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Uniform approximation with Diophantine side-conditions 
of continuous functions 

By MATTS H~STAD 

This article is composed of two entirely different parts.  The first pa r t  deals with 
approximat ion of real continuous functions in one variable by rational functions 
whose zeros and poles all belong to certain prescribed sets. The second par t  is 
about  approximation of real continuous functions in severalvariables by  polynomials 
with integral coefficients. Two general theorems are proved and finally some spe- 
cial results are discussed. Fekete has completely analysed the problem in one 
variable [3]. 

I 

Theorem 1: Each positive continuous/unction / (x) admits uniform approximation 
on I = [ - 1, + 1] by the quotient of two real polynomials, whose zeros belong to two 
given sets P and P satisfying: 

1) P is the image of P under reflection in the real axis. 
2) P (and P) is situated on a line segment whose extension does not intersect I per- 

pendicularly. 
3) P (and P)  has a subset P'  (and t)') which is dense in itself (i.e. P'  c the set o/ 

all the accumulation points o /P ' ) .  

Proof: We use the following well-known theorem: The set M is dense in C( - 1, 1) 
if and only if each linear functional in C ( - l ,  1) which is zero for every element 
of M is identically zero. A real functional L (/) in C ( - 1, 1) m a y  be writ ten as 

+1 

L (/) = S f (x) d #  (x) 
- 1  

where/x is a real function of bounded variation. We define M as the set of func- 
tions { e~V/(x - a) + e - '~ / (x  - 5) } for all a = ~ + ifl E P ' ;  q is the argument  of the line 
1 to which a belongs. The assumption L (/) = 0 for / E M then  implies tha t  the func- 
tion 

+1 

u(a ,  f i )= \ x _ a + x _ ( t /  
- 1  

vanishes for all a 6 P ' .  But  u(~, fl) being the real pa r t  of an analytic function 
yJ (a), holomorphic for a ~ I, is harmonic, and we consequently have u (~, fl) = 0 on 
the whole line I except in its possible intersection with I .  Using the principle of 
reflection we get: 
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1) The line l does not  intersect I .  Then ~0 (a) is holomorphic in one of the half- 
planes tha t  l forms. According to the principle of reflection, y~ (a) mus t  be holo- 
morphie in the whole plane which gives d~t--0.  

+_~ 2)/ intersects  I ,  ~v =~ --2" ~ (a) is then holomorphic in either of two points sym- 

metrically si tuated to 1. From the principle of reflection we conclude tha t  ~v (a) 
is holomorphic in the whole plane, except possibly i n / : s  intersection (x o, 0) with 
I .  Consequently d/~ reduces to a point mass in this point. We have ~v (a )=  k e~ /  
(x 0 - a ) ,  where k is real. I f  a E 1 we have x o - a  = ~ e  'v (~ real) and accordingly 
RcOp(a))=k/~.  But  Re(~p(a))=0 if aEl which gives k = 0  and hence d # - - 0 .  

3) l intersects I perpendicularly. This is the case excluded in theorem 1. (See below.) 
We consequently know tha t  each continuous function g(x) m a y  be approxi- 

mated  uniformly by  an expression 

m ( e,~ + e-,~] 
ga(X)=~Ak  x--ae x--de~ 

where Ak are real and a~ E P ' .  We choose g (x)= log ] (x) where /(x) is the positive 
continuous function in theorem 1. Given e >  0, we take a'k=ak + ~ e  i~ (~k real) 
where a~ E P '  and 

I O ~ ] - < m i n  4 G m '  ' " 4a (IA [+ 1)m 

Here G is the max imum of 1/] x -  a I for ak E P' and x E I ,  and the choice is evi- 
dently possible because P' is dense in itself. Consider one of the 2 m  terms in 
gl (x), say A~ ei~/(x - ok). Putt ing nk = [Ak/~k] we get by the aid of the logarithmic 
expansion 

. . . . .  nk log - - -  < 
• - a ,  x-a'  - I * - a * l  - 

< ± .  
<- O]O*]+ 2(l_lOklO)- 2m 

Consequently gl (x) may  be approximated with an error < e by  the sum 

-~ + log ~1 nk x -- ak x -- 5k/ 

which gives an approximation of /(x) by the rational function 

This function has real coefficients and its zeros and poles all belong to P and P .  
Hence theorem 1 is proved. 

By extending P and P we can get rid of the condition / ( x ) > 0 .  We see a t  
once tha t  if a continuous function, which is both positive and negative in I ,  shall 
admi t  approximation by a rational function, this mus t  also have zeros in the 
interval. We have the following theorem: 
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T h e o r e m  2: Each continuous /unction admits uniform approximation in I by the 
quotient o/ two polynomials, the zeros o/the numerator belonging to I and to the given 
sets P and P in theorem 1 and those of the denumerator to P and P.  

Proof :  Take an e >0 .  According to Weierstrass / ( x ) m a y  be approximated by 

a polynomial g (x) with an error < 3" Suppose 

g (x) = ( x -  xl)  . . .  ( x -  xn) h (x) = k (x) .  h (x) 

where xl, x 2 . . .  x~ E1 and h ( x ) > 0  in I .  Suppose max  k (x)= kl and define 

h(x) if h ( x ) > 3 k l  
1 (x) = 

1 (x) is positive and continuous and consequently admits  approximation by  the 
rational function m (x) in accordance with theorem 1. The error in the approxi- 

8 
marion can be made < ~ .  I f  we finally show tha t  m (x)./c (x) approximates  f (x) 

with an error < e, we have proved theorem 2. In  fact  we have: 

I f (x) - m (x) ~ (x) I < I / (x) - g (x) l + I k (x) lt h (x) - l (x) I + I k (x) l I l (x)  - m (x) l < 

1 3/cl 

~+ ~ ~ T + k l  ~ - ~  if h ( x ) < ~ .  

I f  all the zeros are situated on a line which intersects I perpendicularly, the 
rational expression becomes symmetric with respect to this line and then only 
those continuous functions m a y  be approximated tha t  have this symmetry .  
I = [ - 1 ,  1] m a y  further be replaced by  any finite interval  and the line seg- 
ments may  be replaced by  one segment ( ~  I) on the real axis. 

I I  

T h e o r e m  3: A necessary and sufficient condition that each continuous /unction 
f (x, y . . . )  in several real variables admits uniform approximation in a compact set A 
by a polynomial whose coefficients are rational integers, is the existence of a polynomial 
with integral coefficients, u (x, y .  ..) such that 

1) l u ( x , y . . . ) l < l  in A; 2) u ( x , y . . . ) ~ O i n  A. 

In  the following we suppose, for the sake of simplicity, tha t  the number  of 
variables is two. The results and the proofs are the same for any number  of 
variables. From here on we call a polynomial with integral coefficients an I-poly- 
monial. The class of all compact  sets satisfying 1) and 2) is called M. 
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P r o o f :  a) The  condit ion is necessary:  

In  order  t h a t  the  funct ion /(x, y)-~ ½ shall a d m i t  uniform app rox ima t ion  in A 
b y  an  I -po lynomia l  u(x, y), this  mus t  sa t is fy  1) and  2) above.  Hence  there  exists  
a u (x, y) wi th  the  required properties.  

b) The  condit ion is sufficient: 

We use the  following lemma,  pr incipal ly well-known, which is g iven here wi thou t  
proof  [1]. 

L e m r n a  t :  Suppose  t h a t  the family  T of cont inuous funct ions t(x, y) defined 
in A has  the  p r o p e r t y  t h a t  for any  two funct ions t 1 (x, y) and  tz (x, y )E  T,  m a x  
(tl, t2) and  min  (tl, ts) also belong to T. Then  a f u n c t i o n / ( x ,  y), cont inuous in A, 
admi t s  un i form app rox ima t ion  b y  funct ions t (x, y) if and  only if for a n y  two points  
(xo, Y0) and  (xl, Yl) in A and  a n y  s > 0 ,  there  is a funct ion t (x, y) such t h a t  

~) [ / (x, y) - t (x, y)[ < s for (x o, Yo) and  (Xl, Yl)- 

For  the  proof  of theorem 3 above,  t ake  as the  fami ly  T in the  l e m m a  all con- 
t inuous funct ions admi t t ing  approx ima t ion  b y  polynomials  wi thou t  low powers  
p (u 1, us, ua) in the  three  var iables  u 1 = u (x, y), u 2 = ( x -  hi) (u (x, y))m, and  u a = 
= ( y - n s )  (u(x, y))m,, nl ' n2, ml ' ms are integers,  the  lines x=nl ,  and y=n~ do no t  

in tersect  A, and  u (x, y) is an  I -po lynomia l  sat isfying the  condit ions 1) and  2) of 
the  theorem.  The  integers m 1 and  ms m a y  be chosen so large t h a t  I u2[ < 1 and  
]ua] < 1 in A. The  coefficients of the po lynomia l  p shall be zero for  the  t e rms  
wi th  lower degree t h a n  n (fixed). 

B y  wri t ing m a x  (t 1, t2) = ½ (t 1 + t, + I t~ - t s ) and  min  (tl, t~) = ½ (t x + t 2 - It~ - t~. I) 
i t  will be  enough to show t h a t  t E T :~ It] E T. I f  t is a p p r o x i m a t e d  b y  a poly-  
nomia l  p, then  [Pl app rox ima te s  It I. According to Weiers t rass  we know however  
t h a t  I Pl m a y  be a p p r o x i m a t e d  b y  a po lynomia l  q (p) in p, vanishing for  p = 0. 
Hence  q(p) will lack t e rms  of low degrees and  we have  proved  t h a t  rain and  
m a x  belong to  T. 

I t  is easily seen t h a t  the  set of polynomials  (Ul, u~, u3) separates  the  points  of 
A, i.e. given two different  points  (x 0, Y0) and  (x 1, Yl) there  is a t  least  one poly-  
nomia l  u, such t h a t  u, (%, Yo) # ui (x 1, Yl)- Using the  nota t ions  

ui = v; v (x o, Y0) = v0; v @1, Yl) = vl 

/o = / (xo, yo)/V~; /i = / (xl, y , ) / v L  

we c o m t r u c t  the  po lynomia l  wi thout  low powers  

which satisfies the  condit ion ~) with e = 0. Thus  this family  has all the  proper t ies  
desired in the  l e m m a  so t h a t  each cont inuous funct ion m a y  be a p p r o x i m a t e d  by  
a po lynomia l  p (ul, u2, uz) wi thout  low powers.  We have  further:  

p(u 1, u 2, u3) =aau, •(12U 1 U2 + a3 u ~ - l v , 3 - t  - . . . .  

= [ a l ]  u~ + [a~] u'~-lu~+ [aa] u~-lua+ ... +Rn, 
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where Rn is a polynomial whose coefficients are absolutely less than  1. Because 
max  l u k ] = s < l  for (x,y) EA we get 

k 

IR=I.<<I~I+ I =-1 ul  . . . .  

where the sum is extended over all combinations of non-negative integers whose 
sum is > n. Hence [2] 

and this series being convergent for Is] < 1 we can make R~ arbitrari ly small by 
choosing n sufficiently large. Thus we have an approximat ing I-polynomial  and 
theorem 3 is proved. 

B y  making some restrictions concerning the continuous functions, which are 
to be approximated,  the set where approximation is possible m a y  be extended. 
Let  M '  denote the class of compact sets B such tha t  there exist an I-polynomial  
u satisfying the conditions 

1') ]u(x ,y ) i<l  i n B  2') u(x,y)~O. 

Each set B E M '  has a subset N (B) such tha t  (x0, Y0) E N (B) implies u (x0, Y0) = 0 for 
every I-polynomial  satisfying 1') and 2'). To N(B) belong in particular all points 
in B with integral coordinates, for in such a point u(x, y) must  be an integer 
absolutely less than  one. Hence u(x, y)= O. 

T h e o r e m  4: In  B E M' those and only those continuous/unctions admit uni/orm 
approximation by I-polynomials /or which there exist an 1-polynomial p (x, y) such 
that / (x, y) = p (x, y)/or (x, y) E N (B). 

For the proof we need the following lemma: 

L e m m a  2: There exists in B an I-polynomial  u* such t ha t  ]u* (x, y)[ < 1 in B 
and u* (x, y) # 0 in B -  N (B). 

P r o o f  of the  l e m m a :  The ideal generated by all I-polynomials  satisfying 1') 
is called F.  I t  is not the zero ideal and, being an ideal in a Noetherian ring, 
it is finitely generated by  a set of polynomials {ui}, i = 1, 2 . . . .  n, where we m a y  
assume lu l l<  1. Now consider the polynomial 

1 

By choosing the integers mi sufficiently large we can a t ta in  l u * I <  1 in B and 
evidently u* # 0 in B - N (B). For otherwise ui (x, y) = 0, i = 1, 2 . . . . .  n, for some 
point (x, y) E B -  N (B) which implies u (x, y) = 0 for all u E F,  contradicting the 
definition of N(B) .  

P r o o f  of the  t h e o r e m  4: We first prove tha t  the functions mentioned in the 
theorem admi t  approximation.  I t  is evidently enough to show tha t  g (x, y) = t (x, y) - 
- p (x, y) admits  approximation.  But  having shown the existence of u* the proof 
of the sufficiency of theorem 3 will be valid also in this case. The only thing 
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tha~ has  to be modif ied is the  choice of the  po lynomia l  p(v) if one of or bo th  
the  points  (x0, Y0) and  (xl, Yl) belong to  N ( B ) .  I n  t h a t  case however  we define 
/, ~ 0 (i = 1, 2) and  p ~ 0 respect ively.  Suppose  then  t h a t  / (x, y) m a y  be  approxi -  
m a t e d  un i fo rmly  b y  / -po lynomia l s  in B. Then  there  exis t  Pl (x, y) and  p~ (x, y) 

Pl (x, y) such t h a t  I / (x,  y) - p, (x, y)[ < ½, i = 1, 2. P u t  ~ = Pl - P~- We have  I~1 ~< 
~< ] P~ - 1[ + I f - P21 < 1 which implicates  4 @, ~) = 0 for  @, ~) e N (B). T h a t  means  

t h a t  a l l / - p o l y n o m i a l s  t h a t  app rox ima te  f (x, y) wi th  an  error  < ½ have  the  same values  
in N (B). I n  order  t h a t  / (x, y) shall a d m i t  uni form app rox ima t ion  we mus t  have  
/ (~, ~) = p (~, ~) if (~, ~) E N (B). T h a t  completes  the  proof  of t heo rem 4. 

We  shall no t  give the  general  condit ion on M and M' here,  bu t  only some special 
cases which can be b rought  back  to  app rox ima t ion  on the  line. According to the  
work  of Feke te  [3], app rox ima t ion  b y  I -po lynomia ls  is possible in an  in te rva l  
if its length is < 4, or more  generally,  in a set in the  complex p lane  if its ca- 
pac i ty  is < 1. The  set  N is here composed of those algebraic integers whose con- 
juga tes  all belong to  the  in te rva l  (set). 

T h e o r e m  5: A rectangle R': a ~ x ~ b, c ~ y <~ d parallel to the coordinate-axes and 
with sides < 4  belongs to M',  and N (R') = Nz(a, b)xN~(c,  d). 

1 
P r o o f :  Take  u 0 (x, y) = q2 (x) + r 2 (y), where q (x) < ~-~ and  q (x) # 0 when x (~ 

N~:(a, b) and  correspondingly for y. The  existence of q (x) and  r (y) follows f rom l e m m a  
2. Thus  we have  | %  (x, Y) I - 1 m R .  This  proves  the  first  assertion. 

F r o m  the  above  we get  N (R') _~ N~ (a, b) x Ny (c, d). I n  order to  p rove  N (R') ~_ 
N~ (a, b) x N~ (c, d) suppose (Xl, ?]1) E N~ (a, b) x N~ (c, d). The  n u m b e r  xl, which is 
an  algebraic  integer,  has the  conjugates  x~, x a . . . .  ~ all of which belong to  
Nx(a,b) .  The  conjugates  of ?If are  Y2, Ys . . . . .  ~m (EIV~(c,d)). F o r m  

n, m 

V (z)  = i=['Ii (z  - -  u (x i ,  y k ) )  
k - 1  

where u(x,  y) is any  / -po lynomia l  sat isfying l u[< 1 in R'. U(z) is a sym-  
met r ic  expression in Xl, x~ . . . . .  ~n and  Ya, Y2 . . . . .  ym, whose e l emen ta ry  sym-  
met r ic  funct ions  are integers and  consequent ly  U(z) is an / -po lynomia l  in z. 
Hence  z(1)=u(~.l,~l), being a root  of U ( z ) = 0 ,  is an algebraic integer  and  has 
the  conjugates  z(2),z (s) . . . . .  z (v), which evident ly  are to  be found a m o n g  the  

P 
u @i, ?)k), (i = 1, 2, 3 . . .  n, k = 1, 2, 3 . . .  m). This  gives Z = ] - / Iz  (") ] < 1 because each 

Y=I 
z(~)< 1. Z is an integer,  hence Z = 0. We m u s t  then  have  u (xl, Yx)= 0, bu t  (xl, Yl) 
was a n y  e lement  of Nx (a, b) × Nu (c, d). This implicates  Nx (a, b) × Nu (e, d) _= N (R') 
and  the  proof  is complete .  

T h e o r e m  6: Any rectangle R"  : a ~ x ~ b, c ~ y <~ d, whose sides are parallel to the 
axes and such that b - a < 4 ,  d -  c = k >~ 4 belongs to M' .  Then (x, y) E N (R") i / a n d  
only i / x  C N ,  (a, b). 

P r o o f :  P u t  u 0 (x, y) = (y - n) qm (x) where  n is an  integer  > d and  I q (x) I < 1 in 
(a, b) and  q ( ~ ) = 0  if and  only  if ~ CNx (a, b). B y  choosing m sufficiently large 
we get  I u0 (x, y) I < 1 for a n y  (x, y) E R " .  F r o m  the  defini t ion of u 0 (x, y) it  follows 
t h a t  if ~ q N ,  (a, b) we have  (~, y) ¢ N (R") and  it  r emains  to be shown t h a t  • E 
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N~(a, b) ~ (2, y) ~ N (R").  T a k e  a n y / - p o l y n o m i a l  u (x, y) such t h a t  I u (x, Y) I < 1 in R": 
u (x, y) = q,  (x) yn + q~-i  (x) y~- i  + ... + q0 (x). u (3, y) is for every  f ixed ~ E (a, b) a 
po lynomia l  in y sat isfying I u (3, y) I < 1 in an in te rva l  of length >~ 4. This  is pos- 
sible only  if the  coefficient of y ~ <  1. For,  if T ( y ) i s  a po lynomia l  whose leading 
coefficient is 1 and  which devia tes  least  f rom zero in (e, d), we find ]Timex= 

= 2 (the Tschebycheff -polynomial ) .  I t  follows t h a t  I T Im~ > 1 if k )  4. ~tenee 

the  leading coefficient of u (3, y) is absolute ly  less t h a n  one. Thus  q~ (x) has  the  
p rope r ty  ] q~ (x) ] < 1 for  all ~ e (a, b), which gives q~ (2) = 0 if ~ e N~ (a, b). Repea t ing  
this a rgumen t  wi th  an  x E N~ (a, b) we find I q~-I (x) l < 1 in a set  P ~ - I ~  (a, b). I f  
we app ly  Feke te ' s  t heorem to the  set  P~ - I ,  which obviously  contains  N~ (a, b), 
we g e t / V  ( P ~ - I ) =  N~ (a, b) and  we m u s t  have  q~-i  ( 2 )=  0 if ~ e N ~  (a, b). Proceeding 
this w a y  we finally ge t  u (2, y) = 0 if 2 E N~ (a, b). Hence  t heo rem 6 is p roved .  

T h e o r e m  7: A set C which contains an axis-parallel square, whose side ~ 4, cannot 
belong to M or M'.  

P r o o f :  We  suppose t h a t  there  exists  an I -po lynomia l  u (x, y) ~e 0 wi th  I u (x, y)] < 1 
in C and will show t h a t  we come to a contradict ion.  P u t  u(x, y )= q~ (x)y~+ 
÷ q~-I ( x ) y ~ - l ÷  ... ÷ qo (x). I n  order  tha t ,  for  a n y  f ixed x, l u (x, y) < 1 will hold for  

eve ry  y in an in te rva l  of length >~ 4, we mus t  have  I q~ (x) < 1 in C according to  
the  same reasoning as in t heo rem 6. B u t  ]qn (x ) l<  1 is impossible in an  in te rva l  
of length >14 and  theorem 7 is proved.  

Theorem 5-7 can  be general ized in m a n y  ways.  The  n u m b e r  of var iables  can 
be increased. We  can t r ans fo rm the sets by  subst i tu t ions  wi th  in tegral  coefficients 
in obviuos ways.  The  e lements  of the  product -se ts  need no t  be an  interval .  F ina l ly  
in theorem 5 and  6 we can deal wi th  sets included in rectangles.  
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