | 5401 | 5291 [ 5035 |4572 | 3888 (3019 (2032 [ 1004
250 | 10 | 0.02 | 5132 | 5123 | 5102 | 5056 | 4963 | 4795 | 4521 4110 (3541 | 2814 | 1951 | 993
2500 | 10 | 0.02 | 5032 | 5018 | 4989 | 4931 | 4828 | 4655 | 4384 | 3987 | 3445 | 2752 | 1921 | 986

25 5] 0 5249 | 5247 | 5237 | 5206 | 5131 | 4974 | 4697 | 4264 | 3657 | 2885 | 1980 | 998
250 5] 0 5070 | 5059 | 5032 | 4979 | 4879 [ 4708 | 4435 | 4033 | 3481 [ 2775 | 1932 | 989
2500 51 0 5013 | 4997 [ 4966 | 4907 | 4802 | 4628 | 4358 | 3964 | 3427 | 2740 | 1915 | 985
25 5| 0.01 | 5264 | 5262 | 5253 | 5225 | 5152 | 4998 | 4720 | 4285 | 3673 | 2895 | 1985 | 999
250 5| 0.01 | 5076 [ 5064 | 5038 | 4985 [ 4886 | 4715 | 4442 | 4039 | 3486 | 2778 [ 1933 | 989
2500 5| 0.01 | 5014 | 4999 | 4968 | 4909 | 4804 | 4630 | 4360 | 3966 | 3428 | 2741 | 1915 | 985
25 5| 0.02 | 5271 {5270 | 5262 | 5235 | 5163 | 5010 | 4733 | 4296 | 3681 | 2899 | 1986 | 999
250 51 0.02 [ 5078 | 5066 | 5041 | 4988 4889 | 4718 | 4445 4042 | 3488 [ 2780 | 1934 | 990
2500 5| 0.02 | 5015 [ 5000 | 4969 | 4910 | 4806 | 4632 | 4361 | 3967 | 3429 | 2741 | 1915 | 985
25 110 5183 5177 | 5161 | 5121 | 5035 | 4871 | 4594 | 4172 | 3587 | 2841 [ 1961 | 994
250 110 5049 | 5036 | 5008 | 4952 | 4850 | 4678 | 4406 | 4007 | 3460 | 2762 | 1925 | 987
2500 1( 0 5006 | 4990 | 4958 | 4899 | 4793 | 4619 | 4349 | 3956 | 3420 | 2735 | 1913 | 984
25 1| 0.01 [5183 [5177 |5162 | 5122 | 5035 {4871 | 4594 | 4172 {3587 | 2841 | 1961 | 994
250 1| 0.01 [5049 | 5036 | 5008 | 4952 | 4850 | 4678 | 4406 { 4007 | 3460 | 2762 | 1925 | 987
2500 1] 0.01 | 5006 | 4990 | 4958 | 4899 | 4793 | 4619 | 4349 | 3856 | 3421 | 2735 ;1913 | 984
25 1| 0.02 {5183 |5177 | 5162 [ 5122 | 5035 | 4871 | 4594 (4172 | 3587 | 2841 | 1961 | 994
250 1| 0.02 [ 5049 | 5036 | 5008 | 4952 | 4850 | 4678 | 4406 | 4007 | 3460 | 2762 | 1925 | 987
2500 1| 0.02 | 5006 | 4990 | 4958 | 4899 | 4793 | 4619 | 4349 | 3956 | 3421 | 2735 | 1913 | 084

Explanation to tables

The tables give values of 10*|F, (x)—F,(0)|, where F,(x) denotes the distri-
bution function corresponding to the characteristic function

t
200 (55)

AT VP L\ W 10 S
and where 0(32)—]( ——) 008 5o+ — sin oo for |t| <32
L

0 for |t|>32
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108 [F, (%) — F (0)]

T o P =
0.25 10501075 1.00 | 1.25 } 1.50 | 1.75 | 2.00 | 2.25 | 2.50 | 2.75 | 3.00
25 o0 | 0O 952 11807 | 2538 [ 3135 | 3602 | 3954 [4209 | 4388 {4510 | 4590 | 4642 | 4674
250 | o0 | O 974 {1876 | 2665 | 3316 [ 3825 {4202 4467 | 4645 | 4758 | 4827 | 4867 | 4889
2500 [ oo | O 980 | 1897 {2705 | 3375 | 3808 | 4284 | 4552 | 4728 | 4837 | 4901 | 4937 {4955
257106 ¢ 0 952 | 1807 {2539 {3136 (3604 | 3955 | 4211 [ 4390 | 4512 | 4592 | 4644 | 4676
250 1 10 [ O 974 | 1876 | 2665 (3316 | 3825 [ 4202 | 4468 | 4645 (4759 | 4827 | 4867 | 4889
2500 10| O 980 | 1897 | 2705 | 3375 | 3898 | 4284 {4552 | 4729 | 4838 | 4902 | 4937 | 4955
25 | 10 | 0.01 937 | 1761 | 2454 | 3016 | 3455 | 3788 | 4035 | 4212 {4336 4422 | 4479 | 4517
250 | 10 | 0.01 970 | 1863 [{2639 (3277 [ 3777 {4148 | 4411 | 4589 | 4704 [ 4776 | 4819 | 4843
2500 | 10 | 0.01 979 | 1893 | 2696 | 3362 3882 | 4266 4534 | 4710 | 4820 | 4885 | 4922 | 4941
25 1 10 | 0.02 927 | 1741 | 2427 (2984 | 3421 | 3754 | 4001 [ 4179 (4305 | 4392 | 4451 | 4490
250 | 10 | 0.02 969 | 1859 | 2632 | 3269 | 3767 | 4137 | 4400 | 4578 | 4694 | 4767 | 4810 | 4835
2500 | 10 | 0.02 | 979 (1892 | 2695 3360 | 3879 | 4263 | 4530 | 4707 | 4817 | 4882 | 4919 | 4938
25 510 953 | 1815 | 2554 | 3159 | 3633 | 3989 | 4247 | 4427 | 4548 | 4627 | 4677 | 4708
250 510 975 [ 1879 12671 | 3324 | 3836 | 4214 [4480 (4658 {4770 | 4838 | 4878 | 4899
2500 510 980 | 1898 | 2707 13377 (3902 | 4288 [4556 | 4732 | 4841 | 4905 | 4940 | 4958
25 51 0.01 952 {1810 | 2545 | 3146 | 3617 [ 3971 | 4228 | 4408 | 4529 | 4609 | 4660 | 4692
250 5] 0.01 974 | 1878 | 2668 [ 3320 | 3830 [ 4208 | 4474 | 4651 (4764 | 4833 | 4872 | 4894
2500 5| 0.01 980 | 1898 | 2706 [ 3376 | 3900 | 4286 | 4554 | 4730 {4839 14903 4938 | 4957
25 5 0.02 950 | 1806 | 2539 3139 | 3608 | 3961 [4218 [4398 | 4520 [ 4600 | 4651 | 4683
250 51002 | 974 | 1877 {2666 | 3318 |3827 | 4205 (4471 | 4648 | 4761 | 4830 | 4870 | 4892
2500 5] 0.02 | 980 | 1897 {2705 | 3375 3899 | 4285 | 4553 | 4729 | 4838 | 4902 | 4938 | 4956
26 110 961 | 1838 {2597 (3220 | 3708 [4073 | 4334 [ 4513 | 4632 4707 | 4754 | 4781
250 1|0 977 | 1886 | 2684 [ 3344 | 3860 | 4242 | 4509 | 4686 ;4797 | 4864 | 4901 | 4922
2500 110 981 [ 1900 [ 2711 | 3384 | 3910 | 4297 | 4566 | 4741 | 4850 | 4913 | 4948 | 4965
25 1001 961 | 1838 [ 2597 {3220 {3707 ;4072 [ 4334 | 4513 (4632 | 4707 [ 4754 | 4781
250 11 0.01 977 11886 | 2684 | 3344 | 3860 | 4242 (4509 {4686 | 4797 | 4864 | 4901 (4922
2500 1| 0.01 981 {1900 | 2711 | 3384 | 3910 [4297 | 4566 | 4741 [ 4850 {4913 | 4948 | 4965
25 11} 0.02 961 | 1838 | 2597 (3220 | 3707 (4072 {4333 | 4513 | 4632 | 4707 | 4753 {4781
250 11002 [ 977 | 1886 | 2684 |3344 | 3860 {4242 | 4509 [4686 | 4797 | 4863 | 4901 | 4921
2500 11 0.02 981 | 1900 | 2711 [ 3384 | 3910 {4297 (4566 | 4741 | 4850 | 4913 | 4948 (4965
¢ y 2
p(f)=-expiTy (—)—r—tt R S
} P2 T sz T
@ eit
H=(1-p) Ty pe
y()=(1-p) it A1 TP
1
or t)= -
p () T

the latter case being referred to in the tables as a= oco.

p=—ty (0)
P:= _"P” (0).
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APPENDIX

REFERENCES
Chapter 1.

Concerning Toeplitz forms see (1, pp. 16-19, 32-33). The eesential part of the solution to
the problem 1.4 is from (1, pp. 66-69). Cf. also (2, problems VII: §7-71). Theorem 1.5 fol-
lows from a theorem of L. Fejér {2, problem VI: 52).

Chapter 2.

The general idea of this approximation technique is due to Filon (3), who used the para-
balic approximation.

Chapter 3.

Concerning Poisson’s formula cf. (4), (5), (6), (7) and (8). The theorems 3.1 and 3.2 are
from' (8), apart from minor modifications. The theorem 3.3 is based on a theorem of Linfoot
{5}, who proves that

if 1) g(?) is continuous,

2) 2 g (v+1) is uniformly convergent

+o0
then Sgm=2 | ™gmas,
1) o

where (C, 1) denotes surnmation by arithmetic means.
On the use of the trapezoidal rule on Fourier integrals cf. (9).

Chapter 4.

Concerning 4.2 cf. (10, pp. 140-149). As for the best approximation by trigonometric poly-
nomials and its connection with the analytical properties of the function to be approximated
sze (10, pp. 59-82), Lebesgue’s theorem concerning the rest term of Fourier series is deduced
in (10, p. 135). The same question is dealt with in (11).
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