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N O T A T I O N S  

P (x) = d i s t r i b u t i o n  f u n c t i o n  ~ n o n - d e c r e a s i n g  f u n c t i o n ,  c o n t i n u o u s  to  t h e  r i g h t ,  a n d  

w h i c h  fu l f i l l s  t h e  c o n d i t i o n s  F ( - c~) = 0 a n d  F ( + cx~) = 1 

F z (x) • F 2 (x) = 

-}-oo 

f F 1 (x-y) dF~ (y). 

(x) 
F (x+ O)+ F ( x - O )  

2 

l (x) = F '  (x) = f r e q u e n c y  f u n c t i o n  if  F (x) is  a b s o l u t e l y  c o n t i n u o u s .  

~o (t) = c h a r a c t e r i s t i c  f u n c t i o n  

9 (t) = f e ~tx d F (x). 
- - o o  

Principal value; T h e  g e n e r a l  d e f i n i t i o n  of a n  i n t e g r a l  f r o m  - c o  to  + c~ is 

+oo  0 x ' t  

f g(x) dx= lira f g(x)dx+ l i m  !g(x) dx, 
- -  oo  , I t - - - ~oO  - -  a t  X " - ~ > ~  

s u p p o s i n g  t h a t  t h e s e  l i m i t s  e x i s t  s e p a r a t e l y .  I n  t h e  p r e s e n t  p a p e r  we  wi l l  t h r o u g h o u t  de f ine  

s u c h  a n  i n t e g r a l  as  i t s  p r i n c i p a l  v a l u e ,  t h a t  is  

j g ( x )  d x =  l i ra  j g ( x )  d x .  
- -  o o  X ' - - - ~ o ~  - - X "  

A n a l o g o u s l y  we  def ine  for  s u m s  

av = l i m  av. 
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S U M M A R Y  

I n  th is  paper  we discuss  the  numer i ca l  in tegra t ion  of an  in tegra l  of the  t ype  

+ ~  ,y 2• q~(t)dt, 
- o o  

where  r (t) is a charac ter i s t ic  func t ion  in the  sense  of p robab i l i ty  theory .  If  ~0 ~t) is a charac-  

terist ic  func t ion ,  the  s ame  is t rue  of t he  i n t eg rand  of 

12~ f e-itx qp(t) dt 

a n d  

+ ~  

l f s i n h t  -izt - -  - - ' e  q~(t) dt. 
27e ht 

These  two integrals ,  which  give the  f r equency  func t ion  and  t he  d i s t r ibu t ion  func t ion  re- 

spect ively ,  are t h u s  of the  type  considered in th i s  paper .  

Chapter 1. We inves t iga te  t he  class of character is t ic  func t ions  which  are equal  to zero out-  
side a f ini te  in terva l  { - T,  T). If  99 (t) is mul t ip l i ed  by  such  a func t ion  r (t), the  resul t  will be 
a new character is t ic  func t ion  a n d  t he  in te rva l  of in tegra t ion  will be  reduced f rom ( -  o<9, + c~) 

to ( - T ,  T). We  deduce  an  inequal i ty ,  which  m a k e s  it  possible to e s t ima te  the  error ob ta ined  
by  in tegra t ing  ~"  % ins tead  of q~. W e  also deduce  a charac ter i s t ic  func t ion  C (t), which is zero 

for I t [ >/1 a n d  which  f rom a cer ta in  po in t  of v iew m a y  be considered the  bes t  tool to use  for 
this  t r u n c a t i o n  purpose .  

Chapter 2. Let  r (t) be a charac ter i s t ic  func t ion  and  suppose  t h a t  is ha s  been  mul t ip l i ed  b y  

a func t ion  of the  type  considered in chap te r  1. The  cor responding  f requency  func t ion  is 

T 

1 f e_itxqg(t) dt" 
- T  

I t  seems  na tu r a l  to t r y  to a p p r o x i m a t e  ] (x) by  f irst  a p p r o x i m a t i n g  q~ (t) b y  qA (t) a n d  t h e n  

pe r fo rming  t he  in teg ra t ion  wi th  q replaced by  ~A. The  app rox ima t ion  ~0A shou ld  of course 
be chosen  so s imple t h a t  an  explici t  express ion  for the  in t eg ra t ed  func t ion  is ob ta inable .  The  

in terva l  ( -  T,  T) is d iv ided into sub- in te rva l s  by  equal ly  spaced  points .  Two app rox ima t ions  
~A are  inves t iga ted .  (1) I n  each  sub- in te rva l  r  is a p p r o x i m a t e d  by  a s t r a i gh t  l ine wh ich  
t akes  on  t he  s ame  va lues  as ~ (t) a t  the  end-poin ts .  (2) I n  each  sub- ln te rva l  r (t) is approxi-  
m a t e d  b y  a second degree parabo la  which  t akes  on t he  same  va lues  as r (t) a t  the  end-po in t s  

a n d  a t  t he  to ld-point  of t he  in terval .  
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Note  the  difference be tween  this  technique and the  usual numerical  in tegra t ion  me thods  
If  S impson 's  rule is applied to the  above integral  for example,  the  whole of the  in tegrand 

e -itz ~(t) 

is f i rs t  approx ima ted  by  parabolas.  Af ter  t h a t  the  in tegra t ion  is performed.  

Chapter 3. The main  result  of this chapter  is the  following theorem: 

If  l)  ~0 (t) is a characterist ic  funct ion,  
2) There  is a f inite interval  ( - T, T) such t h a t  ~ (t) = 0 for [ t [ ~ T, 
3) r (t) and  ~0" (t) exis t  and  are cont inuous for all t, 

t hen  the  integral  

is approx ima ted  by  

if 1 2 ~  q~(t) d t  

I A = T~ (q~) - R 

and  [ I - I A i < R  

where  

~3 

R = - - - 1 6  3 ~ 9 ~ " ( ~ )  �9 

As R might  be fairly complicated to calculate we deduce the  following approx imate  expres-  
sion for i t  

R~4 ~--~ ~ ( -  1) v ~(~v). 

Chapter 4. Let  / (x) 
the  f requency funct ion  

be a f requency funct ion and ~ (t) its characterist ic  function.  Consider 

The Fourier  series of g (x) reads 

~t ~ ~vx 
a ( x ) ~ ~ Z  e ~(-a~).  

We are in this  chapter  concerned wi th  the  problem of approx imat ing  g (x) by  applying a 
summat ion  m e t h o d  on its F~ourier series. We  consider the  wel l -known an (x), obta ined by 
summat ion  by  ar i thmet ic  means,  and  a corresponding sum gn (x), obta ined f rom the  charac- 
teristic funct ion C (t) in the  same way  as an (x) is ob ta ined  from the  funct ion 
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h(t)={ lo-[tl forlt[>~l.f~ 

The asymptotic properties of a n and gn are deduced. 

Chapter 5. In this chapter we chose a certain set of characteristic functions and calculate 
the corresponding distribution functions, using the methods developed in chapter 3. 

There are no references in the text. They have been brought together in the appendix at 
the end of the paper. 

CHAPTER 1 

A class of  characteristic functions 

I n  the  present  paper  we are  going to discuss various methods  of in tegrat ing 
numerica l ly  an  in tegra l  of the  t y p e  

+ c o  1/ 
- o o  

where r (t) is a character is t ic  funct ion in the  sense of p robab i l i ty  theory,  and  
where i t  is assumed t h a t  this  in tegral  exists. 

The first  diff icul ty which mus t  be tackled  concerns the  " t a i l s "  of the  integral .  
As a numerical  in tegra t ion  formula  cannot  make use of an infini te  number  of 
values of the  in tegrand  the  in tegra l  mus t  be " t r unc a t e d" .  We are going to use 
the  following procedure  for this  t runcat ion.  

Let  ~1 (t) be a real  character is t ic  function which fulfills the  condi t ion  

r  (t) = 0 

for [t[>~T and  T > 0 .  P u t  

Then ~ is also a character is t ic  funct ion which fulfills the  same condit ion as 
~0 r In s t ead  of I (~) we consider the  in tegral  I (~2) 

+ o o  T 

1 I(qD2)=2~ f q~2(t)dt=~ f q~2(t)dt. 
- - o O  - T 

Since this  integral  is ex tended  over a f inite in terva l  ( - T ,  T) the  desired 
t runca t ion  has thus  been a r r ived  at.  I n s t ead  of the  original  d i s t r ibu t ion  func- 
t ion F (x) corresponding to r (t) we are, however,  now s tudying  the  d is t r ibu t ion  
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function F 2 (x) corresponding to 92 (t). I n  o rde r  tha t  the procedure shall have 
any meaning it will thus be necessary to estimate the error introduced by con- 
sidering 9z instead of ~0. This is done with the aid of the following inequality: 

1.1. Let F (x) and Fl  (x ) be distribution ]unctions and suppose that F l  (x) is 
continuous and corresponds to a symmetrical distribution, i.e. F 1 (x )+ FI ( - x ) =  1 
/or all x. Pu t  

F~ (x) = F (x)-)eF 1 (z). 

Then F (y) - F (x) <~ F2 (y + e) - F 2 (x -- ~) 
2 F1 (e) - 1 

and F (y) - F (x) >~ 1 

where ~ > 0 and y > x. 

1 -- F2 (y - ~) + F2 (x + e) 
F~ (~) 

To prove this let X, Y and (X + Y) be random variables with distribution 
functions F (x), F 1 (x) and Fz (x) respectively. Then 

P { x - e < X +  Y < y + ~ } > ~ P ( x < X < . y } . P { ]  Y [ < e }  

F (y) -- F (x) <~ F2 (y + e) - F 2 (x - e) 
2 F 1 (e) - 1 

The second inequality is deduced from 

1 - P { x + s < J L +  Y < y - e }  = P { X +  Y < x + s }  + 

+ P { X +  Y > y - e } > ~ P { X < x } . P { Y < s } +  

+ P {X > y}.  P ( Y > - e} = F (x). F 1 (8) + it - -  F (y)] [1 - -  F 1 ( - e)] 

1 - F 2 (y  - e)  + F 2  (x  + ~) ~> F 1 (s)  [_F (x)  + 1 - F (y)]  

from which the inequality follows. 
In  this connection we also prove a similar inequa]ity. 

1.2. I] .F 1 (x) and F z (x) are distribution ]unctions with characteristic ]unctions 
q)z (t) and q~z (t) respectively, and 

then F 2 ( x - a )  22  - ~t <~ F1 (x) <~ F 2 (x + a) + 22.a 

To prove this let 

for lzl~> 1, 
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in which case 

a \zc/ 

is a f requency funct ion with  the  character is t ic  funct ion 

The funct ion 

+ o o  

dx=2 ] -  cos ~ t 
~2 t 2 

F 1 (y + x) - F  2 (y ~- x), 

considered as a funct ion of x for f ixed y, has the  "charac te r i s t i c"  funct ion 

+oo 

f e tt'{F l (x+y)-F 2(x+y)}dx= 

4 o o  

- itl f e,tx {d F 1 (x q- y) - d F 2 (x q- y ) }  = e ~t~ ~v2 (t) it- q~ (t) 
- o o  

According to  Parseva l ' s  theorem 

+ o o  + o o  

f 1 (X) {Fl (X+y)__F2 (x+y)}dx= 2__ f e_~ty l -  cos at q~2(t)-q~l (t) dt 
~ g  ~ 2zr i  ~2t2 " t " 

-r -r 

As [~o e - ~ l ] 4 ) . .  I tl the  r ight  hand  side has an absolute  value  less t han  

__22 f 1 -  eos0~tdt=_.~  
2 ~ zr 2 t 2 r162 

Since F 1 and  F 2 are d i s t r ibu t ion  funct ions we get  on the  left  hand  side 

= -~f-{F~(x+y)-F,(x+y)}dx 

< ~ { f l  (Y + ~) - F 2  (Y - a)} d x = f l  (Y + a) - F2 (Y - ~). 
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Hence F x (y + a) - F2 (y - ~) ~> - - .  

Pu t t i ng  y + a = x 

a = 2 a ,  

2~ 
we get  F 1 (x) >1 F 2 (x - a) - - -  

a 

This is the  left  hand  side of the  inequal i ty .  Analogous ly  we ge t  

and  the proof of the  r igh t  hand  side of the  inequa l i ty  is immedia te .  This 
proves  1.2 

W e  now come upon the  quest ion how to make  the  best  choice of ~01 (t) for 
this  t runca t ion  purpose  from the  class of character is t ic  funct ions having  the  
p r o p e r t y  of being equal  to  zero ou~)side the  f inite in te rva l  ( - T ,  T). Broad ly  
speaking the  answer is: T h a t  funct ion ~ :  which deforms the  given d is t r ibu t ion  

�9 as l i t t le  as possible. This  in  t u rn  implies  t ha t  the  d i s t r ibu t ion  corresponding to  
q :  shall  be as concent ra ted  as possible near  the  value  zero. Taking  the  second 
moment  as a measure  of concentra t ion  we then  have  the  following problem:  

1.3 .  To lind a characteristic ]unction q~ (t), i /  it exists, which is equal to zero 
/or I tt>~ 1 and /or which 

2-q~(h)-~(-h) 
l ira h 2 
h-~0 

is as small as possible. 

Note  t h a t  if ~0 (t) is a character is t ic  funct ion and  ~v (t) = 0 for ] t [ ~> T then  
~v (! T) is also a character is t ic  funct ion and ~ ( t T ) = 0  for It] >~ I. 

Note  also t h a t  if (p" (0) exists,  then  

lira 2 - q (h)h~ q ( - h) - ~ "  (0). 
h-+0 

As a p repara t ion  to the  solut ion of p roblem 1.3 we s t a r t  b y  solving the  fol. 
lowing problem:  

1.4: To ]ind a ]requency /unction Pn (x) which ]ul[ills the ]oUowing conditions: 

a) P~(x)=O ]or ] x l > ~  , 

b) P ,  (x) is a non-negative trigonometric Tolynomial of degree n ]or Ix I <~ re, 
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c) ~ =  ~ ( 2 - 2  cos x) Pn(x)dx is as small as possible, 

assuming that such a /unction exists. 

To solve this problem we use the fact tha t  P~ (x) being non-negative,  there 
are constants u0, u 1 . . . .  , un such tha t  

1 1 ~ ~u~e~,(~_~)" 
P = ( x ) = ~  lUo+ule'*+ ... +u.e'n*12 = ~ ~=0.=o 

P~ (x) being a frequency function, we get 

/ P~(x)dx=l= ~ tu,,] 2. 
Y ~ O  

- -  : g  

We are thus interested in the min imum of 

a2=  i ( 2 - 2  cos x)Pn(x)dx, 
- - ? t  

under the side condition 

/ 

The choice of ge as a measure of concentration instead of the usual measure 

cr f x  2P~(x)  dx  

is merely a question of simplicity. I t  is easily seen tha t  

We note tha t  for / (x)  real and integrable in the interval  ( - ~ ,  ~) 

Tn(/)=~ l(x)luo+u~e'=+... +u~'~l~dx 

defines for n = 0, 1 . . . .  the Toeplitz forms associated with /(x).  To find the 
smallest value of Tn ([) under the side condition 
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means finding the smallest eigen-value of T~ (/). 

As ~ 2 = ~  ( 2 - 2  cos x ) ' f ~ u ~ ( t , e ' Z ( " - " ) d x  = 
v # 

n - 1  n - 1  

= 2 ~ I U v l  2 -  ~ .  av'llvg, l -~-~vq~v+l=2--  ~ q~v21v+l-}-UvUv+e, 
v v=0 v=0 

we have to find the largest eigen-value of the Hermitian form 

?t--1 

2 - ~ =  ~ (t~u~+l+u~(z,+l. 
r = 0  

The characteristic equation of this form is 

- 2  1 0 

1 - 2  1 

A= (2)= 0 1 - 2  

0 0 0 

" '~  0 

~176 0 

~ 0 .  
"'* 0 

Expanding this determinant  we obtain the recurrent relation 

An (~t) = -- ~ An-1 (~.) -- An-e (~t). 

As 0 ~ < 2 - 2  cos x~<4, 

all eigen-values of the form a~ lie in the interval (0, 4)~ and so the eigen-values 
of ( 2 -  ~ )  lie in the interval ( -  2, 2). Then put  

= - 2 c o s v ,  with 0~<v~<~r. 

Then A n = 2  cos v ' A n _ a - A n _ 2 .  

To solve this difference equation consider the equation 

x 2 = 2 x  cos v -  1 

x = cos v_+ Vco~ vv- 1, 

X ~ e ~fv. 

From this follows tha t  the general solution to the difference equation is 
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A n = A e inv + B e - tnv ,  

where A and  B are  constants .  

For n ,=O,  A 0 =  - 2 = 2  cos v, 

F o r  n = l ,  A 1=X 2 - 1 = 4 c o s  2v- - l ,  

A q B = 2  cos v, 

(A + B )  cos v + i ( A - B )  sin v = 4  cos 2 v - l ,  

i ( A - B )  s i n v = c o s 2 v ,  

A~ = (A + B) cos n v  + i ( A  - B )  s i n  n v  

cos 2 v  sin ( n + 2 ) v  
= 2  c o s y  cos n v + - - ,  s i n n v =  

sin v sin v 

The ( n +  1) zeros of A ,  are then  

k 
V = n + 2 7 ~  , k = l ,  2 . . . . .  ( n + l ) .  

Since ), = -  2 cos v, the  largest  eigen-value of the  form ( 2 -  ~ )  is 

n + l  
- 2  cos n + 2 7 c = 2  c o s -  

n + 2 '  

and  thus  the  smal les t  eigen-value of ~ is 

7~ 
2 - 2 cos - -  

n + 2 "  

As we are  in te res ted  not  only  in the  min imum value  of g~ b u t  also in the  
corresponding t r igonometr ic  po lynomia l  Pn (x) we have  now to de te rmine  the  
eigenvector  corresponding to  this  zn in imum eigenvalue.  P u t  

g (x) = u o + u l e i x + ' ' "  + U n e ~nx, 

so t ha t  p , ~ ( x ) -  [gl2 
2 ~ "  

The de t e rminan t  of the  following sys tem of equat ions  is A~ (~t) 
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- 2 u o +  u 1 = 0  

u 0 - 2 u 1 + u s = 0 

ux - 2 u~ + u a = 0  

�9 . �9 , . . . �9 �9 . , 

g g n - - 1  - -  fl,,"~rt = 0 

7 t  

Pu t t i ng  2 = 2 cos n + 2'  we have  A n (2) = 0 and the sys tem will have solut ions 

differing from the  t r iv ia l  one. Add ing  the  side condi t ion  

the  eigen-veetor  in quest ion will be un ique ly  de te rmined .  
Mul t ip ly  the  second equa t ion  by  e ~x, the  th i rd  b y  e 2~x, and  so on. F ina l ly ,  

adding  the  equat ions  we ob ta in  

- 2 g  + e - ix  (g - % )  + e ~ (g - -  un  e t"x) = 0 ,  

(2 cos x - 2) .  g = u ,  e -~x + u .  d ("+1)~. 

Now u 0 is p ropor t iona te  to  the  cofaetor  of the  f irst  e lement  of the  f irst  row of 
A ,  (2), i.e. p ropor t iona te  to  A , - a  (2). Bu t  

A . _ I  ( - 2  cos v) = - -  

n + l  
and  pu t t i ng  v = ~  zt th is  is equal  to  

sin (n + I)  v 

sin v 

sin n + - 2 ~ r  sin n ~ r +  x 

n + l  = 7t = ( -  l)n. 
sin n + 2 ~t sin - -  

n + 2  

F u r t h e r m o r e  un is p ropor t iona te  to  the  eofactor  of the  las t  e lement  of the  
f i rs t  row of A . (2 ) ,  i.e. p ropor t iona te  to  ( - 1 ) " .  

Since u 0 and  u ,  are  both  p ropor t iona te  to  ( -  l )  n we have  

~ix(n ~ 1) + e-ix  
g (x) = K 

7~ 
C O S  ~ - -  C O S  - -  

n + 2  

where K is a cons tan t  to  be de te rmined  later�9 Since 

we have  the  equat ion  

- -  l n x  y ~ x ~ = u o + u l e ~ X + . . .  ~ u , ~ e  , 
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e~X(n+l) ~_ e - i X  
2 K = z~ u~ ei~z, 

Y~ o e ~x + e -~x - 2 cos - - -  
n + 2  

from which we get  

Uo = un = 2 K ,  
7f, 

u ~ _ l + u ~ + l - 2 u ~  cos ~ = 0  for O < v < n .  

The equat ion  

has the  roots  

and  so 

o r  

1 + Q 2 - 2 ~ )  c o s ~ = 0  

~--~e •  , 

u , = A e n + 2 +  B e  n+2 

~ '  7gY 

u, = (A + B) cos n - ~  + i (A - B) sin n +---2" 

v = 0 gives 

v = n gives 

A + B = 2 K ,  

2~ n 7f, n 
(A + B) cos ~ -4- i (A - B) sin ~ - ~  = 2 K,  

. ztn [ 27t ] = 4 K  cosZ - i ( A - B )  s i n n ~ 2 = 2 K  1 +  C O S n + 2  n + 2 '  

i (A - B) = 2 K  cot  n+--2 '  

u~ = 2 K cos + 2 K c o t  ~ . s i n  
2 2 '  n +  n + 2  n +  

~tv 
2 K  v + l  

- -  sin n + 2  7c" 
s i n  - -  

n + 2  

v + I  
:Now g (x) = K '  ~ e ~ sin 

n + 2  :~ 

Igl"=lK'l 2 Y r  ")sinV 2 T - ~  + 1 # +  1 

F o r  k ~ 0  we have 

~ s i n V + l  f t + l  v - ~  v + # + 2  2 ~ ' s i n  z t= �89  ~ cos ~ c o s - -  
~- ,=k n + n ~ 2  + n +  2 

n - k + l  

2 

k g  f k + 2  k + 4  
C~  2 -  �89176  ~ - 7 ~  ~t + cos n-- -~ g + ... + c o s  

2 n - k + 1  

n + 2  
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N o w  we m a k e  use  of.  t he  f o l l o w i n g  iden t i t y :  

N N N 

- Y cos ( = + N ~ . 2 ~ ) = � 8 9  V ~x(~-2~,+�89 Z e - ~ , ~ - ~ )  
n = 0  n = 0  n = 0  

N e -2~x(~v+l)- 1 sin ( N +  1) x 
= ~ e!X: (N-2~) = e~N = 

n=O e :2 i x  - -  1 s i n  x ' 

which  we a p p l y  to  t he  s u m  

k + 2  k + 4  2 n - k + 2  
cos n +-~ ~r + cos ~ z r +  ... + c o s  n + 2  ze 

w i t h  x = ~ - ~  a n d  N = n - k .  This  s u m  is the re fore  equa l  to  

n - k + l  k + l  
sin - -  vr s i n  7r 

n + 2  n + 2  

7~ 7 I  
sin - -  sin - -  

n + 2  n + 2  

H e n c e  for k >~ 0 

Z s i n V + l  . .  # + l  n - k + l  k ~  
2 ~r. s in - -  cos 2 + 

~-~=k n +  n - - ~ =  2 n +  

k + l  
sin n ~ ~ 

7~ 
2 sin - -  

n + 2  

n - - k + 2  kv~ ~r k~r 
- 2 cos n + 2 + �89 c o t  ~ - ~ .  sin n + 2" 

As I gl  2=  ]gl ~ t he  coeff ic ient  of e ~x is t h e  s a m e  as t he  coeff ic ient  of e -'~x. 

- n  

where  Ck=[K, 12 In - l k l+2  kg  + rc ]k~ll 
2 C O S n + 2  �89 c o t ~ . S i n n + 2 ] .  

T h e  cond i t ion  C o = 1 g ives  

2 n + 2  l = l g ' .  ~ , 

a n d  t h e  f inal  r esu l t  is 

1 Ck e ~kx Pn (x) = ~ - _  

n - l k l + 2  k~ c~ Ik~l 
C k COS - -  

n + 2  n- - -~  -~ n + 2  n + 2 "  
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Thus the problem 1.4 is solved. The polynomial has the property 

yr 

f ( 2 - 2  cos x) P n ( x ) d x = 2 C o - C I - C - I = 2 - C I - C _ 1 = 2 - 2  cos n +----~2 

and our solution of the problem gives us the following theorem: 

1.5. I/ i a~ e t~ 
- n  

is a non.negative trigonometric polynomial with a o = 1 then 

Y~ 

2 - a : - a _ l ~ > 2 - 2  cos n +----2" 

We will now allow n to tend to oo in the formula for Ck. Put  k = t . n ;  

?g  

n+"-'tnf~ I I t n ~  c o t - -  n + 2  [tn~[ 
Ctn= COSn+24 n + ~ S i n - - - "  n + 2  n + 2  

When n - ~  o~ a function of t is obtained which we will denote; by C(0: 

o ( t )  = I (1 - l t l )  eos~ t§  1 , i n l e t [  for [ t [< l  
0 for [t[~>l. 

We deduce some properties of this function 

1.6. C(t) is a characteristic [unction and it has continuous first and second 
derivatives. 

To prove the first part  of the proposition put  

1 

,f 
- 1  

and we have to prove that  [ (x)/> O. 
Integrating by part gives 

1 1 

/ ( x ) = 2 - ~ ,  e - ~ t C ( t ) d t =  c o s x t .  C ( t ) d t =  
- 1  0 

1 

= [_sin x t 1 1 C' c(t)]0 fsin x t .  (t) d t =  
0 
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1 

=-1 I s i n x t .  ( I - t ) . s i n z t t d t =  
X .  

0 

1 

=l_2x f ( 1 - t ) { c o s  ( x - ~ ) t - e o s  (x+~) t}d t= 
0 

1 

[1 - t l s i n ( x - .~ ) t  sin(x+z~)t}]~o l ( t s i n ( x - ~ ) t  
= - 5 ;  ( x--~i x + ~  +:z-~ Jt ;---g 

0 

1 - c o s  ( x - z )  1 - c o s  ( x + ~ )  2 z  
= 2 x (x - ~)2 2 x (x + ~)2 (x 2 _ 7t2) 2 (1 + cos x). 

sin (x + zt) t I dt = 

which is 1> 0. This proves the first  pa r t  of the proposition. As for the second 
pa r t  we have for 0 < t <  1 

1 C(t) = ( l - t )  cos ~ t +  sin :,rt, 
Yg 

C'(t) = - z ( 1 - t )  s in  g t ,  

C" (t) = - 7e e (1 - t) cos 7et + ~ sin 7et, 

c(U=o c(o)=i 

CO.--o) =o c'(o+o) =o 

C " ( 1 - O ) = O  C " ( O + O ) =  - ~ .  

As C ( t ) = C ( - t )  implies 

- C ' ( - t )  =C'( t )  

C" ( - t ) = C "  (t), 

we have c '  ( o -  o) = o 

C "  ( 0  - O)  = - n 2. 

This proves the  second pa r t  of the proposit ion.  Nex t  follows a proposi t ion 
which will be used in the solution of problem 1.3. 

1.7. I/ ~v (t) is a characteristic /unction and 

+oo 

s =  Y q(An) 

is convergent, then S >~ O. 
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To prove this put  0 = r e  ~ with r < l .  Then 

+~ +o0 

r~q~(2n)=r~ f e i~dF(x)  f OndF(x), 
-o<3 -or 

+ o r  + r  

~rnq~(~n)= f ~'OndF(x)= f 1 
- o o  - o o  

+ o o  

- o o  

rt~l ~0 (2n) = 1 + ~ _ _ 0 +  
- o ~  

- o o  

dF(x)= 
+or  

f 1-1ol ~ d F ( x ) > ~ O .  

Since ~(~n) 
- o o  

is convergent it now follows from Abel's theorem tha t  

+ o o  + c r  

lim ~ rl~l~0(2n) = Z ~0(~n)~>0 
r - > l  - ~ - oo 

which was to be proved. 
1.5 and 1.7 will now be used to prove the following theorean: 

1.8. I/ qJ(t) is a characteristic /unction and qj(t)=O /or I tl>~ 1 then 

lim 2 - ~ ( h ) - ~ ( - h ) > ~ .  
h e 

h - - ~ o  

To prove this note tha t  ~ (h t)e ~xt is a characteristic function and tha t  

T =  ~ ( h v )  e t~ 

is convergent since it has only a finite number  of terms. According to 1.7 T 

is />0. Put t ing  / it is evident tha t  T is a trig0nometric polynomial of 
L - - J  

degree 2/ or N - 1 .  As ~0 (t) is a characteristic function ~0 (0) is equal to 1. Ac- 
cording to 1.5 
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2 - ~ 0 ( h ) - ~ ( - h ) > ~ 2 - 2  cos ~+--~,  

:rl 
2 - 2 cos - -  

2 - q ( h ) - ~ ( - h )  N + 2  
h2 ~ h2 ' 

lim 2 - ~ ( h ) - ~ ( -  h ) > ~  2 
h ~ h-+O 

as was to be proved. 
We are now in a position to state tha t  C(t) is a solution to problem t.3. 

We have shown tha t  C " ( 0 ) =  _ g s ,  i.e. 

lim 2 - C ( h ) - C ( - h ) = ~  2, 
h~0 h 2 

and 1.8 tells us tha t  this is the smallest possible value. 
We h a v e  not  proved tha t  C(t) is the unique solution of problem 1.3 even 

if this seems probable. 
The fact t ha t  C (t) has continuous first and second derivatives turns out  to 

be essential for the way  in which we are going to use C (t) in chapter 3. I n  
t ha t  chapter we will deduce approximation formulas with error bounds whose 
validity will require t ha t  ~ (t) has continuous first and second derivatives. As 
has been pointed out earlier we suppose tha t  the integral 

,f cp (t) d t 
- o 0  

is transformed into an integral from - T  to T by  multiplying q (t) by  a char- 
acteristic function ql  (t) which is equal to zero for ]tl>~ T. In  order t ha t  the 
error bounds of chapter 3 should be valid it will then be necessary tha t  ~1 (t) 
has continuous first and second derivatives. Note tha t  the well-known charac- 
teristic function 

for Itl>~ T, 

which is often used for t runcation purposes, does not  have a continuous first 
derivative. 

I n  the following table we give some values of the distribution function cor- 
responding to C (t). For  comparison some values of the normal distribution func- 
t ion have been added. They  show tha t  the agreement between the two distribu- 
tions is fairly good. 

8:2  1 1 5  
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Table o/ {F (x) - F ( - x)}. 

Column II :  Dis t r ibut ion  corresponding to C( t /~) ,  i.e. having mean  0 and  
s tandard  deviat ion 1. 

Column I I I :  Normal  dis t r ibut ion having mean 0 and  s tandard  deviat ion 1. 

x II  III  

9 
1 
1�89 

2 
2�89 
29 
3 
3~ 
3~ 
4 
49 
49 
5 

0.26558 
0.50491 
0.69840 
0.83732 
0.92426 
0.97009 
0.98912 
0.99440 
0.99494 
0.99520 
0.99624 
0.99756 
0.99849 
0.99887 
0.99892 

0.68269 

0.95450 

0.99730 

0.99994 

1.00000 

We conclude this chapter by  demonst ra t ing  a method of cons t rv ; t ing  char- 
acteristic functions wkich are equal to ~ero outside a finite in terva  ~ ( - -  q', T)~ 

1.9. Let / (x) be a /unction, satis/ying the following conditions: 

1) /(x)=O 

2) / (x) e L, 

/or xl > T 

3) / ( t ) = f ( - t ) ;  

then 
f / ( t - x ) / ( x ) d x  

( t )  = - ~ + 

f I / t  ~ dx  

is a characteristic /unction and q~ ( t )=0 /or It] ~> T. 

To prove this pu t  
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Then g (x) = ~ (x) and hence ff (x) ~ ~> 0. 

+oo +oo 

f d,, f 

+oo +~o +zo + o o  

f d~ f ~-'~'/(~)f(t-u)dt= f e-'~{ f / (u) / ( t -u)du}dt .  
- - c o  - - o 0  - - o 0  - - o 0  

That  92E L follows from Parseval 's  theorem. Excep t  for a suitable factor  the 
function 

f t (u) l ( t -u)du 
- -  o 0  

is thus a characteristic function. The factor is to  be chosen in such a way  tha t  
the function becomes equal to 1 for t= O. Thus 

/ (u ) l ( t -u )  du 

(t) = +oo 
f f(u)/(-u)du 

- - o 0  

is a characterist;c !unction and since q (t) is e,rid.ently equal to zero for It] ~ T 
the rest,!t follows. 

As an example we chose 

cos rex for I x l <  1 

[ (x) = 0 for I x 1/> �89 
Then for 0~<t~<l 

f 
�89 

/ *  

/ (t - x )  ] (x)  d x  = / cos  z (t - x ) .  cos  z l x  d x  = 
Q ]  

t - �89 

�89 

=�89 {cos~ t+cos~ (2x - t ) }dx= �89  cos ~ t + ~  sin ~t .  

t - �89 

That  is, we obtain the characteristic function 

1 C(t)=(1-1tl)eos:~t+- s inl~t  I for Itl<l. 
7~ 
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CHAPTER 2 

Approximation First--Integration Afterwards 

Suppose tha t  ~v (t) is a characteristic function and t h a t  there is a finite inter- 
val  ( - T, T), such shat  ~ (t) = 0 for [ t [ I> T. We want  to determine the frequency 
function /(x), corresponding to ~0 (t), where /(x) is given by  

T 

- T  

In  1928 L. N. G. Filon suggested in a paper  t ha t  sueh an integral should be 
dealt  with in a manner  different from the ordinary methods  of numerieal  in- 
tegration.  

Divide the interval  ( - T, T) into 4 N equal par ts  and pu t  T/2 N = 2. Then pu t  

t~= - T + v . 2  0~<r~<4N. 

I n  each sub-interval  (t2,, tz,+2) we approximate  r (t) by  a parabola  which for 
t=t2~, t2~+1 and t~+z takes on the same values as r (t). The approximat ion  ar- 
r ived a t  in this manner  will thus consist of 2 N parabolic arcs. I t  is subst i tuted 
in the integral for r (t) and an explicit expression for the value of the  integral 
m a y  then be set forth. This method will be discussed in the present  chapter,  
the t i t le of which indicates t h a t  ~0 (t) is first approx imated  by  a suitable func- 
t ion q~A (t). The integral  

T 

1 ( e  -ux CfA (t) dt 
d 

- T  

is then evaluated and is t aken  as the approximat ion  /A (x) of /(x).  
We will here consider two cases. Firs t  we are going to invest igate the result 

of approximat ing ~ (t) in each sub-interval  (t~, t,+l) by  a s traight  line. After  tha t  
we tu rn  to Fflon's  method of approximat ing  ~ (t) by  parabolic a r c s .  

Our investigation of the f irst-mentioned method will be based on the assump- 
t ion t ha t  ~ '  and ~ "  are continuous for It I<  T. We define the auxil iary func- 
t ion g (t): 

{ 1-1tl  for le l<l  
g(t)= 0 forlel>/L 

Then g(t) is a eharacteristie function, corresponding to the f requency function 

1 - cos x 
~ z  2 

The.  approximat ion  ~A (t) of ~ (t) by  s traight  lines can be wri t ten 

~,, (t) = Y. ~ (t,) g 

118 



ARKIY FOR MATEMATIK. Bd 4 nr 10 

for if t = t n then 

~0A (t.) = ~ ~o (t~) g = ~0 (t.) 

and in each interval (t~, t~+x) ~oa(t) is a linear function. 
The approximation ]A (x) of [ (x) is thus equal to 

T T 

f 1 e -U~x( t )d t=  ~ r f ( t~)~  e-~t~g dt 
- T  - T  

iv+), 

1 
4N.-1 ~t f ~ C19 (t,) e -|t;yx, = ~ cf(t~)'~-~ e-%X.e-~Z~'tg(t)dt 1 - c ~  
v = l  :Tl: ~ X 2 ~=1 

- 1  

and this may,  of course, be written 

1 --  COS ~ X  s  

We have now to estimate the error Ira ( x ) - ]  (x)I. We need the following in- 
equality. 

2.1. For real x and t and a <~t <~b 

eU ~ t - a  ~bx b - t  ~ax x~ 
H ( t ) =  - b _ a  e - b _ a  e <~ ~ ( t -a)  (b-t) .  

Proo/: For  real y we have 

where 

H (t) = I 
I 

�9 y2 
e ~u = 1 + ~y +-2- v ~, 

IOJ<l. 
1 t-'~e,,~-~)~ b-t,-o,-~' I t-a ( ! ~  ~ ) - b - a  ~ _ a  e' - ' l= 1 - ~ _  a l + i ( b - t ) x +  x2v~ a -- 

b -  t ( l  + i ( a - t ) x + ~  x2t~) l= 
5 - a  

t b - a . ( b - t ) ' x , ~ , + b - t ( a - t ) 2  2 [ 
= - a  2 b - ~  2 x z$ 2 

<~ (t  - -  a )  (b  - t )  ~ + (b  - t )  ( a  - t )  2 x" = ( t  - a )  (b  - t )  x2 
2 (b - a) 2 

as was to be proved. 
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In each interval  (t~, t.+l) {~ (t)-q~a (t)} is equal to 

f x 2 q/ '  (0) ( t -  t,,)( t,, ~ -  t). [cf(t)--(PA(t)]~. ~ ( t - - t~ ) (G+, - t )dF(x )  - 2 
-oo 

Now we can use this inequal i ty  to es t imate  the difference / ( x ) - / A  (X): 

T 

- T  

T 2 

<~ ... .  ]q~(t)-q~a(t)ldt .~- g ) -  4 N  
- T  0 

q~" (0) 4 N ~ =  )~ 2T~'' (0) 

Summing up : 
T 

2.2. Exact value: [ ( x ) = ~  1 f e UX~(t)dt. 
- T  

Approximate value: /A (X) = 1 --,n2x ),X ~ q~(~r) e -~x~. 
v 

T 2 2 
Error bound: I/(x) - h (x) l < - i-~-~ # '  (o). 

We now turn  to  Filon's  approx imat ion  of q~(t) by  parabolic arcs. Here  w e  
assume tha t  q~', 9~" and ~ ' "  are continuous for [t I < T. 

We define two auxil iary functions 

1 - t  for [ t l < l  

gl (t) = 0 for Itl>~l. 

0 for ]tl~>2. 
Then 

1 1 

--2~ e-UX gl ( t)dt= _1 cos 
9 T .  

- 1  0 

1 

tx(l_t2)dt=2 f s i n  t x . t d t = 2 _  s i n  x - x . c o s x  
7~ x 3 

o 
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and 

2 2 

f i f  2:~1 e-'t~g~(t)dt=~ c o s t x - ( 1 - t )  1 -  dr= 
- 2  0 

2 

1 f sintx(3 ) 3 ( 1 - c o s 2 x )  :~x ~ - t  dt 27~X 2 

o 

sin 2 x - 2 x cos 2 x 3 x + x .  cos 2 x - 2 sin 2 x 
~ x  8 2 ~ x  3 

By  the aid of gl and g~ the approximat ion ~PA (t) may  be expressed as follows 

~ ( t )= ~' ep(t,)g I (t_~_.) + ~" q~(t.)g~ (t~t_.) , 

where Z'  and ~"  denote summat ion with respect to odd and even values of 
respectively. Tha t  this is the desired approximat ion can be proved in the fol- 
lowing way. 

For  t = ~  we have 92 - -  = 1  and  all the other  functions gl a n d g ~ e q u a l  

to zero. 

For  t=t2~+1 we have 91 [ - - - - ~ J  = 1 and all the other functions 91 and 93 

equal to  zero. 
I n  the interval (t2k, hk+~) ~a(t) is composed of three parabolas, namely 

the r ight  hand  half of 

the left hand half of 

~v(t2k+l)'gl - - ,  and 

tt -- tu~ ~ ( t ~ k ) ' g ~  ~ ] ,  and 

I t  - -  t2k.2  ~ [- T -  ] 
T h u s  Ca(t) has the desired properties. The approximat ion /A(x)of / ( x ) i s  

equal to 
T 

I .  (x) = ~ e - ~  ~0~ (0 d t  = 

T T 
1 ~ = ~' qJ(t,) ~--~ f e-'tx gl (t~)?) dt + ~" ~(t.)~-~ J e-'X g2 ( ~ Z )  dt = 

- T  - T  

1 2 

]t [ e_i~t g2(t)dt = 
- 1  - 2  
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2 sin ). x -  2 ). x cos ). x ~ ,  q~ (t~) e-~t~ + 
).2 x a 

+ 3). x + ) .  x cos 2). x -  2 sin 2). x ~ , ,  qj (t~)e-'~t~. 
2~).2X 3 

To es t imate  the error we first  note t h a t  if P2 (t) is a second degree poly- 
nomial, / ( t)  is real and  P2 ( t ) = / ( t )  for t = a, b and c then 

/ ( t ) = P ~ ( t ) q  ( t - a ) ( t - b ) ( t -  6 c)],,, (0), 

where 0 is a point  in the smallest  interval  including a,  b, c and t. Consider now 
the difference 

(t) - qA (t). 

In  each sub-interval  (t2~, t~+2) the real and imaginary  par ts  of this difference 
are both  equal to a function minus its approximat ion  by  a second degree 
polynomial .  Pu t t ing  q (t) = u (t) + i v (l) we then  have 

q0 (t) = qgA (t) A (t -- t2k) (t -- t2k+l~ ~t --  t2~c+2) {U'" (01) "4- r ~)ttt (02) } 
6 

in each sub-interval (t~, t2~+2). Since 

]u ' "  (01) + i v" '  (02) [ < 2 Max {] ~0'" (t)I}, 
t 

we get 
I t2k+~) ] I w (t) - ~A (t)[ < !  ( t -  ~ )  ( t -  t~+l)  ( t . -  Max {I ~0'" (t)I}. 

3 t 

N o w  

T 

- T  

T 2~ 

If f ~<~-~ [~F(t ) -~A(t) ld t~< Max{]qJ" ( t ) l  } �9 ]t(t-).)ff-2).)]dt=: 
- T  0 

N ):  Max {I r  (t) I} = T ).~ m x {I r  (t) I}. 
= - 6 ~  , 
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CHAPTER 3 

The Trapezoidal  R u l e  

Let q9 (t) be a characteristic function and suppose tha t  the integral 

+ ~  

I (~0) = ~ ~0 (t) d t 

exists. In  this chapter we will discuss to what  extent  the trapezoidal rule is 
suitable for the calculation of an approximate value of this integral. 

Let  us first note tha t  if q0 (t) is a characteristic function then the same is 
true of 

~1 (t) = e -~tx q0 (t) 

and sin h t -itx 
q~ (t) = ~ e ~o (t). 

The frequency function /(x) corresponding to ~ (t) is given by  the integral 

q-oo 

](x)=I (q~l)=~ ~ol(t)dt 

if this integral exists. The increment of the distribution function is given by 

+ o o  

P(x+h)-.F(x-h)=2h.I(cf2)=~-- ~ q~2(t)dt. 
- a o  

I t  follows tha t  these integrals are both of the type  considered in this chapter. 
The so-called Poisson's formula will p lay  an essential rSle in this chapter. Ac- 
cording to this formula 

Y g(~)= F e~'~'g (t)dt, 
- o o  - o o  

where g (t) is a real or complex-valued function. Before we state any  condi- 
tions under which this formula holds we note t ha t  if 

g (t) = ~ (Z t), 

where 2 >  0 and ~ (0 is a characteristic function corresponding to the frequency 
function ] (x) and if Poisson's formula holds 

2 ~  ~(~v) _~ \ x / 
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We will then say that  Poisson's formula applies to ( / ,q~)with parameter 
value 2. 

We start  by stating two well-known theorems, providing sufficient conditions 
for the validity of Poisson's formula. 

3.1. I /  1 ) I g ( t ) l e L ( - - o ~ ,  +cr 
2) g (t) is of bounded variation in ( - ~ ,  + ~ ) 
3) 2 g (t) = g (t + 0) + g (t - 0) /or all t then Poisson's formula holds. 

3.2 .  I! 

p ~  o! 

+ o o  

1) G (t) = ~ g (~+ t) is uniformly convergent /or [tl <~ 
- o o  

2) G (t) is o/ bounded variation in ( - ~ ,  ~.) 
3) 2 g ($) = g (t + 0) + g (t - 0) /or all t then Poisson's ]ormula holds. 

(3.1) and (3.2): In both eases 

+oo 
G(t)= 5g(v+t) 

-r162 

is integrable over ( -  ~, ~) and of bounded variation. I t  follows that  

+oO 
G(0) Y g(~) 

- o o  

is equal to the sum of the Fourier coefficients of G (t). That  is 

+~ 

O(0)=  ~ e2~ntG(t)dt. 
- o o  

But - ~ 

f e~'*~tG(t) dr= ~ e ~ ' t g ( v + t ) d t  = 
-�89 -�89 

= ~ e~ tn tg(~+t )d t  = ~ e2~ntg(t)dt= e~'t~tg(t)dt 

-�89 ~-�89 -oo 

the inversion of the order of integration and summation being justified in (3.2) 
by uniform convergence and in (3.1) by ]g (t) l belonging to L ( - o o ,  + ~ ) .  

+ o O  

+~ +o0 f Hence ~ g(v)=  ~ e~'~'tg(t)dt 
- o o  - o o  

- o o  

as was to be proved. 

When we are dealing with a frequency function / and its characteristic func- 
tion ~ the theorems (3.1) and (3.2) may be applied to either ] or ~ in order 
to make certain that  Poisson's formula holds for the pair of functions (/, ~). The 
following (new) theorem applies only to characteristic functions. 
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3.3. I /  l )  g (t) is a characteristic /unction 
§  

2) a (t) = ~ ~ (~ + t) is uni /ormly convergent tor I t l ~1  �9 -.~ ~ then Poisson's 

/ormula holds. 

Proo/: Since g (t) is a character is t ic  funct ion i t  is continuous and since the  
series which defines G (t) converges uni formly G (t) is continuous.  I t  follows tha t  
the  Four ie r  series corresponding to G (t) is summab]e (C, 1) to the  sum G(t). 

+~ 

Hence G , 0 , =  lim,_.~cm=_, ~ ( 1 - ~ )  f ee'~'G(t)dt" 
} 

+ ~  

But  G (0) = ~ g (v) 
- o o  

+ }  ~or 

and  f e~=~"~t~ G(t) d t -  I e~=~mtg(t)dt 
- � 8 9  - o o  

as in the  proof  of the  foregoing theorem.  Hence 

+oo 
�9 

g ( v ) =  l im 1 -  e2=*mtg(t)dt. 
-oo  n - - ~  m n 

- o o  

Since g (t) is a character is t ic  funct ion all integrals  on the  r ight  hand  side are 
non-negative.  Hence summat ion  b y  a r i thmet ic  means  leaves the  same resul t  as 
o rd inary  summat ion.  Tha t  is 

+ ~  +oo f g (~) = ~ e ~=~'~t g (t) d t  

- o o  

as was to be proved.  
Our nex t  t a sk  will be to deduce three  corollaries to  the  theorems we have 

jus t  proved.  

3.1'. I /  g (t) /ul/ills the conditions (3.1) then 

"~ g(~.~')= Z e2'~t g (2 t )d t  
- c,o 

[or all ;~>0.  

3 .2 ' .  I /  ~> 0 and g (~ t), considered as a /unction o/ t, /ul/ills the conditions 
(3.2) then 

g = g dt  
- c ,o 

/or all integers p >~ 1. 
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3.3'. I /  2> 0 and g (,~t), considered as a /unetiou o/ t, /ul/ills the conditions 
(3.3) then 

+oo 

/or all integers p >~ 1. 

I f  g (t) fulfills the  condit ions (3.1) the  same is t rue  of y (2t). This proves (3.1'). 
I f  g (2 t) fulfills the  condit ions (3.2) then 

G ( t ) =  ~ g ( 2 ~ + ~ t )  

is equal  to the  sum of i ts  Four ie r  series. 

+�89 

a (t) = ~ e ~ *  e - ~ " ~  
- e,o -�89 

G(u) du.  

The sum of the  G (t) values for t = 0 ,  1 p - 1  . - , . . . , - -  is equal  to 
P P 

m = O  = - m = O  =~-:r  g 

+oo p - 1  2 g i m n  +�89 +�89 

f +~r f e-uninpuG 5 5 e - 7  e -~'n~a(uld~= 5 p (u) 
n = - r  m=O n ~  oo -�89 -�89 

du= 

+oo 

~ p  
+Cr 4-00 

e-~'~'w g(~u)du  = ~ ee=int g dt,  
- o o  - o r  

where we make  use of the  fact  t ha t  

p - 1  2rdrnn tO i f  n ~ O  (modp) 
e P 

~=0 [p if n-----0 (modp) "  

This proves (3.2'). 
The proof of (3.3') is a lmost  the  same as the  proof  of (3.2'), the  only dif- 

ference being t h a t  we have to use summat ion  by  a r i thmet i c  means  ins tead  of 
direct  summat ion .  Thus we get  

+ ~  

g = lim 1 - p g (~t u) d u. 

Since g ().u) is a character is t ic  function all  terms on the  r ight  hand  side are  
non-negat ive.  Hence 
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e _  2 ~ d n p  u 

g =n :r g (Xu)du  
v = o r  = -  

- o o  

and  the  proof follows as in (3.2'). 
I n  (3.3') we assumed t h a t  there  was a X>O such t h a t  

was uni formly  convergent ,  and  from this assumpt ion  we could conclude t ha t  
Poisson 's  formula  was va l id  for a cer ta in  set of X-values. I t  is impossible to  
prove  t h a t  the  formula is val id  for all  X-values if i t  is va l id  for one X-value. 
We will show this wi th  the  a id  an  example .  

According to  Po lya ' s  welt-known theorem the  funct ion 

1 

l+ltl 

is a character is t ic  function.  Thus the  same is t rue  of 

Wi th  X = 1 

cos 2 g t  
q ( t )=  

l + l t l  " 

~ 0 , ) =  + ~ .  

This means  t ha t  Poisson 's  formula  does no t  hold  for 2 = 1. I t  holds, however,  
for X=�89 

~ + t  = = c o s  2z t t  ~ ( - 1 y  

I I  I I - ~  - ~  ~' _~ ~ _}_ 

This series is easi ly seen to be uni formly  convergent  for It[-<<1 b y  considering 
the sum of two consecutive te rms i.e. 

lCOSX [1 1 1  ( )1 ) 
l + 2 + t  1 +  v + l  ( _ l ) ~ c o s 2 ~ t t  2 v + l  

- - - ~  + t l + 2 + t  1 + ~ - -  + t  

if v>O, and  a similar  resul t  holds if v < 0 .  The resul t  then  follows from (3.3). 
We  are now going to  prove  some theorems with  the  a id  of (3.1)-(3.3'). 

3.4. I /  F (x) is a distribution /unction and q~ (t) its characteristic/unction, then 

X ~ sin h2Ve_~a~:~c p 2~v'i  / 2:~v] 
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This is an immedia te  consequence of (3.1) and  (3.1'). 

F ( x + h + y ) - F ( x - h + y )  
2h  

considered as a funct ion of y, is a f requency funct ion of bounded  var ia t ion  in 
( - ~ ,  + ~ ) .  The character is t ic  function corresponding to this  f requency func- 
t ion is 

l _  f e , t ~ { p ( x + h + y ) _ P ( x _ h + y ) } d y  = 
2h  

- r  

-2htil e ~ t ~ d F ~ ( x - h + Y )  2 h t i  
- ~ - c , r  

e uh -- e- ith sin h t 
-- e -itz q) (t) . . . .  e -~tx q) (t), 

2 h t i  h t  

+ h + y )  = 

and the  result  follows. 

3.5. I /  Poissou's ]ormula applies to (/, qg) with parameter value ~, then 

,~ +r162 
- -  ~ ~ ( ~ v ) > ~ l ( o ) .  
2 ~ _% 

This is an immedia te  consequence of Poisson 's  formula.  We can also express 
this resul t  in a way  t ha t  be t te r  i l lus t ra tes  i ts  connection with our approxima-  
t ion problem 

+ o o  

If ! (o)  = ~ ~o (t) d t. 

If  we calculate an app rox ima te  value of this  in tegral  according to  the  t rape-  
zoidal  rule using values of the  in tegrand  a t  equal ly  spaced points ,  s tar t ing a t  
t = 0 ,  we get 

~ ~ (~ ~), 
- r 1 6 2  

and (3.5) says t h a t  this  approx ima te  value  is larger t han  or equal  to  the  
exact  value.  

3.6. I /  Poisson's /ormula applies to (/, q~) with parameter values ~ and p 2  
(p integer > 1), then 
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X~ , 

p ~  2 ~ v  

where the  las t  sum extends over v-values v ~ 0 (rood p).  This completes the  proof. 

3.7. I1 qJ" (0) exists and Poisson's /ormula applies to [](x),  ~ (t)] and to 
[xZ! (x), -q )"  (t)] with parameter value 4, then 

,% + : r  23 ,, 
~ ~ ( v ~ ) + ~  (~)<1(0). 

Proo/: q) (t) = f e ft~ ! (x) d x, 
- r 1 6 2  

+ r 1 6 2  

qJ'  (t) = - S e~t~ x~ / (x) d x,  
- o o  

I r  (t)1<1r (o)1. 
This means  t ha t  qJ'(t)lqJ' (0) is a character is t ic  function,  corresponding to  

the  f requency funct ion 

x 2 / (x)  

q~" (o)" 

We a p p l y  Poisson's  formula: 

Since 

we get  

,;t 
2 :t ~o" (o)~ m'' (v~) 

,,1 --[2~v'~ 2 / 2 ~ v k  ) )> 

~ "  @~)= -Yv~/ 
v 

, t-Y-! 

2 ~ ( v ~ ) + ~  (~)=/ (o) -  Y (v~-l)/ 2_ ~ . 
~=#O 

Since the  las t  sum is >/ 0 the  resul t  follows. 
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The inequalities (3.5) and (3.6) are based on the assumption t h a t  Poisson's 
formula holds. We are now going to deduce the same inequalities from other 
assumptions. 

3.S. I!  7'~ = ~ -  ~ ~ (v 2) 
~ 7t: _r162 

-t-or 

if I = ~  ~(t)dt 

are both convergent, then T~. >~ I. 

To prove this we apply theorem (3.3). As e -'ltl is a characteristic function,  
so is 

V) (t) = e-'ltl ~ (t). 

According to condition 2 of (3.3) 

+oo +oe~ 

~ W ( 2 v + t ) =  ~ ~ ( 2 v + t ) e  -~l~v+~l 
- oo  -~o  

should be uniformly convergent for I t[<~2/2. 
Since this series is absolutely less then 

e - e  I,lr-~ tl < e e Itl ~ e-s ,~ Ivl < e�89 ~ e - e ~ l v l  < c ~  

v v v 

for I tl <x/2, uniform convergence holds and (3.3) m a y  be applied. Thus we get 

+oO 

-oo  

Since ~ q (2 v) 
v 

is convergent it follows from Abel 's theorem tha t  the left hand  side tends to 

and 

this limit as e-+0. 
Since further 

is convergent, it follows tha t  

f q~(t)dt 
- o o  

f e-~ltlq~(t)dt = e- ' t{cp( t )+~(- t )}dt  = 
--  o0  0 

oo  t 4 o r  

=e f d t f  e-'t(q~(u)+qJ(-u))du--> f ~(t)dt  
0 0 - o o  



as e-+O. Thus 

as was to be proved. 

3.9.  I f  
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~-~ ~ ( t )dt  

T~=-5-~ ~ ~ ( ~ v ) 

and ~ ~ -  ~-- ~ (p~ v) 
-L T ~  v 

are both convergent and p is a positive integer, then 

T ~  >~ T~. 

As in the proof of (3.8) it follows from (3.3) tha t  Poisson's formula applies 
to the characteristic function 

~v (t) = e -~ltl q~ (t) 

and the corresponding frequency function. Applying (3.6) we get 

~P~ (p~v)~> ~ ~ (~). 

But  this is equivalent to 

When  e ~ 0  it  follows from Abel's theorem tha t  

as was to be proved. 
The theorems (1.7), (3.3) and (3.8) m a y  be epitomized as follows. If  the series 

9(t)=~ Z ~v(~r+t) 

is convergent for t = 0 then its sum g (0) >~ 0. I f  the frequency /unction / ix) 
exists for x =  0 in the sense tha t  

+ r 1 6 2  

If 1(0)=~ cf(t)dt, 
- o o  

then g (0) >~ / (0). I f  finally g (t) converges uniformly for [ t 1-<< U2  then we can 
also estimate how much larger g (0) is than  f (0). 
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As a first application of the theorems concerning the Poisson formula we will 
consider the following problem. 

Suppose we wish to calculate an approximate value of the integral 

+ o O  

_f = ~  q,(t)et 

using Simpson's rule. Suppose furthermore tha t  we use the abscissas v2, with 
spacing 2 so tha t  there will be two different ways of applying Simpson's rule: 

sl-3 -! 
2 3 ~  + ~  ~ (2 v)l + ~t), 

According to the trapezoidal rule we get 

T~ = ~-~ 

T ~  = ~- V~  (2 vX) 
7/: v 

with spacings 2 and 2 2 respectively. 
We assume tha t  these sums are both convergent. Then 

S 1 = ~ T~ + 1 T2~ = T~ + ~ (T2~ - T~), 

S 2 = ~ T~ - ~  T2a = T~ - ~ (T2~ - T~). 

According to (3.8) and (3.9) 

T~>~ T~>~ I. 

Thus S x ~> T~ ~> I 

and S 2 ~< Ta. 

Hence it is evident tha t  Ta is a better  approximation than  S 1. I f  S 2 is a 
better or worse approximation than Ta cannot be ascertained is this way. 

We now turn  to the main problem of this chapter, which is the numerical 
integration of 

+oo 

I f  I = ~  ~(t)dt 

by  use of the trapezoidal rule. 
We have already pointed out  tha t  the numerical integration of this integral 

involves fixing, sooner on later during the calculations, a finite interval ( - T ,  T), 
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such tha t  the approximate  value of I will be based on values ~v (tv) with I t, [ < T. 
The tails of the integral from - o o  to - T  and from T to + oo are disregarded 
and an estimation of the tails must  thus be undertaken in order to control the 
error introduced in this way. In  chapter 1 we decided to t runcate  the integral 
by  multiplying the integrand by a characteristic function which is equal to zero 
outside the finite interval ( - T ,  T). 

Throughout  the rest of this chapter we will assume tha t  this method has 
been applied upon the integrand. We will further assume tha t  the given cha- 
racteristic function as well as the characteristic function by which it has been 
multiplied have continuous first and second derivatives. We may  thus re- 
formulate our problem in the following way. 

The integral 
T 

l i 
- T  

is to be integrated numerically, where 

V l) ~ (t) is a characteristic function, 

V2) ~(t)=0 for [tl~>T, 
V 3) q~' (t) and ~"  (t) exist and are continuous. 

Inspection of theorems (3 .1) - (3 .9)  easily shows tha t  these theorems all hold 
for a characteristic function fulfilling the conditions V2 and V3. The para- 
meter 4 may  then take any  value > 0 and the inequality (3.6) holds for every 
integer p i> 1. 

According to the inequalities (3.5) and (3.7) we get 

i 
~ 4 :r z 

If  we take the arithmetic mean of the upper and lower bounds we get the 
following approximation formula. 

T 

3.10. Exact  value: I = ~  qD(t)dt. 

- T  

4 2 
Approx imate  value: I A = T ~ ( qJ ) + 8 ~-~ T ~ ( q) " ). 

Error bound: [I  - IA[ < -- 8~-~22T~ (cp"). 

T~ (~") = 9--~/= Z~" (4v). 
v 
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In practica~ application this formula has the disadvantage tha t  T~(~") will 
as a rule be fairly complicated to calculate. Suppose for example that  the 
characteristic function ~ fulfills condition V3 but not V2. By multiplying by 
the function C (t/T) of chapter 1 the product will again be a characteristic func- 
tion, which fulfills condition V2 and V 3. We want to calculate the increment 
of the corresponding distribution function over the interval (a -h ,  a+h). This 
increment is given by the integral 

T 

2 h . I ( ~ o l / = 2 h . ~  ~o~ (t)dt, 
- T  

sin ht e_it a (T) where ~1 (t) = ~ ~ (t) C . 

This integral is thus of the type considered here. Applying formula (3.10) 
means calculating inter alia T~ (q~'). We will not enter upon the details but it 
is evident from the expression of ql alone tha t  q~' will be of fairly cumber- 
some form. From a practical point of view it seems desirable to replace T~ (q0") 
in (3.10) by some approximate expression, if possible. 

Since T" (t)//~v ' '  (0) is a characteristic function, theorem (3.9) gives 

T . . . .  2~ y. , ,(22v). - T ~ ( ~ " ) < - -  ~atq ) = - ~ ,  

In  this expression we replace q"  (2 2v) by the approximation 

2 q (2 ;~v)- ~ (2 ~v + ~ ) -  ~v ( 2 , t v -  ~) 
- ~" (2 ;t v) ~ )2 

Hence 2 : z ~  (2~ v )~  ( -  1)'~v (2v). 

We are thus led to presume tha t  

4 ~a 

is an approximation on the "safe side" of the error bound 

~2 

8 z  z T~(~"). 

Our next task will be to discuss to which extent this presumption is correct. 
We will base this discussion upon the assumption that  ~o (t) fulfills not only 
conditions V 1 - V 3 but also 
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V 4) The function ~p (t) = ~ (t) + ~ ( - t) has continuous derivat ives up  to order 
2 p inclusive for 0 ~ t ~ T. At  the endpoints  the  der ivat ives  are defined as 

~(~) (0) = ~(v) (0 + 0), 

~(~) (T) = ~0 (') (T - 0). 

V5) ~o( ')(T)- ~(") (0)=0 for odd values of v less than  ( 2 p - 1 ) ,  while 

~(2 p-~) (T)  - ~(~ ' -~)  (0) :~ 0. 

We will also assume t h a t  T / 2  )~ is an integer. Le t  us now deduce the Euler- 
Maclaurin sum formula.  

y y~ 
e y -- 1 exy = ~ . t .  B~ (x) ,  

where Bn (x) is the n:th Bernoulli polynomial ,  B~ ( 0 ) = B n - -  the  n: th Bernoulli  
number ,  and 

B 0 (x )=  1, 

B~ ( x ) = n B n _ l  (x). 

Pu t  j,~ (x)- -Bn ( x - [ x ] )  so t ha t  Jn (x) is periodic with period 1. 
The integral  

T T T 

9 ~  ~o( t )d t=  ., {qJ(tl+q~(-t)}dt=}~ ~p(t) 

- T  0 0 

d t  

will be evalua ted  according to the Euler-Maclaurin sum formula.  
interval  (0, T) into sub-intervals  of length ~t. 

v),+), v~+2 

qi7 

Divide the 

Successive par t ia l  integrat ion gives 

v),+a wl+).  

wl Lm=l m! (t)j,~ (2p)!  va 
~o (~ ~) (t) d t. 

Summing with respect  to v and using the fact  t ha t  

i l  ( ~ -  0) = - i l  (~ + 0) = ~, 

jk (t) is continuous for k >  l, 

/ 'k(0)=B~ for k > l ,  

we obtain 
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T 

f 
0 

T 

_ ~ 2 ~ - .  v ,~ [~,(m-i)(T) -~o ('~-1) (0I] + ~ f j~, 
0 

Now B~=0  for odd m > l  and 

dt. 

~)(m-1) (T) - y~(m-1) (0) = 0 

for even m <  2p according to assumption V5. 
Making use of the definition of ~o we may then write 

T 

2 ~  ~ (v21 = fy j ( t )  dt+22r (_~p)V.[y j B z p  (2p-l) ( T ) -  y~(2v-1) (0)]-- 
- T  

T 

(2 p)! f j~" 
0 

I t  is easily seen that the last integral tends to zero as 2-->0. 
the notation of (3.10) 

T 

1 f 2~ r B2p T~(cp ) - ~  qJ(t)dt+ 23r ( 2 ~ ) ~ .  [~0(2 P- 1) (t)]or + o (22"). 
- T  

Thus, using 

The same formula with spacing 2 2 instead of 2 gives 

T 

T2) " (99) = 1_~ f ~ (t) a t  ~- (2 2)2P 2 ~  (2p )  !B2--P [~/)(2p-1) (t)]T _~ O (2 2 P), 

- T  

Subtracting these expressions gives 

2 
2 xe ~ ( -1)~ q~ (v 2) = T2~ (cP) - T~ (q~) = 22v (2~p -1)  2 ~B2~(2 r p ' ~  [~(~ ~-1) (t)]~ + o (22% 

Using the expansion of T~ (q) with ~0" instead of ~ and ( p - 1 )  instead of 
p gives 

T 

T~ ((p") = ~ 1  f qJ'(t)dt+22v-2 2zt(2~--2)!B2~-2 ['(2P-1)(t)]Two(X2V-2),'~o 
- T  

but as 

T T 

- T  0 

y/" (t) dt=~v' (T ) -y /  (0) = 0, 
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we have T), (9)") = ~2v-2 B2p-2 [~)(2p 1) (t)]~" + 0 ( ~ 2 p - 2 ) .  
2 x ( 2 p - 2 ) !  

Now we recall that our presumption was that 

1 1 "T Rx=~(-l)~q(v2)=~{ 2~($)-T~(q)} 

was an approximation on the "safe side" of 

R, = - ~;-~ T~ @"). 

According to the above expansions R 1 / R  ~ tends to the following limit as ~t-+0: 

B2 p 
Q P = 5 "  (2~P- l) 27~ (2 p)! _ _ _ _ .  8 z  2 . 

2 ~ ( 2 p - 2 ) !  

- B 2  , _ 2  

B2v 2 �9 (22" - 1) .  
Qv = - B2 v_ ~ 'p  (2 p - 1) 

The following table gives some values of Qv 

p = 2 3 4 5 
Qp = 1 6 25 1 103 ~" 

By use of the expansion 

B~p _ 2 ( -  1)v S 
(2p)! ( 2 ~  2v, 

S2p  ~ n2  p 
r t=l  

Q~ can also be expressed as 

1 S 2 v  . ( 2 ~ _  1) ,  
Q ' = ~  S2v-2 

and it is easily seen from this formula that Qv increases monotonously with p. 
Thus we have found that 

R1 Qv.~ R~=22v(22p B2v = . -1 )4~a(2p) ! [y~(~v-1) ( t ) ]~+o( ,~2v) ,  

where lim Qp.a=Qv>~I .  In this sense R 1 is an approximation of R 2 on the 
~-~0 

"safe side". 
We exemplify the use of these results in the following way. 
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Let ~v (t) be a characteristic function with continuous derivatives up to order 
4 inclusively. Put  

where C(t) is the characteristic function deduced in chapter 1. Then ~1 has 
continuous first and second derivatives, while the third derivative is discontinuous 
for t equal to - T ,  0 and + T ,  except for special choices of ~. If  we leave 
such special cases out of consideration we have 

R ~ :  4-~  ~ ( -  1)~% (A~) :0  (~) 

22 
R~ = - ~ Ta (~ ' )  = 0 (2 4) 

and R1N R~ when t-->0. 
This result is of special interest to us, since we have come to regard the 

multiplication by C (t/T) as the "best"  method to transform a given characteristic 
function into one, which is equal to zero outside the interval ( - T ,  T). 

We summarize our results in the following approximation formula. 

T 

If 3.11. Exact value: I = ~  q)(t)dt 
- - T  

Approximate value: IA = T~ (q)) - R. 

Error bound: I I - IAI ~ R. 

T~ (cp) = ~ 2 cf (A v). 

t 3 
R =  - 16 ~a~ ~" (Iv). 

Approximate value o/ R = ~ 4zt3 ( -  1 ) ~  (Iv) �9 

These formulas will be used in the numerical applications in chapter 5. 
We will now conclude this chapter by comparing the approximation formulas 

(3.10) and (2.2). We write the integral I ,  which we want to approximate, in 
the following form 

T T 

I = 1-- dt---2~ (t) dt. 2zt f e-'t~q~(t) f q~l 
- T  - T  

According to (2.2) we get the approximation 

21 - cos l x  T~ (~1)' ~2 x~ 
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We have seen that  if ~i fulfills conditions V 1 -  V5 we have the following 
asymptot ic  expansion when 4-+0: 

Ta (~vl) = I + 0 (42P), 

while 21 - cos A x 4 ~ x ~ 2~ x2 1 -- ~ -  + 0 (44). 

For  the approximation according to (2.2) we have thus the following asymp- 
totic expansion 

1 -  cos A x 22i~- 2 42 X2 T2 (~01) = I -  . ~  I + 0 (44) 

if p>~2. 
According to (3.10) we get the approximation 

4 2 
T~ (~) + ~ T~ (~'). 

As Ta (cp~') = 0 (2 ~p-z) 

we have the following asymptot ic  expansion 

2 ~ 
Tz (~1) + ~ T~ (00~') = I + 0 (A2"). 

Now suppose tha t  p ~ 2. For  x fixed and 2-->0 we then conclude tha t  (3.10) 
is a better approximation than  (2.2) in the sense tha t  the error term of (3.10) 
is 0 (2 e~) while the drror term of (2.2) is 0 (~2). 

Now for ~ fixed we m a y  consider the approximations as functions of x. Since 

qPl ~ ( t )  = e - t t x  ~9 ( t )  

it is easily seen tha t  the approximation according to (3.10) m a y  be ~Titten 

IA = "~o (x) + z .  ~1 (z)  + x ~.  T2 (z) ,  

where v0, ~1 and "c z are certain trigonometric polynomials. Since a trigonometric 
polynomial is a periodic function and 

~2 
T 2 (X) = - -  8 Y17 2 TA ((Pl) ~< 0 

it follows tha t  lim I~ 
- -  X 2 

exists and is < 0. Since the integral I itself tends to zero as {x{-+oo it is evi- 
dent tha t  IA, according to (3.10), does not  provide useful information about  I 
when I x I--+ oo. 
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As for the approximation IA according to (2.2)i t  is 0@ -2) when I x ] - ~ ,  
since Ta @1) is a periodic function. This does not say anything, however, about 
how fast the frequency function I tends to zero since the denominator x ~ in 
IA is common to all characteristic functions to which (2.2) may be applied. 

The somewhat critical aspects on (2.2) developped here apply mutatis mu- 
tandis to the other approximation formula studied in chapter 2, namely the 
one based on approximation of T by parabolas. 

CHAPTER 4 

Approximation from the point of view of Fourier series 

Let /(x) be a frequency function and put 

 Sl2k +xt 
g(x)=  k \ ~ - - ]  for Ixl< . 

Then g (x) is a frequency function and its n:th Fourier coefficient is 

1 e-~n::g(x)dx = ~ / dx 

2 k ~ - ) - ~  

2 k ~ -  xr 

where ~ (t) is the characteristic function of [(x). Thus g (x)has  the Fourier 
series 

+~ 
g (x) ~ ~ ~ e -~x ~ (n ~), 

where the sign " ,~"  indicates the purely formal relationship. We have not yet 
made any assumptions which assure us that the series will converge. 

Let P~ (x) be a non-negative trigonometric polynomial of order n: 

P~ (x) = ~ a, e ~x. 
- n  

The convolution of g (x) and Pn (x) is denoted g (x)-~P, (x): 

g(x)->ePn(x)= g ( y ) P n ( x - y ) d y = ~ ,  g(y)a;eiV(::-Y)dy=~ a-~qJ(t)')e -l'~:. 

We are in this chapter interested in the question to which extent this func- 
tion is an approximation of g (x). We first prove t he  following lemma. 
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4.1. I/ 

then 

1) p~(x)>~o, 

2) p~ (x) E L ( - ~, z), 

3) f p~(x)dx-+l when n-->~, 

4) f (1 -cos  xlp~(xldx-+O 

7Z 

f h ( x -y )  p~ (y) d y ~ h  (x), 

when n--> ~ , 

i/ h is a continuous /unction. 

Proo/: 
yz 

f (1-cosy)p~(y)dy>~ f (1 -cos  y)p~(y)dy>~(1-cos s) f pn(y)dy. 
l y l > e  l y l > e  

Hence, according to assumptions 3 and 4 

f h (x - y) p= (y) dy = 

f p~ (y) dy->O } 
tYI>~ 

f p~ (y) dy--->l ' 
lyl~<E 

f h ( x - y )p~ (y )dy+  f h ( x - y ) p , ( y ) d y .  
{ 

Since h ( x -  y) is continuous there is a constant M such that  the first integral 
on the right hand side is less than 

M j p, dy-->O. 
lyl>e 

Since h ( x -y )  is continuous the second integral may be written 

h(~) f pn(y)dy. 
lyl<~ 

If first n-->c~ and then e->O this tends to h (x), as was to be proved. 
We turn now to the following choice of Pn (x): 

1 n 

[ C  ( ~ ) =  (1-~n~) cos ~ + - 1  sin I~v �9 

That this is a non-negative trigonometric polynomial follows from (1.7) and 
the fact that  
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c (t)= (1-Itl) c o s  ~r t §  1 sin t ~ t l  
7t: 

is a character is t ic  function.  

Now 
1[ 

j Pn(x)dx=C(O)=l.  
- x [  

Hence condit ions 1, 2 and 3 of (4.1) are fulfilled. Fur the rmore  

Hence 
1 - -  COS X 

is a non-negat ive  t r igonometr ic  po lynomia l  and  

f l 
1 - C  

P~ (x) d x = 1. 

Fu r the rmore  

But  

and  

i(2 - 2 cos x) 2 P~ (x) d x 

C = 1 -  cOS-n + ~ s i n  = 1 - ~ + o  

C = l - ~ y + o  , 

so t h a t  

f( 1 - c o s  x )  
1 - cos x P,~ (x) dx--->O when n - - > ~ .  

We will now consider the  convolut ion of g (x) and  P ,  (x). W e  are going to  
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deduce an asymptot ic  formula, assuming tha t  g (x) is continuous as well as its 
first and second derivatives. Pu t  

g~ (x) = g (x) ~ P ~  (x). 
Then 

yt 

; fi t +Y " (x -Oy)  P~(y)dy g~ (x) = g (x - y)  P~ (y) d y = g (x) - y .  g' (x) ~ g 

f f yp (y)ey+i y g,,(x-oy)P (y)ey 
The first integral is equal to 1 and the second integral is equal to 0 since 

P~ (y)=P,~ ( - y ) .  The third integral is equal to 

1 - c r  ( x -  0 y) 2 (1 - cos y) ~ -  j ~  
1 -  

y~ 
The function g" (x - 0 y) 2 (1 - cos y) 

is continuous for l yl~<ze and its value for y = 0  is g" (x). 

The functions 1 - cos y p~ (Y) 

fulfill the conditions of (4.1). Hence the integral tends to g" (x). Since 

2~ 2 

() + " "x" 1 we have proved tha t  g=(x)=g(x)  2 ~  g ( ) + ~  ~ . 

Our next  choice of P~ (x) will be 

1 

In  this ease we denote g-~P~ by an. 

e_~  x 1 1 (2 v) e ~y a~ ( x ) = ~ _ ~  - (p =2-~  ~ 1 -  g ( x - y ) d y  

_ - 1 - c o s  ny  (g ( x+ y )+ g(x - y ) } dy .  1 1 c o S n y g ( x _ y ) d y = ~ n  
2 ~ n  1- -cos  y I - c o s y  

- x l  0 
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Since 

we get  

1 ; 1 - c o s n Y 2 d y = l  ' 
2 ~ n  1 - c o s y  

0 

1 / 1 - c o s n y { g ( x + y ) + g ( x _ y ) _ 2 f f ( x ) } d y "  
an (x) - g (x) = 2 ~ n  1 - cos y 

0 

If  we assume t h a t  g (x) is continuous as well as i ts  f irst  and  second deriva- 
t ives i t  follows t h a t  

g (x  + y )  + g (x  - y )  - 2 ,q ( z )  
h (x, y) = 1 - cos y 

is cont inuous for 0 ~< y ~< ~. Hence 

a , ( x ) = g ( x ) + : 2 ~  n h ( x , y ) d y -  c o s n y . h ( x , y ) d y .  
0 0 

The las t  in tegral  tends  to zero as n - - > ~  according to  the  R iemann-Lebesque  
theorem.  Hence 

0 

Summing up our results  we m a y  s ta te  the  following theorem.  Noth ing  is said 
abou t  non-negativeness of g (x), since we have not  used this  assumpt ion  in the  
proof. 

4.2. 1/ 

then 

l )  g (x) is periodic with period 2 ~, 
2) g (x), g' (x) and g" (x) are continuous, 
3) the n:th Fourier coefficient of g (x) is an, i.e. 

an = 2--~ e-tnx g (x) d x, 

g~(x)=g(x)+~--~,~g (x)+o ~ . 

~g 

0 
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1 
where C (t)= (1 - I t ] )  cos ~ t + -  sin ]~t  I, 

2"g 

and h (x, y) g (x § y ) +  g (x - y) - 2 g (x) 
1 - cos y 

Our intention is now to investigate how the term o ( l /n )  in the expansion 
of a .  (x) depends on the analytical properties of g (x). We prove the following 
theorem. 

4.3. x/ 

then 

1) g (x) is periodic with period 2 ~, 
2) g (x) and its derivatives up to order p inclusive are continuous (p >~ 2), 

a, (x) = g (x) + 2-~n / h (x, y) d y + o (nl-P). 
0 

Proo]: From the proof of (4.2) we know tha t  

a , ( x ) = g ( x ) + ~  n h ( x , y ) d y - , l ~  t cos 
~ n J  

o o 

Now 

so tha t  

h (x, y) - g (x+y) + g ( x - y )  - 2 g (x) 
1 - cos y 

n y . h ( x , y ) d y .  

1 

g(x+y)=g(x )+y .g '  (x)+y2f (1- t )  g" (x+ty) dt, 
O 

1 

y2 f (g" g" 1 - c o s y  ( l - t )  ( x + t y ) §  ( x - t y } d t .  
0 

From these formulas follows tha t  h (x, y) considered as a function of y for x 
fixed is periodic with period 2 ~. Also, since 

y~ 

1 - cos y 

is regular for l y [ <  2 ~, it follows tha t  h (x, y) has continuous partial derivatives 
with respect to y up to order ( p - 2 )  incl. 

Now the integral 

2 (cos  ny .h (x ,  y) dy= fe-~'~h(x, y)dy. 
~) - ~ 

Integrat ing by parts  and using the fact tha t  h (x, y) is l:eriodic, this is easily 
seen to be equal to 

1 / - 0 p-2 h 
(i n) p-~ e-2~ 0 y~]2 d y, 

145 



H. BOHMAN, Approximate Fourier analysis of distribution functions 

and as h (x, y) has a continuous partial derivative with respect to y of order 
( p - 2 )  this is o(n~-~). Thus 

+ _1__ ~ h (x, y) dy + o (n 1-~) a, (x) = g (x) 2 ~ n 
0 

as was to be proved. 
This formula explains why de la Vall4e-Poussin's approximation 

~2n (x)  = 2 a2n (x) - an (x) 

is much better than aen (x) itself. For (4.3) gives the result 

TZn (X) =g  (X) -t- 0 (W)-P). 

Actually it can be shown that  

~2n (x) = g (x) + o (n  -p )  

but this cannot be done with the methods developped here. 
We are now going to compare the approximations obtained by (4.2)and (4.3) 

with the approximation obtained by straightforward summation of the (n+  1) 
first terms of the Fourier series. 

We say that  T (x) is a trigonometric polynomial of degree n if 

T (x) = ~ ave ~'x, 
--n 

where l an l+la_n I~ =0. We denote by H .  the class of trigonometric polynomials 
of degree ~< n. 

Now let g (x) be a continuous function for  Ix I ~< z.  Pu t  

E~ = inf max I g (x) - T (x) I. 
TEH. ]x]<~ 

En is called the best approximation of g (x) by polynomials from Hn. I t  can 
be shown that  there is a unique T (x) from H,  for which 

E n= max I g ( x ) -  T (x) l. 
Izl<- 

This T (x) approximates g(x) better than all other polynomials from Hn. 
These ideas go back to Chebyshev. Jackson has studied how En depends on the 
analytic properties of g (x). From among his results we quote the following one. 

4.4. I /  g (x) ful/ill8 the conditions o/ (4.3), then 

E .  = o ( n - ~ ) .  �9 

As previously we denote the Fourier coefficients of g (x) by a ,  ; 

g (x) ,-~ ~= a~ e t,z. 
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The sum of the ( n +  1) first terms is denoted by  S~ (x): 

n 

S ,  (x) = ~ a,  e t'x. 
- n  

Lebesgue has shown tha t  

I ~. (~) : g (x) I < ( 3 .  log n) E~. 

As log n increases slowly with n this means tha t  S,  (x) is "almost  as good" 
an approximation of g (x) as the best  polynomial from H~. This is a valuable 
result from the practical point of view. 

I f  we combine Jackson's  and Lebesgue's results we find 

(log n i 
&(x)=a(x)+o\ n" /" 

Suppose now that  ~ (t) is a characteristic function and tha t  the integral 

+ ~  

1 = 1 1  f e-"X 2 :~ q~ (t) d t 

exists. We want to perform a numerical integration of this integral and for 
this purpose we are going r o u s e  va lues  ef the integrand for t = ~ 2 ,  where v 
runs ti]rough all positive and negative integers. 

We have seen tha t  
2 

~ , ~ ( - n ~ )  

may be considered as the n:th Fourier coefficient of g (x), where 

that  is 
2 +oO 

2~r_or 

or, if gl ( x )=g  (2 x), so tha t  gl ( x ) i s  periodic with period 2 ~/2,  

;t +r 
gl (x) ~ - -  Z ~ (v 2) e -~'Ax 

2 x~_oo 

If  certain conditions are fulfilled gl (x) will be determined by its Fourier 
coefficients. We quote just three theorems of this type. 

I[ gl (x) is o/ bounded variation, then 

Yl (x) = ~ ~ ~ (2 v) e ~'~x. 
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I /  gl (x) is continuous, then 

2- ~ ~ (2 v) e -~va~ 

is summable (C, 1) to gl (x). 

I /  gl (x) belongs to L2 ( - ~ / ~ ,  ~/2), then 

converges in mean to gl (x). 

n 

The essential point is, that  under certain conditions gl (x)may be determined 
from the discrete values ~0 (2 v). Since gl (x) equals 

gl (x)= ~ \ - -~ -  

it is evident that  different functions ~ (x) may correspond to the same function 
gl (x). This means that  the set of values ~v (2 v) may determine gi (x) but cannot 
determine / (x). 

Among the frequency functions whose characteristic function takes on the 
values ~v (2v) for t = 2  v, we also find gl (x), for 

~r4). §  

f e"a~g l ( x )dx= f e"aX/(x)dx=q)(2v). 
- ~ l a  - ~  

This means that if we wish to determine the frequency function starting from 
the discrete values ~ (2 v) of the characteristic function, we must make up our 
mind which frequency function to chose. The most natural choice seems to be 
the function 

h (x)= 

for 

Yg 

for Ixl> 

Our problem may thus be formulated as follows. Given the discrete values 
~(2v) of the characteristic function ~(t) there is a corresponding frequency 
function which is zero outside the interval ( -~r /2 ,  ~t/2). An approximate value 
of this function in terms of q (2v), v = -  n, - n +  1 . . . . .  n, is to be found. 

Consider then the integral 
+oo  

1 f e_t t  z 2 zt q~ (t) d t. 
- o o  

Truncate the integral outside ( - n 2 ,  n2) and apply a numerical integration 
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formula with abscissas v 2 and weights ;t ~ . . . .  We obtain the following approximate 
value of the integral 

n 

~r~.= e-~'~x ~ (v ~t). 

This is a trigonometric polynomial of degree ~<n. If we knew the explicit 
expression of T (x)E H~, for which the best approximation of /1 (x) is obtained, 
then y~.~ could, of course, be choosen accordingly. Since we don' t  dispose of 
this explicit expression we have to be satisfied with something that is "next 
to the best". The foregoing discussions suggest the use of the (n+  1)first terms 
of the Fourier series, i.e. putting 9/~.= = 1. The following formula is then ob- 
tained: 

n 

- -  "; e - ~ x  (~ v) .  
2~r_~ 

This- again may serve to support the impression that  the trapezoidal rule 
should be preferred for the numerical integration of Fourier integrals where 
characteristic functions are involved. 

CHAPTER 5 

Numerica l  i l lustration 

An insurance business will be briefly characterized as follows. The policy- 
holders pay their premiums to the company. If a policyholder meets wi th  an 
incident, which is covered by his policy, he makes a claim on the company. 
On each claim the company has to pay a certain amount, called the risk sum 
of the policy, to the policyholder. 

We assume that the number of claims has a Poisson distribution. If we con- 
sider a period during which the expected number of claims is T, the proba- 
bility of getting exactly n claims will thus be 

m 6 - 1 r  

nl  " 

The risk sum has a known probability distribution. The probability that the 
risk sum of a policy, chosen at random, shall be less than or equal to u is 
P (u), where P (u) is a known distribution function. The characteristic function 
corresponding to P (u) is denoted y~ (t): 

~v(t)= f e~t"dP(u). 
- - o o  

The first two moments of P (u) about the origin are denoted Pl and p~ re- 
spectively. Thus 
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-[-oo 

Pl= f udP(u), 
- -oo  

+ o o  

P2= ] uSdP(u)" 
- o o  

Let Y (~) denote the total amount  of claims paid by  the company during a 
period with an expectoi  number of claims equal to v. Then Y (t) will have a 
compound Poisson distribution with characteristic function 

exp {3y) (t) -- 3}. 

From this formula follows tha t  the mean and the variance of Y @) are p l ~  
and p23 respectively. We will also consider the standardized variable X(3),  
corresponding to Y (3). I.e. 

X(3)  Y (~)-1~ 
Vp~3 

with characteristic function 

0 air intention is to calculate the distribution function corresponding to X (v). 
As for the distribution function P (u) of risk sums we make the :following 

assumptions: 

/ ~-~t u (-u-) a e . . . .  O<~u<l ,  = ( 1  - p )  e~  _~ 
[dP(1)=p. 

The corresponding characteristic function is 

O~ e ~ - -  e ~t 

v2(t)=(1-P)~_it  e~ 1 p e st. 

Then P l = - i ~ ' ( 0 )  1 - p  1 - p  ~p, 
a e ~ - 1 

p 2 = _ ~ , / , ( 0 )  = 2 1 - P  1 - p  2 1 - p  
a2 e ~ _ l  a ( e ~ _  1 ) + P  �9 

We will consider nine cases by letting g take on the values 1 and 5 and 10 
while p takes on the values 0 and 0.01 and 0.02. The corresponding values of 
Pl are shown in the following table: 
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0.010 0.4180 0.1932 0.1000 
0.4238 0.2013 0.1090 

0.02 0.4297 0.2094 0.1180 

The practical background to the probabili ty mass p, situated at  u =  1, is the 
following. Every  insurance company  has a certain upper limit L of the risk 
sum of each individual policy. Should a policy have the risk sum S and S > 35 
then the company retains the sum L while the sum ( S -  35) is covered by an- 
other company. This process is called reinsurance. The effect of this is that  
if 100 p % of the policies sold by  the company need reinsurance, then from the 
point of view of the company 100 p % of its policies in force will have the 
risk sum L. From this it is evident tha t  our choice of P (u)implies tha t  P (u) 
is the probabili ty of the risk sum being less than or equal to u - L  and that  
the mean risk sum is Pl" L. 

Apart  from the nine distributions mentioned above we will also consider the 
following distribution obtained by  letting a-~c~ and p-+0. For Y(T) we had 
the characteristic function 

a e ~e -- e t$ } 
exp ~ ( 1 - p ) a = i t  e~--l +vPett--T �9 

Replacing t by a t  gives 

{ 1 e~-e'" } 
exp v ( 1 - P )  l _ i ~  e ~ - I  d-~pei~t-r. 

Now let a-->c~ and p---~O. We obtain 

/ 
Replacing t by t / I /~  and multiplying by 

exp { -~Jit~ 
gives the characteristic function of the corresponding standardized variable 

~0 (t) = exp [ T i t T 

We want to calculate the distribution function corresponding to X (~)and we 
are going to use the integration formula (3.11). We truncate the characteristic 
function by  adding to X (~) a random variable Z with characteristic function 
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C 32 = 1 -  c o s ~ + ~ s i n  for l t l~<32.  

The characteristic function of X @ ) + Z  is 

which is zero for I t I >~ 32. The distribution function of X (3) + Z is denoted F 2 (x) 
and is given by  the formula 

32 

1 F2(x+h)_F2(x_h)= ~ f 2 s i n h t  -~x . t - e  ef(t)C(~--~)dt. 
- 3 2  

The integrand is a characteristic function multiplied by 2 h. 
may  apply (3.11), denoting the integrand by g(t) for short. 

$2 

Exac t  value: I =1-  27~ j g(t)dt. 
- 3 2  

Approximate value: IA = T~ - R. 

Approximate error: R. 

2 

R = ~  4--~ ( -  1)~g (2~). 

Since 2 h > 0 we 

The calculations started with 2 = 32 and were then repeated, each time with 
half the foregoing ~-value, until R < 0.00005. This precision was as a rule at- 
tained with 2 = ~. The value IA was then rounded of to 4 decimals. I f  we dis- 
regard the  fact  tha t  R is itself an approximation we m a y  then say tha t  the 
value IA arrived at  has an error less than  one unit  in the fourth decimal. 

Through the courtesy of The Swedish Board for Computing Machinery the 
computat ions were performed on one of their computers. 

The variance of the additional variable Z is 

and its s tandard deviation = 0.1 approximately. 
As the values in the table below refer to the distribution function F ,  (x) of 

X ( v ) + Z  we have to apply corrections according to chapter 1 to get informa- 
tion about  the distribution function ~' (x) of X (T). 

As an example let us find a lower bound of F ( 2 ) -  F ( - 2 )  corresponding to 
3 = 2 5 0 ,  a = 1 0  and p = 0 . 0 1 .  We make use of (1.1) and  chose e = g / 3 2 .  That  
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means tha t  e is equal to the s tandard deviation of Z. The table of the distri- 
bution function corresponding to C (t/g) gives 

Interpolating in the table of F~ (x) below we get 

F~ ( 2 -  ~2) - F2 (0) ~ 0.4519. 

F2 (O)-  F~ ~ -  2 ~ 0.4S85. 

Then according to inequality (1.1) 

F ( 2 ) - F ( - 2 ) > ~  1 -  
1 - 0.4519 - 0.4885 

= 0.9298, 
0.8492 

while F 2 (2) - F~ ( - 2) = 0.9540. 

The following heuristic reasoning will support  the impression tha t  our result 
is much better than  these figures might  indicate. I f  we compare the normal 
distribution with the distribution corresponding to C (t) and the distribution F 2 
in our table we find tha t  the latter are both approximately normal. Now, if 
X + Z and Z are nprmally distributed then X is normally distributed. As the 
variance of Z is approximately 0.01 and X is standardized the variance of X + Z 
is 1.01. If  X + Z  and Z were not  only approximately but  exactly normally 
distributed then it would be correct to say tha t  F 2 is the distribution function 
of the variable ~ / 1 ~ .  X. Now, this it not  so, but  the impression subsists tha t  
the t ru th  is somewhere in tha t  direction. 
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104 IF. (0) -2'2 (x)] ! 

I 

I 3.001 2.751- 2.501 2.251 2o0 -1.75f- 150 1.251 1.001 0751-0501-02  
25 

250 
2500 

25 
250 

2500 

25 
250 

2500 

25 
250 

2500 

25 
250 

2500 

25 
25O 

2500 

25 
25O 

2500 

25 
25O 

2500 

25 
250 

2500 

25 
25O 

250O 

co 0 5279 
oo 0 5081 
oo 0 5016 

10 0 5277 
10 0 5080 
10 0 5016 

10 0.01 5416 
10 0.01 5124 
10 0.01 5030 

10 0.02 5442 
10 0.02 5132 
10 0.02 5032 

5 0 5249 
5 0 5070 
5 0 5013 

5 0.01 5264 
5 0.01 5076 
5 0.01 5014 

5 0.02 5271 
5 0.02 5078 
5 0,02 5015 

1 0 5183 
1 0 5049 
1 0 5006 

1 0.01 5183 
1 O . O I  5049 
1 0.01 5006 

1 0.02 5183 
1 0.02 5049 
1 0.02 5006 

5277 
5069 
5001 

5276 
5069 
5001 

5416 
5114 
5015 

5441 
5123 
5018 

5247 
5059 
4997 

5262 
5064 
4999 

5270 
5066 
5O00 

5177 
5036 
4990 

5177 
5036 
4990 

5177 
5036 
4990 

5269 5242 5172 5021 4745 4309 3694 
5044 4991 4893 4722 4449 4045 3491 
4970 4911 4807 4633 4362 3968 3430 

5267 5241 5170 5018 4743 4306 3691 
5043 4991 4802 4721 4448 4045 3490 
4970 4911 4806 4632 4362 3968 3430 

5414 5402 5358 5237 4979 4531 3872 
5093 5045 4951 4783 4509 4100 3534 
4986 4928 4825 4651 :4380  3984 3443 

5441 5434 5401 5291 5035 4572 3888 
5102 5056 4963 4795 4521 4110 3541 
4989 4931 4828 14655 4384 3987 3445 

I 

5237 5206 5131 14974 4697 4264 3657 
5032 4979 4879 i4708 4435 4033 3481 
4966 4907 4802 14628 4358 3964 3427 

5253 5225 5152 4998 4720 4285 3673 
5038 4985 4886 4715 4442 4039 3486 
4968 4909 4804 4630 4360 3966 3428 

5262 5235 5163 5010 4733 4296 3681 
5041 4988 4889 4718 4445 4042 3488 
4969 4910 4806 4632 4361 3967 3429 

5161 5121 5035  4871 4594 4172 3587 
5008 4952 4850 4678 4406 4007 3460 
4958 4899 4793 4619 4349 3956 3420 

5162 5122 5035 4871 4594 4172 3587 
5008 4952 !4850 4678 4406 4007 3460 
4958 4899 4793 4619 4349 3956 3421 

5162 5122 5035 4871 4594 4172 3587 
5008 14952 4850 4678 4406 4007 3460 
4958 i4899 4793 4619 4349 3956 3421 

2909 
2782 
2742 

2908 
2781 
2742 

3024 
2810 
2750 

3019 
2814 
2752 

2885 
2775 
2740 

2895 
2778 
2741 

2899 
2780 
2741 

2841 
2762 
2735 

2841 
2762 
2735 

2841 
2762 
2735 

1993 
1935 
1916 

1992 
1935 
1916 

2046 
1949 
1920 

2032 
1951 
1921 

1980 
1932 
1915 

1985 
1933 
1915 

1986 
1934 
1915 

1961 
1925 
1913 

1961 
1925 
1913 

1961 
1925 
1913 

1002 
990 
985 

1001 
990 
985 

1013 
993 
986 

1004 
993 
986 

998 
989 
985 

999 
989 
985 

999 
990 
985 

994 
987 
984 

994 
987 
984 

994 
987 
984 

Explanation to tables 

The tables  give values of 1 0 4 i F 2  ( x ) - F  2 (0)],  where F 2 (x) denotes  the  distri-  
but ion function corresponding to  the  character is t ic  function 

q(t).c 

a n d  w h e r e  + ~ t s i n ~  fo r  ] t [ < 3 2  

[ 0 f o r  I t1~>32 
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104 [F= (x) - F =  (0)] 

T ~ p x = 

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 

25 
250 

2500 

25 
250 

2500 

25 
25O 

2500 

25 
250 

2500 

25 
250 

2500 

25 
250 

2500 

25 
25O 

2500 

25 
250 

250O 

25 
25O 

2500 

25 
250 

2500 

c~ 0 
0 
0 

10 0 
10 0 
10 0 

10 0.01 
10 0.01 
10 0.01 

10 0.02 
10 0.02 
10 0.02 

5 0 
5 0 
5 0 

5 0.01 
5 0.01 
5 0.01 

5 0.02 
5 0.02 
5 0.02 

1 0 
1 0 
1 0 

1 0.0I 
1 0.01 
1 0.01 

1 0.02 
1 0.02 
1 0.02 

952 
974 
980 

952 
974 
980 

937 
970 
979 

927 
969 
979 

953 
975 
980 

952 
974 
98O 

95O 
974 
98O 

961 
977 
981 

961 
977 
981 

961 
977 
981 

1807 2538 3135 3602 3954 4209 4388 4510 
1876 2 6 6 5  3316 3825 4202 4467 4645 4758 
1897 12705 3375 3898 4284 4552 4728 4837 

1807 !2539 3136 3604 3955 4211 4390 4512 
1876 2665 3316 3825 4202 4468 4645 4759 
1897 2705 3375 3898 4284 4552 4729 4838 

1761 2454 3016 13455 3788 4035 4212 4336 
1863 2639 3277 3777 4148 4411 4589 4704 
1893 2696 i3362 3882 4266 4534 4710 4820 

1741 2427 2984 3421 3754 4001 4179 4305 
1859 2632 3269 !3767 4137 4400 4578 4694 
1892 2695 3360 3879 4263 4530 4707 4817 

1815 2554 3 1 5 9 : 3 6 3 3  3989 4247 4427 4548 
]879 2671 3 3 2 4  i3836 4214 4480 4658 4770 
1898 2707 13377 3902 4288 4556 4732 4841 

1810 2545 3146 3617 3971 4228 4408 4529 
1878 2668 3320 3830 4208 4474 4651 4764 
1898 2706 3376 !3900 4286 4554 4730 4839 

1806 2539 3139 3608 3961 4218 4398 4520 
1877 2666 3318 3827 4205 4471 4648 4761 
1897 2705 3375 3899 4285 4553 4729 4838 

1838 2597 3220 3708 4073 4334 4513 4632 
1886 2684 3344 3860 4242 4509 4686 4797 
1900 2711 3384 3910 4297 4566 4741 4850 

1838 2597 ~3220 13707 14072 4334 4513 4632 
1886 2684 3344 3860 !4242 4509 4686 4797 
1900 2711 3384 3910 4297 4566 4741 4850 

1838 2597 3220 3707 4072 4333 4513 4632 
1886 2684 3344 !3860 4242 4509 4686 4797 
1900 2711 3384 3910 4297 4566 4741 4850 

4590 
4827 
4901 

4592 
4827 
4902 

4422 
4776 
4885 

4392 
4767 
4882 

4627 
4838 
4905 

4609 
4833 
4903 

4600 
4830 
4902 

4707 
4864 
4913 

4707 
4864 
4913 

4707 
4863 
4913 

4642 
4867 
4937 

4644 
4867 
4937 

4479 
4819 
4922 

4451 
4810 
4919 

4677 
4878 
4940 

4660 
4872 
4938 

4651 
4870 
4938 

4754 
4901 
4948 

4754 
4901 
4948 

4753 
4901 
4948 

4674 
4889 
4955 

4676 
4889 
4955 

4517 
4843 
4941 

4490 
4835 
4938 

4708 
4899 
4958 

4692 
4894 
4957 

4683 
4892 
4956 

4781 
4922 
4965 

4781 
4922 
4965 

4781 
4921 
4965 

o r  

q~ ( t )  = e x p  v ~f - v - it ~ / ~ l  

~ ~  e = _ l + P  e~t 

I 

y,(t) t - i t  

t h e  l a t t e r  c a s e  b e i n g  r e f e r r e d  t o  i n  t h e  t a b l e s  a s  ~ = ~ .  

Px = - i ~ '  (0) 

P2 = - ~ "  ( 0 ) .  
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APPENDIX 

R E F E R E N C E S  

Chapter 1. 

Concerning Toeplitz forms see (1, pp. 16-19, 32-33). The ~sential  part of the solution to 
the problem 1.4 is from (l, pp. 66-69). Cf. also (2, problems VII: 67-71). Theorem 1.5 fol- 
lows from a theorem of L. Fej6r (2, problem VI: 52). 

Chapter 2. 

The general idea of this approximation technique is due to Filon (3), who used the para- 
bolic approximation. 

Chapter 3. 

Concerning Poisson's formula cf. (4), (5), (6), (7) and (8). The theorems 3.1 and 3.2 are 
f rom (8), apart from minor modifications. The theorem 3.3 is based on a theorem of Linfoot 
(5), who proves that  

if 1) g(t) is continuous, 

2) Z g (v + t) is uniformly convergent 

then 
(C,1) - - o o  

where (C, 1) denotes summation by arithmetic means. 
On the use of the trapezoidal rule on Fourier integrals el. (9). 

Chapter 4. 

Concerning 4.2 cf. (10, pp. 140-149). As for the best approximation by trigonometric poly- 
nomials and its connection with the analytical properties of the function to be approximated 
s~e (1O, pp. 59-82), Lebesgue's theorem concerning the rest term of Fourier series is deduced 
in (10, p. 135). The same question is dealt with in (11). 
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