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Uniform approximation with Diophantine side-conditions
of continuous functions

By Marrs HisTap

This article is composed of two entirely different parts. The first part deals with
approximation of real continuous functions in one variable by rational functions
whose zeros and poles all belong to certain prescribed sets. The second part is
about approximation of real continuous functions in several variables by polynomials
with integral coefficients. Two general theorems are proved and finally some spe-

cial results are discussed. Fekete has completely analysed the problem in one
variable [3].

I

Theorem 1: Hach positive continuous function f(x) admits uniform approximation
on I=[—-1,4+1] by the quotient of two real polynomials, whose zeros belong to two
given sets P and P satisfying:

1) P is the tmage of P under reflection in the real axis.

2y P (and P) is situated on a line segment whose exiension does not intersect I per-
pendicularly.

3) P (and P) has a subset P’ (and P') which is dense in itself (i.e. P' < the set of
all the accumulation points of P’).

Proof: We use the following well-known theorem: The set M is densein C(—1,1)
if and only if each linear functional in €'(—1,1) which is zero for every element
of M is identically zero. A real functional L(f) in C(—1,1) may be written as

+1
L(f) =_f1 (@) dp ()

where y is a real function of bounded variation. We define M as the set of func-
tions { "/ (x—a)+ e '?/(x—a)} for all a= o+ i B € P’; p is the argument of the line
I to which o belongs. The assumption L (f) =0 for € M then implies that the func-
tion

+1

u(a,ﬂ>=f( A enw)dmx)

r—a x—d
-1

vanishes for all a €P'. But u{a, §) being the real part of an analytic function
y(a), holomorphic for @ ¢ I, is harmonic, and we consequently have u («, 8) =0 on

the whole line [ exeept in its possible intersection with I. Using the principle of
reflection we get:
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1) The line I does not intersect I. Then v (a) is holomorphic in one of the half-
planes that I forms. According to the principle of reflection, y(a) must be holo-
morphie in the whole plane which gives du=0.

2) lintersects I, p + + g y (o) is then holomorphic in either of two points sym-

metrically situated tol. From the principle of reflection we conclude that y(a)
is holomorphic in the whole plane, except possibly in I:s intersection (x,, 0) with
I. Consequently 4 M reduces to a point mass in this point. We have y(a)= ke'?/
( —a), where k is real. If a€l we have z,—a=p¢€? (o real) and accordingly
Re(yp(a))=k/p. But Re(y(a))=0 if a€l which gives k=0 and hence d y=0.
3) lintersects I perpendicularly. This is the case excluded in theorem 1. (See below.)
We consequently know that each continuous function g¢(z) may be approxi-
mated uniformly by an expression

1p ~1
g1 () = ZAk( e f)

xr— Qy x-ak

where A4, are real and a,€P’. We choose g (z) =log f(x) where f(z) is the positive
contmuous function in theorem 1. Given £>0, we take ap=a;+d,¢? (d; real)
where a;€P' and

|8x| < min £, il , _1_)
4Gm 4@ (|4i|+1)m 2@

Here @ is the maximum of 1/|z—a| for ax€ P’ and z€1, and the choice is evi-
dently possible because P’ is dense in itself. Consider one of the 2m terms in
91 (), say Ap€®/(x—ay). Putting ny =[4x/6x] we get by the aid of the logarithmic
expansion

i - 4 —
Ake - Ny lOg x—a‘? = IA’C nkékl-l- nkake — N log z a\;c <
z—ay z—a,|” |z—ay] x—ay

|nk|026k 8
SG|5k|+—————‘2(1 lé IG)

Consequently g, (z) may be approximated with an error <& by the sum

an (10g +l og x—ak)
which gives an approximation of f(x) by the rational function

m [(x—- ay) (z —dk)]"k

(x— @) (v —ay)

This function has real coefficients and its zeros and poles all belong to P and P.
Hence theorem 1 is proved.

By extending P and P we can get rid of the condition f(x)>0. We see at
once that if a continuous function, which is both positive and negative in 7, shall
admit approximation by a rational function, this must also have zeros in the
interval. We have the following theorem:
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Theorem 2: Each continuous function admits uniform approximation in I by the
quotient of two polynomials, the zeros of the numerator belonging to I and to the given
sets P and P in theorem 1 and those of the denumerator to P and P.
Proof: Take an ¢>0. According to Weierstrass f(z) may be approximated by
- . £
a polynomial ¢ (x) with an error <. Suppose
g@)y=(x—~x1) ... (x—20) h{2) =k () h(z)

where x;, x5 ...2,€I and A(x)>0 in I. Suppose max k(z)=Fk; and define
zel

h(2) if h(x)> -2

3k
l(x)=
& . E
—_ <"
3, 1 hES3p

{(x) is positive and continuous and consequently admits approximation by the

rational function m(x) in accordance with theorem 1. The error in the approxi-

mation can be made < 3—2— If we finally show that m (x)- k (z) approximates f(x)
1

with an error <¢, we have proved theorem 2. In fact we have:

[1(@) —m (@) k@) | <|f(@) — g @) |+ k(@) [ | (@) =L @) [+ ]| (@) ] |0 () = m (@) | <

£ e 2 . £
[§+0+k1 353" it h(e)> 5%
<
& & € €
—+h — — = if L —-
13+ 13k1+k1 Y if h(x) 57,

If all the zeros are situated on a line which intersects I perpendicularly, the
rational expression becomes symmetric with respeet to this line and then only
those continuous functions may be approximated that have this symmetry.
I=[—-1,1] may further be replaced by any finite interval and the line seg-
ments may be replaced by one segment (1) on the real axis.

1T

Theorem 3: A necessary and sufficient condition that each continuous function
flx,y ...) in several real variables admits wniform approximation in & compact set A
by a polynomial whose coefficients are rational integers, is the existence of a polynomial
with integral coefficients, w(x, y . ..) such that

1) lufz,y..)|<1in 4; 2) ulx,y...)#0m A.

In the following we suppose, for the sake of simplicity, that the number of
variables is two. The results and the proofs are the same for any number of
variables. From here on we call a polynomial with integral coefficients an I-poly-
monial. The class of all compact sets satisfying 1) and 2) is called M.
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Proof: a) The condition is necessary:

In order that the function f(z,y)=1 shall admit uniform approximation in 4
by an I-polynomial u(z,y), this must satisfy 1) and 2) above. Hence there exists
a % (x,y) with the required properties.

b) The condition is sufficient:

We use the following lemma, principally well-known, which is given here without
proof [1].

Lemma 1: Suppose that the family 7' of continuous functions ¢(x, y) defined
in 4 has the property that for any two functions ¢, (z,y) and ¢, (z, y) €T, max
(f;, 1) and min (¢, ¢,) also belong to 7. Then a function f(z, y), continuous in 4,
admits uniform approximation by functions ¢ (z, y) if and only if for any two points
(@p> ¥o) and (2,,%,) in A and any £>0, there is a function f(x,y) such that

“) l f(ft, y) - t(x> y) l <eg for (xt)’ ?/o) and (xla yl)'

For the proof of theorem 3 above, take as the family 7 in the lemma all con-
tinuous functions admitting approximation by polynomials without low powers
P (uy, Uy, u;) in the three variables u, =u(x, ¥), 4y=(x—n,) (u(z, ¥))™ and u,=
= (y — ny) (u(z, ¥))™, ny, ny, my, m, are integers, the lines x=n,, and y=mn, do not
intersect A, and u(x,y) is an I-polynomial satisfying the conditions 1) and 2) of
the theorem. The integers m, and m, may be chosen so large that {u,|<1 and
|uz]<1 in A. The coefficients of the polynomial p shall be zero for the terms
with lower degree than n (fixed).

By writing max (b, 8,) =% (¢, +1,+ ], —t,|) and min (¢, 8) =3 (t,+t,— |t —t])
it will be enough to show that ¢€7T=|¢|€T. If ¢ is approximated by a poly-
nomial p, then |p| approximates |¢|. According to Weierstrass we know however
that |p| may be approximated by a polynomial ¢(p) in p, vanishing for p=0.
Hence ¢(p) will lack terms of low degrees and we have proved that min and
max belong to 7.

It is easily seen that the set of polynomials (u,, u,, u,) separates the points of
4, ie. given two different points (zy, y,) and (z;, y,) there is at least one poly-
nomial u; such that w; (%), ¥,) # w: (z;, ;). Using the notations

Ui =0; V{Zy, Yp) =Vp; V(ZTy, Y1) =2y
fo=1 (o, yo)/v6; fr=f (1, y1)/v7,

we construct the polynomial without low powers

po)= o+ 5l oo )"

V1Y

which satisfies the condition &) with ¢=0. Thus this family has all the properties
desired in the lemma so that each continuous function may be approximated by
a polynomial p (uy, u,, u,) without low powers. We have further:

n n-—-1 n-1
P (g, Uy, Uy) = @y uT + a,uy Uy + AUy Uyt e =

=[a]ut + [@] wi tup+ [ag] ul M uy+ -+ + Ry,
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where R, is a polynomial whose coefficients are absolutely less than 1. Because
max |ux|=s<1 for (z,y)€4 we get
k

Ro|<|ul|+]ul tuy| + - =3 | udr ubude
2%

where the sum is extended over all combinations of non-negative integers whose
sum is =n. Hence [2]

TAPD (k+2)sk
k=n 2

and this series being convergent for |s|<1 we can make R, arbitrarily small by
choosing » sufficiently large. Thus we have an approximating I-polynomial and
theorem 3 is proved.

By making some restrictions concerning the continuous functions, which are
to be approximated, the set where approximation is possible may be extended.
Let M’ denote the class of compact sets B such that there exist an I-polynomial
u satisfying the conditions

) |u(z, y)|<lin B 2') u(x, y)=0.

Each set BE M’ has a subset N (B) such that (z,, y,) €N (B) implies u (x,, 7,) =0 for
every I-polynomial satisfying 1) and 2'). To N (B) belong in particular all points
in B with integral coordinates, for in such a point u(x, y) must be an integer
absolutely less than one. Hence u(x,y)=0.

Theorem 4: In BEM' those and only those continuous functions admit uniform
approximation by I-polynomials for which there exist an I-polynomial p (x,y) such
that f(x, y)=p (=, y) for (z, y) EN (B).

For the proof we need the following lemma:

Lemma 2: There exists in B an I-polynomial w* such that |u* (z, y)|<1in B
and u*(x, y)#0 in B~ N (B).

Proof of the lemma: The ideal generated by all I-polynomials satisfying 1)
is called F. It is not the zero ideal and, being an ideal in a Noetherian ring,
it is finitely generated by a set of polynomials {u;},i=1,2 ..., n, where we may
assume |u;|<1. Now consider the polynomial

n
u¥=> ur™,
1

By choosing the integers m; sufficiently large we can attain |u*|<1 in B and
evidently u*£0 in B— N (B). For otherwise u;{z, y)=0,%=1,2, ..., n, for some
point (x,y) € B— N (B) which implies % (x, y)=0.for all ¥ €F, contradicting the
definition of N (B).

Proof of the theorem 4: We first prove that the functions mentioned in the
theorem admit approximation. It is evidently enough to show that g {, y) = f(z, y) —
—p(x,y) admits approximation. But having shown the existence of u* the proof
of the sufficiency of theorem 3 will be valid also in this case. The only thing
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that has to be modified is the choice of the polynomial p(v) if one of or both
the points (z,, y,) and (x,,y,) belong to N (B). In that case however we define
fi=0 (¢=1,2) and p =0 respectively. Suppose then that f(x, ¥} may be approxi-
mated uniformly by I-polynomials in B. Then there exist p, (x, ) and p, (z, y) £
* p, (2, y) such that |f(z, y)—pi(z, y)[<}, i=1,2. Put & =p, — p,. We have |%|<
<|py—f|+|f—py| <1 which implicates % (Z, §) =0 for (%, §) € N (B). That means
that all I-polynomials that approximate f (x, y) with an error < } have the same values
in N(B). In order that f(z,y) shall admit uniform approximation we must have
(& §)=p( §) if (& §)€N(B). That completes the proof of theorem 4.

We shall not give the general condition on M and M’ here, but only some special
cases which can be brought back to approximation on the line. According to the
work of Fekete [3], approximation by I-polynomials is possible in an interval
if its length is <4, or more generally, in a set in the complex plane if its ca-
pacity is < 1. The set N is here composed of those algebraic integers whose con-
jugates all belong to the interval (set).

Theorem 5: A rectangle R': a <z <b, c<y<d parallel to the coordinate-axes and
with sides <4 belongs to M', and N (R')= N, (a, b)x Ny (c, d).

1
Proof: Take u,(x, y)=¢2(x)+r2(y), where g(z}<-—= and ¢(x)#0 when z¢

V2
N:(a,b) and correspondingly for y. The existence of ¢ (z) and r (y) follows from lemma
2. Thus we have Tuo (z,9)|<1 in R'. This proves the first assertion. -

From the above we get N(R')S N, (a,b)xN,(c, d). In order to prove N (R')=2
N:(a,b)xNy(c.d) suppose (&, #)€EN;(a, b)xN,{c,d). The number %, which is
an algebraic integer, has the conjugates %,, &, ..., £, all of which belong to
N:{a,b). The conjugates of §, are 4, 73, ..., Gm (ENy,(c,d}). Form

U(a)= 1 —u(@ gu)

i=1
k=1

where u(x, y) is any I-polynomial satisfying |u|<1 in R'. U(z) is a sym-
metric expression in &, %, ..., ZTn and ¥, ¥, ..., §m, Whose elementary sym-
metric functions are integers and consequently U (z) is an I-polynomial in z.
Hence z=u (&, ,), being a root of U(z)=0, is an algebraic integer and has
the conjugates 2®,z®, ..., 2z, which evidently are to be found among the

b4
(&, Jx), 1=1,2,3...m, k=1,2,3 ...m). This gives Z= ][] |2®| <1 because each
v=1

2 <1. Zis an integer, hence Z =0. We must then have « (%, #,}) =0, but (%, ¥,)
was any element of N, (a, b)X N, (¢, d). This implicates N, (a, b)x Ny (c,d) = N (R')
and the proof is complete.

Theorem 6: Any rectangle R'": a <x<b, c<y<d, whose sides are parallel to the
axes and such that b—a<4,d—c=k>4 belongs to M'. Then (z,y)EN (R") if and
only if x€N,(a, b).

Proof: Put u, (z,y)=(y—n)q™ (xr) where n is an integer >d and |g(z)|<1 in
(a,b) and ¢(%)=0 if and only if £EN, (a,b). By choosing m sufficiently large
we get |u,(z, y)|<1 for any (z,y)ER”. From the definition of u,(x, y) it follows
that if £¢ NV, (a, b) we have (2, y)¢ N(R") and it remains to be shown that Z€
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Ny(a, b)= (%, y) € N (R"). Take any I-polynomial u (z, y) such that |« (z, y)|<1in R'":
U(T, Y) =qn (X)Y" + gn-1 (@) y" "+ - +go(x). u(B,y) is for every fixed 2€(a,b) a
polynomial in y satisfying |« (2, y)|<1 in an interval of length >4. This is pos-
sible only if the coefficient of y" <1. For, if T'(y) is a polynomial whose leading
coefficient is 1 and which deviates least from zero in (c,d), we find |7 |max=
n

=2 (;) (the Tschebycheff-polynomial). It follows that |7 |max>1 if k>>4. Hence
the leading coefficient of u (%, y) is absolutely less than one. Thus ¢, (x) has the
property |g. (2)| <1 for all £€ (a, b), which gives ¢, (£) =0 if € N, (a, b). Repeating
this argument with an 2€N,(a,b) we find |gn-1(2)|<1 in a set Pp_1<(a,b). If
we apply Fekete’s theorem to the set P,_;, which obviously contains N, (a, b),
we get N (Pn_1)= N;(a, b) and we must have ¢,_; (%) =0 if ZEN, (a, b). Proceeding
this way we finally get % (%, y)=0 if ZEN.(a, b). Hence theorem 6 is proved.

Theorem 7: 4 set C which contains an axis-parallel square, whose side > 4, cannot
belong to M or M'.

Prooi: We suppose that there exists an I-polynomial u (z, y) 50 with |« (z, y)| < 1
in C and will show that we come to a contradiction. Put u(x, y)=g.(x)y" +
+¢n-1(2)y" "1+ - + g4 (z). In order that, for any fixed z, |u (z, y)| < 1 will hold for
every y in an interval of length >4, we must have |¢,(z)|<1 in C according to
the same reasoning as in theorem 6. But |g,(z)|<1 is impossible in an interval
of length >4 and theorem 7 is proved.

Theorem 5-7 can be generalized in many ways. The number of variables can
be increased. We can transform the sets by substitutions with integral coefficients
in obviuos ways. The elements of the product-sets need not be an interval. Finally
in theorem 5 and 6 we can deal with sets included in rectangles.
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