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Notes on the Diophantine equation y?—k=a3

By Ove HeMER

The purpose of this article is to give some corrections and additions to my
dissertation “On the Diophantine equation y*—k=2°" (Uppsala 1952). In the
following 1 denote that paper by H and refer to the bibliography given there
as e.g. (H, [4]). In fact I have succeeded in solving all the equations with
0<k<100.

The problem of solving an equation 3*>—k=2a® is equivalent to solving a finite
number of equations (a, b, ¢, d)=1, where (a, b, ¢,d) is a binary cubic form. To
be short I name this form soluble and (u,v) a solution of the form, if there i3
any integer solution (u, ) of (a,b,c,d)=1. In the first part of H it is shown
how to determine those equations and further their solubility is discussed. A
soluble form may be written

(1) Fu,v)=+pulv+teuod+ro®*=(1,p,q,r
and corresponds to a cubic ring R(6), where
(2) FB, —1)=0—p0:+q0—r=0.

If £>0, the form F (w,v) has always a negative discriminant. Then every in-
teger solution of (1) corresponds to a wunit of the type

(3) e"=u+vh

and vice versa, where ¢ is the fundamental unit of the ring R(6). Hence the
decisive question is to determine all such units (3).

If 0<e<1, the case n<0 can easily be examined by H, Lemma 7, p. 25.
This lemma was inserted a short time before the printing and hence it is not
applied all through. Further, for want of space, the proof was too short.
Hence I repeat the lemma here with a detailed proof:

Lemma 7. A soluble irreducible form can always by a untmodular substitution
be written F (u,v)=(1,p,q,7), where p<1 and r>0. Suppose D(F)<0 and
O0<e<l, where ¢ ts the fundamental unit in the corresponding cubic ring. Then,

. e . . 1 1
of v; and v, are positive integers and if D(l, D, q,T— 53) and D(l, D, q, T+ ;3)
2

1
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are megative, o solution of (3) with n<0 implies that —v,<v<w,. If specially

3 —_—
_ - L S Vo).
p=0,n<90 mplies that 0<v<3 VID(F)I (or, if D(F) 108%,0<v< Zk)

Proof. Consider D(r)=p¢*—4¢*+(18pg—4p®)r—27+* as a function of r.
Then p<1, 7>0, D (r) <0, D(r— ;1?) <0 implies D(r—)<0, if 0<¢< ;1? This
is immediately clear, if we get Dp., for r<0, ie. %pq—2p3so, or if D(0)=0,
ie. p®¢*—4¢°>0. Then we have to examine ¢g> % >0, but p<0 gives 9pg—

—29°<0 and p=1, ¢>1 gives Do <0. Since 0>0 is defined by F (9, —1)=0,
we then have wv <0 for v=>wv,. The case uv=0,7r=1,v=v;=1 corresponds to
no solution of (3) with n<0, by H, Lemma 6 (NaceLL H, [3], Hilfscatz III).
Hence we can suppose uv<0, if ¥< —v, or v>9; (the case v< —v, may be
treated analogously). Then

(u+v0) (u+v0")=u?+(p—0)-uv+ %-'02>1

_n\2
(since % — (ITB) >1, if 0<0<1). Hence e"=u+v0<1, i.e. n>0. The special

result for p=0 follows immediately from the expression of D(F).

By the examination of (3) for >0 in the special cases I have sometimes
used an incorrect “method”. Suppose &"=a,0*+b,0+c, and a,=0 (mod p™),
p a rational prime. Then a substitution =A@+ B, (p, 4)=1, gives £"=
=an¢*+brg+cn, where a, and a, are divisible by the same power of p. Hence
congruence conditions for n satisfying @, =0 (mod p™) cannot contradict the
corresponding conditions for n satisfying @, =0 (mod p™). The following faults
in H result from this mistake:

y®—40=4*, the form (1,0, —18, 32), p. 63, line 4, B.

y*—44 =4%, the form (1,3, —12,12), p. 64, the last 7 lines. Further the rela-
tion (3), p. 63, shall be &2+ 213+ 14283--1=0.

y2—19=4x% the form (1,0, —15,24), p. 72, (4).

y?—37=4 the form (1,0, — 9, 16), p. 77, at the bottom of the page. The rela-
tion (5), p. 77, shall be £+ 921 &%+ 271191 ¢—1=0. Further on p. 77, line 19,
we shall have the factorizations (a)=§,; 9,4 and (1 —a)=p* instead of («)=h?q
and (1—o)=4,9,. This gives wrongly (2, —3,6,3)=1 insoluble, though there
is the solution (2, —5), i.e. the form is equivalent to (1, 45, —54, 16) and the
equation has the further solution (243, +3788).

Further errors of calculation give the following faults:

y*—8=4% the form (1,0, —6,8), p. 37, line 17. There is a third duadic
solution but, as we shall see below, no more integer solution.

y*—28=4%, the form (1,0, —6,12), p. 56. The relation (8) shall be bx.s =
= bx (mod 5) and then the conclusion is invalid.
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Below we shall treat all the named forms definitely.

Finally, on p. 42, line 17, y=4¥, is a misprint. It shall be A=§,. On p. 60,
line 13, 4 and g shall change places. A small number of such errors in the tables
shall be corrected in the tables in this article.

By the following examinations we very often use results of DeELaUNAY and
NaGeLL connected with H, Lemma 8 and mentioned on p. 27. 1 repeat Lemma 8
and give the other results more explicitly as Lemma 8a and 8b.

Lemma 8. Let o be an integer (not necessarily a unit) in R(0) and suppose that
a=ap@*+bpo+c,

where p is an odd prime, p=20, t>0, (¢, p)=1 and (a, p)=1. Then no power
™ (m positive or negative) can be a binom A0+ B.

Proof. If m>0, the coefficient for ¢* in o™ is
i=m m .
m-c"prat (i)-c”‘"-pi-Ai,
=2

where A; are rational integers. If p> 2, every term in the sum contains a bigher
power of p than the first term and hence the coefficient cannot be 0. Since
(¢, p)=1, a-a'=1 gives a '=a'pe*+ b pp+c’, where (o, p)=1, an hence the
lemma is proved even for m <0.

Lemma 8a. Let F(u,v)=(1,P,Q, R)=1, F(0,—1)=0 and e=ab®+b0+c¢

the fundamental wnit of R(0), (a,b)=d. Let further p be an odd prime, dwisor of
N(—ab+b+aP) m 9

k= T , and €"=amn0?+bn0+cn, be the least power of &, where

an=bn=0 (mod p). Then, tf an*x0 (mod p*), the relation &" =u+v0 is 1mpossible
for n=+0.

It P=0, we get N(—af+b)=F (b, —a), ie. k= F—(bd;ﬁ)
Proof. ¢"=wu+v0 gives immediately
P . (01 _ 6") .0,
1e. v must be divisible by ;,%;,, = —af+b+aP, and this proves the lemma

by Lemma 8, since n must be a multiple of m.
If e=c1+8, we get k= +1, but then we can write (3)

'=u+ve.

Then n even implies N (¢'+¢”)/v and, since &" '=wu-e'+v, n odd implies
N (¢'+¢")/u. We have :

Lemma 8b. Let ¢ be a unit in a cubic ring and let the odd prime p be a
divisor of N (¢'+¢€"). Suppose further that " =am & +bme+cn ts the least power
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of € with m>0, where an=>5b,=0 (mod p). Then " =u+ve has no even solution
except n="0, if an=0 (mod ), and no odd solution except n=1, if Cm12% 0 (mod p*).

Proof. Denote ¢ "=Ae*+ Be'+C. Then
e"e "=1=cnde 2 +enBe ' +cn C (mod p),
e A=B=0 (mod p) and hence, as proved by Lemma 8,
Cmie=bmi2=0 (mod p)

since £”=Cmi0& 2+ bmize L+ amig. Conversely cmio=0bmi2=0 implies g =b,=0
(mod p). Then the result follows from Lemma 8.

By examining the special cases I begin with the forms mentioned above and
then go on with the incompletely treated forms, occurring in the remaining cases
0 <k<100.

y*—8=4" (1,0, —6,8)=1(H, p. 33, (3)). The form is equivalent to (1, 9, 21, 1),
le. &=9s2-21eg+1. We get N(¢'+&")=N(9—g)=4-47. By Lemma 8b we
find p=47, m=92, a4, =940 and cyy=1081 (mod 47%). Then the form has only
two solutions. (This result is pointed out by Naeerr). Hence the equation has
exactly the four solutions given in H.

y*—28=4 (1,0, —6,12)=1 (H, p. 56, (4)). We have o> —6a—12=0 and
e=—3a’+11a«—5. Examining &* modulo 9 we find £=1 and a.=0, if n=0
(mod 9). Since £=3ua*—2 (mod 9), the form has the only solution (1, 0) by
Lemma 8 and the equation has exactly the two solutions given in H.

¥y —40=x% (1,0, —18,32)=1 (H, p. 62, (7)). We have 6*°—-180-32=0
and £=56°—310+31. Now ¢*=1 (mod 3) and a,= —1 (mod 3), if n==0. Since
a;=3 (mod 9), the form has only one solution by Lemma 8 and the equation
has the only solution given in H.

yi—d4=4* (1,3, —12,12)=1 (H, p. 64, (5)). A substitution y=0+1 in (6)
p. 64 gives 6 —150—-26=0 and we get £=130°—156—201. Then —k=
=F (15,13)=23-53% and p=>53. By Lemma 8a we find m=13 and a;3= — 583
(mod 53?%), i.e. the form has only one solution. Hence the equation has exactly
the two solutions given in H.

y2—19=4% (1,0, —15,24)=1 (H, p. 72, (1)). We have 0>~ 1590 —24=0 and
e= —360%+2020—179. As shown in H, ¢"=u+vp, n+0 implies n= —1 (mod 4).
Now we find ¢#=1 (mod 16) and =0 or 3 (mod 8) and further &#=1 (mod 5)
and =0 or —1 (mod 8). Then n=0 gives the only solution and the equation
has exactly the solution given in H.

y2—37=4 (1,0,—9,16)=1 (H, p. 77, (3)). We have 6°—96—16=0 and
£=570—-310—649 and since —k=28-41-6361, we put p=41. By Lemma 8a
we find m=4 and a,=451 (mod 41%). The form has only one solution.

(2,—-3,6,3)=1 (H, p. 77, (4)). The form is equivalent to (1, 0, — 729, 7576),
ie. 03="7290,+ 7576 and &=3606%—56026, —175267. We get —k=2-41-6361
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and put p=41. As before we find m=4 and a¢,=943 (mod 41%) and hence the
form has only one solution. Then y?—37=2® has exactly the three solutions
(—1, £6), (3, +8) and (243, +3788).

In H, mom. 25, p. 87, I state that the equations with k=22, 26, 30, 35, 38,
71, 92 and 94 have exactly the sclutions given there, if the calculated units are
the fundamental units of the corresponding rings. Now I have examined that
this is the fact in all the named cases and then the result follows by Lemma 8 a.
I treat the first equation y*—22=2 in detail and render the other analogous
cases more briefly.

y¥—22=4% (1,0, -9,14)=1. We have ¢o°—9p—14=0 and e=1850"—
—6090—199. e=%" m>1, implies by a method of NacerLr (H, p. 22 and [7],
p. 7) n=u+vp with |v]|<1993. 1t is more convenient to examine % and since
6<3,592, we geb |u|<3,592-1993<7160. We have the congruence conditions

{uE — 35 (mod 288) {u5433 (mod 1152) u=1 or —575 (mod 2304)
v= 6(mod12) ~ lo= 12mod24) ' |v=0 (mod 24)

Further =% —1 (mod 5) or 0 (mod 7) and v= —2 (mod 5). We get less than 50
values of u, which easily can be shown impossible. Hence ¢ is the fundamental
unit of the ring. Now 7/F (609, 185), i.e. p="17, £€2=2 (mod 7) and a, =28 (mod 49).
Hence, by Lemma 8a, (1, 0) is the only solution of the form. That the other
units all are fundamental is shown analogously and we get:

y*—26=4% (1,0,3,10)=1. ¢= —2810*—651p+ 1917, p="17, £*=2 (mod 7)
and a;4= —14 (mod 49).

y*—30=4% (1,0, —57,166)=1. e= —13490%+ 6913 p+42293, p=3, £=1
(mod 3) and a;=3 (mod 9).

y*—35=4" (1,0,—3,12)=1. e= —13439p>+ 153470 —31823, p=31, &°
= —6 (mod 31) and a,,=93 (mod 961).

y*—38=4% (1,0, —33,74)=1. £ =539 0> — 1177 p — 15971, p=11, =1 (mod 11)
and =55 (mod 121).

Yy —71=4% (1,0, —15,28)=1. £ =562 0> — 1290 p — 5931, p="7, e = — 3 (mod 7)
and a,=14 (mod 49).

y*—92=4% (1,0,—6,20)=1. £¢=68a’+965x—4121, p="5, e*=1 (mod 5) and
a,=>b (mod 25). The equation (2,3, 12,3)=1 is shown insoluble in H.

y'—94=4% (1,0, —-9,22)=1. ¢= — 361 9*— 1319+ 5821, p=5, ¢'=1 (mod b)
and a,= —5 (mod 25).

Finally I treat the remaining four cases k=63, 76, 55 and 91.

Yy —63=2% (1,0,9,12)=1 (H, p. 59, (16)) and (2, 0,9, 3)=1 (H, p. 59, (18)).

I have found that the calculated units (see the last table) are fundamental in

the corresponding rings. This is easily seen in (18), but even in (16) we only

need examine about 200 values w, though we get the limit |u|<181700 from
1D

vt < i D((;; Then, as pointed out in H, (16) has the only solution (1,0) and

(18) is insoluble.
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(2, —3,6,5)=1 (H, p. 59, (17)). In this case the coefficients in the calcu-
lated unit are very great, but SkoLEM has shown me that the form is in-
soluble, irrespective of whether the unit is fundamental or not. I render his
proof here:

As in H we consider the equivalent form (2,9, 18, 6)=1 and with the nota-

tions in H p. 60, (20) and the factorizations given there we find (2)=p*-§,
and p= ( (48 @)’ . Then if 2=n%m,, we can write n=—(148—a—)—. If now

(u,v) is a solution of the form, we get N (2u+va)=8u"+36u’v+72uv?+
+24v°=4 and it is easily seen that we can write

F(u,v)=(2,9, 18, 6)=N(yt1-u+ —°‘—-v)=1

Tty

(cp. H, p. 20-22, DrrauNay [4] t. 1, p. 258, and SkorLem [1] Kap. VI, § 3).
Then we have to examine

(4) 2utva=n’-n"

where 7 1s the fundamental unit of R (1, «, B). Considering congruences modulo
5 we find o*= —a’—a—1, ie. a*=1 (mod 5). Since af=12, we also get f'=1
Let 7= aoc+b/3 +¢ be an arbltrary integer in the ring. Then 7°=7, ie. 1f
(r,5)=1, we get t*=1 (mod 5). Now e=1}- (27oc —12loc+81) =o—1 (mod 5)
and &#=a®—2a+1, ie. & is no square of a unit m the ring. Then e=7%" im-
plies m odd and we can find an m’ such that mm' =1 (mod 4), ie.

e™' =n"" =7 (mod b)

and hence every power of n is congruent to a power of e modulo 5

Since &* (mod 5), we have to examine n%, n’e, n*e* and n°&®. Now n=
E—2a2——1, m=—a?, nte=20 +a+1, 7t 2=20 ——2oc+2 and 7= —a?+
+2a+1 (mod 5) and hence (4) can never be satisfied. Then the form is in-
soluble and the equation bas exactly the two solutions given in H.

y*—76=42° (4,18,12,3)=1 (H, p. 73, (6)). A trial of the same method
gives the condition
2u+(o+3)v=m-¢",

where 2=n%m,, p is defined by g — 159 —24=0 (H, p. 72, (2)) and 6= — 360"+

. e+3
+2020—179. =
0 9. We can write & 209

=100°+450+53 and get the condition

(5) U+Veo=(100*+450+53)- "

We have =2 (mod 7) and examining 7=0,1,2,...,15 in (5) we find the
condition n=2 (mod 16). However, e&*=1 (mod 4) implies » odd and hence the
form is insoluble and the equation has the only solution given in H.

" 'In the last two cases, 55 and 91, the calculated units are very great. I have
used a method of solving the corresponding forms without showing that the
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units are fundamental, which may be generally available in similar cases. At
“ first we shall state some self-evident facts, which we shall use below without
references.

Suppose e=%", m>0 and that " is the first power of the unit & with the
property &' =cy (mod p), p a rational prime. Then

nM=c (mod p) implies that N/N,.
Let N,=hN be the first exponent with this property. Then
k/m.

If there is any unit in the ring of the type ap6®+byp 6+ ¢ with (a, p)=1, then
7"V is of the same type.

We alway shave an m' such that mm’'=% (mod 2 N) and %" =&™ (mod p). Then
we can consider ¢ instead of % except if 2>1.

Now we examine the possibilities n=a6*+ b0+ ¢ (mod p), where a, b and ¢
assume complete systems of residues modulo p. At first we have the necessary
condition for a unit

N@m)=n-v"-7"=1=P,(a, b, ¢) (mod p).

This restricts the number of possible cases. In the remaining cases we deter-
mine % and examine those giving 2>1. They can often be shown impos-
sible on account of the necessary conditions k/m or % the same for % and 7,
if {r, AN)=1. Now we return to the two equations.

¥*—55=4a" (1,0, —-27,56)=1 (H, p. 88). We have ¢*—270—56=0 and
£=5-(250*—970—323)°. At first we shall prove that we can consider powers
of &, irrespective of whether ¢ is fundamental or not. We examine congruences
modulo 5 and find £°=1 (mod 5). Then we consider the different expressions
n=ag*+bp+c (mod b), where at first 5-# -5 =1 implies

&®—2a*b—dfc+2abc—act+ b —2b%c+c*=1 (mod 5).

It is easily seen that £ is no square and no cube. Then A=2 or 3 is impos-
sible and the only other case giving A>1 is = —p*—2p—2 (mod 5), where
h=5, ie. =1 (mod 5) as the first power. Now we get 7>=2p —2=¢" (mod 5)
implying ~=2 and there is no unit of the examined type. (Further, since m=5
implies n= —p*—2p—2, m cannot be divisible by 5.) Then we can examine
powers of ¢ and we find modulo 5 #=0 or 7 (mod 10) and since e=p*+p+1
and =1 (mod 2), n even. Hence n=0 (mod 10) and since a,,=10 (mod 25)
there is no solution n<=0 and the equation has exactly the solution given in H.

¥ —91=4% (1,0,9,16)=1 (H, p. 88). We have ¢*+99—16=0 and e=4-

-(—230*—167p+289)°. Even in this case we examine modulo 5 and here we
find =1 (mod 5), i.e. N=8. n=ag’+bg+c (mod 5) shall satisfy
a®—a*b+a’c+2abet+2ac+ 5 —b2c+c*=1 (mod 5).

We easily see that ¢ is no square and no cube and since % is divisible by 2
or 3 in all the cases with A>1, we must have A=1 and can consider the

73



0. HEMER, Notes on the Diophantine equation y* —k=x*

powers &". Examination modulo 5 gives =0 or 1 (mod 8) and modulo 2 we
get n even, i.e. #=0 (mod 8). Since &£=1 (mod 5) and az= —10 (mod 25) we
get no solution #=+0 and the equation has exactly the solution given in H.

Tke cases k<0 are {reated in passing in H, Ch. II, mom. 26. By carelessness I
bhave passed over a ‘trivial” solution of the reducible form corresponding to
the equation y®+ 56=2a®. This equation has exactly one solution (18, =76). The
omission in my tables of this solution and the third solution of y* — 37 =2z® has
been pointed out by D. H. LEamMER. He mentions a table by Rosinson in MTAC
(Math.tabls and other aids to computation), to which I have no access. Now I have
ealculated all the irreducible forms corresponding to the cases 0<< —k<100 by
using H, Theorems 4 or 5. As an example we take the casek = —53. The class

number k(K V —53) is 6. (3)=P,-9; and we find that (1), Pj and Ps® represent
the ideal classes of third degree in the group of ideal classes in K (V' —53). Since
PS=(B)=(26+V —53), the irreducible form comes from

9. (+y+V—53)=(26+V—53) (a+bV—53)

by the relation in H, p. 15, line 3 from below. In this relation » need not be
a prime. It is very easy to see that Theorem 5 gives no new equations in the
actual cases with & divisible by 3.

The tables in this article give the results of H corrected and completed in
some points. There are 22 undecided cases in the second table for k<0, where
no number N of solutions with y=>0 is stated. The forms which are not
definitely solved in those cases are given in the third table. All the cases
excluded in the two first tables, correspond to provably insoluble equations. The
last table gives the fundamental rings and units in the occurring cubic fields.
All the square-free numbers 1<%k<50 are considered and further every such
value 50 <% <100, corresponding to a soluble equation. A form (1, p, ¢, r) defines
the ring R (o) by F (g, —1)=0 and a form (a, b, ¢, d) the ring R(1, «, B), where
F(o,—a)=0 and F(—d,B)=0. D is the discriminant of the field.

H, Table 3, treating the equations %2+ 27 k=2® with —50 <k <50 (H, Ch. ITI),
is excluded here.

Solutions of the equations y* —k=12> with —100<k<100

kE N Solutions k N Solutions
1 3 (-1,0) (0,1), (2,3) 18 1 (7,19)
2 1 (-1,1) 19 1 (5,12)
3 1 (L,2) 22 1 (3,7)
4 1 (0,2 24 4 (=2, 4), (1, 5), (10, 32), (8158, 736844)
5 1 (-1,2) 25 1 (0,5
8 4 (—2,0), (1,3), (2,4), (46,312) 26 1 (—1,5)
9 5 (-2,1), (0,3), (3,6),(6,15),(40,253) | 27 1 (-3,0)
101 (-1,3) 28 2 (—3,1), (2,6)
12 2 (-2,2), (13,47 30 1 (19,83)
156 2 (1,4), (109, 1138) 31 1 (-3,2)
16 1 (0,4) 33 1 (—2,5)
17 8 (—2,3), (—1,4), (2,5), (4,9), (8,23), | 35 1 (1,6)
(43, 282), (52, 375), (5234, 378661) 36 4 (—3,3), (0,6), (4,10), (12, 42)
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Solutions

(—1,6), (3,8), (243, 3788)
(11, 37)
(6, 16)
(2,7)
(—3,4)
(—2,6),
(1,7)
(0, 7)
(—-L7)
(=3,5)
(3,9)
(9, 28)
(2, 8)

( - 2’ 7),
(—3,8),
(~4,0),
(_4» 1},
( —4, 2)’

(5,13)

(4,11), (7, 20)

(1, 8)

(0, 8, (8,24)

(—1, 8), (14, 53), (584, 14113)
(152, 1874)

Solutions

(1,0)

(3, 5)

(2,2), (5,11)

(2,1), (32,181)

(2, 0)

(3, 4), (15, 58)

(17, 70)

4, 7)

(3,3)

(7,18)

(6, 14)

(3.2)

(5, 10)

(3, 1), (35,207)

3,0)

(4, 6), (8, 22), (37, 225)
(11, 36)

(4, 5), (10,31),
(14, 52)

(5, 9)

(21, 96)

(6, 13), (12, 41), (63, 500)

(22, 103)
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Solutions

(1, 9), (4,12), (44, 292)

(= 4 5), (—2,9),
(—3,8)

(2, 10)

(3, 11)

(18, 77)

(7,21)

(1, 10)

(—4,6), (0,10), (5,15), (20,90),
(24, 118), (2660, 137190)

(10, 33), (55, 408)

Solutions

(4, 4), (28, 148)
(65, 524)

(9, 26), (29, 156)
(7,17

(4, 3), (56, 419)
(18, 76)

(4, 2), (136, 1586)

(4. 1) (568, 13537)

(99, 985)

(5,7), (101,1015)

(20, $9)

(13, 46)

(27, 140)

(7, 16)

(5, 6)

(6, 11)

(5, 5, (10, 30), (34, 198)

Forms which are not definitely trealed

—k Form (=1) Solutions x
7 (1,0, —6,2) (1, 0), (1,3) 2,32

15 (i, —=6,0,2) (1, 0) 4

18 1,0, —9,6) (1, 0) 3

23 (1,0, —9,4) (1,0) 3

25 (1, —6, —3,2) (1,0) 5

26 1,0, ~9,2) (1, 0) 3

28 (1,0, —12,12) (1,0), (1, 1) 4,8

39 (1,0, ~12, 10) (1,0), (-1, —-1), (3, 1) 4,10, 22

45 (1,12, —15,4) (1, 0) 21

47 (1, -6, —6,2) (1,0), (—-1,1) 6,12

53 (1,6, —15,6) (1,0), (1,2) 9,29
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0. HEMER, Notes on the Diophantine equation y* — k= «*

-k

55
60
61
63
71
72

Form (=1)

(1,0, =12, 6)
(1,0, ~12,4)
(1,0, — 15, 16)
(1,0, —12,2)
(1,6, —12,2)
(1, —6, —6,4)
(4,0, -9,3)

(1,12, —12,2)
(1, —9,6,4)

(1,0, —15,12)
(1, —6, —86,6)
(1,0, =15, 10)
(1,6, —18, 8)

Solutions x
(1,0), (1,2) 4, 56
{1, 0), (1,3) 4,136

, 5
(1, 0), (1, 6) 4, 568
(1,0) 8
(1,0) 6
(1, 0) 20
(1, 0) 7
(1, 0) 5
(1, 0) 6
1, 0) 5
(1, 0) 10

Occurring cubic fields (except for k=1, i.e. y> —[2=23%)

k -D
2 216
2.7 108- 98

108 - 98
108 - 98
3 324
5 135
6 648
7 756
7-3'  108-63
108 - 63
108 - 63
10 1080
11 108-11
13 351
14 108 - 14
15 108- 15
17 459
108 - 17
204
108 - 17
19 108-19
21 567
22 108-22
23 108-23
26 108-26
29 87
30 108-30
31 108-31
33 891
108 - 33
44
108 - 33
34 108-34
35 108-35
37 999
38 108-38
39 108-39

* £ not definitely proved to be fundamental.
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Fundamental ring and unit

1,0,3,2)

(1,0, —21, 42)

(3) 6’ 37 4)
(2,3,12,2)
(1,0, -3, 4)
(1,0,3,1) .
(2,0,3,2)
(2,0, -3,3)
(1’ 0’ 92 12)
(2,9,18,6)
(2,0,9,3)
(1,0,3,6)
(2,0,3,3)
(1,3,6,1)
(2,0, —3,4)
(l’ 0)
(1,0, -6,7)

(1,1,1,3)
(1,0, 6, 6)

(1,0, —15,24)

(1,0, —- 3, 8)

(1,0, —9, 14)

(2,0, —-3,5)
1, 0, 3, 10)
(1’ -L2, l)

(1, 0, — 57, 166)

{1,0,9,4)
(1,0,6,1)
(1, 0,6, 10)
1, -1,1,1)
(3,0,86,2)
(2,0, -3,6)

(1,0, —3,12)

(2,3,3,4)

(1,0, —33, 74)

(3,0,3.4)

e=—p*—p+1
€=30%+15p0-167

e=0*+p—17
=0

e=o—1
e=11a-68-23

£=36669 p*— 163545 ¢ + 140365
*e=1-(122a+54 f—891)°
£=—1602 15792 f+ 146521
e=—210*~119+49
£e=—-20+245-95

e=g

e=—-63a—8f+227
e=5-2¢

£=2p%-2p—-11

e=0-3

e=—p*+to+1

e=-p+1
e=-3602+2020-179
£e=—0*+p+3

£=1850*— 6090199
e=965a+136 3713

&= —2810*~651 g+1917
£=0

£=—1349 0>+ 6913 0 + 42293
£=2821 9>+ 109 ¢ — 203

e=g

e=—-0*-p+3
£=e
g=—a+1

*e=—1724 00— 678 f + 8431
‘= —1343 0% + 15347 0 — 31823
e=140u+ 26 f~473
£=5390%-1177 0 — 15971
*c =661 o+ 1863 - 10832



65

71
73

79

82
89

ARKIV FOR MATEMATIK., Bd 3 nr 3

-D Fundamental ring and unit
27 - 41 (3. -3, —3,4) e=20—-28+1
492 (1, -1,8,3) e=2p%-1
108 - 41 (2, 6,12, 3) e=a+f-11
108 - 41 (2, 6, -6, 3) e=—o+f+17
108 - 42 (2,3, 6) e=6a—5—23
516 (2,4,3,3) £=23—Ta
108 - 46 (2,6, —3,3) *c =244 o + 5380 - 8519
108 - 47 (2,0, —3,7) *e= 4838 o + 2736 f+ 7449
108 55 (Lo, — 27 56) *e=}-(250°—-97p-—323)°
27- 57 {1,0,6,5 £=20%+340—27
108 - 57 (1, 0,6, 14) e=0*~p—1
76 (1,1,3,1) e=0
108 - 57 (1,0, —12, 22) e=—0*+20+9
2765 (2, -3,3,3) £=280—14B+43
780 1, —2,0,6) e=5p*+3p—13
108 - 65 (1,0,12, 2) =1-6¢
108- 65 (1,12, 6, 2) c=80*—33p—17
108 - 71 (1,0, —15, 28) &£=562 p%— 1290 o — 5931
2773 (2,3, —3,3) e=8a+50f—101
876 (3,0, —2,2) e=4a~-76-1
108- 73 (1, 15,57, 1) £=¢
108-73 (1, 9,12, 8) e=1-2¢
948 1, —1,0,6) e=170°—450+29
108+ 79 (2, ~ 3,6, 6)
108 - 79 (2,0,9,5)
108- 179 (2,3, —6,7)
. 984 (2,1,0,3) £=33a+78-104
27-89 (1,0, ~ 6, 11) g=—100%+5090—59
1068 (3,0,2,2) e=—-3a+98-23
108 - 89 (1,9, —3,3) e=—20*+170+16
108 - 89 (1,0, 12, 10) e=p*+3p-3
108 - 91 (1,0, 9, 16) *e=1-(—23 02— 167 ¢+ 289)°
108 - 94 (1,0, — 9, 22) e=—361 02— 1310+ 5821
27-97 (1,6, —6,3) e=2p"—140+1
108 - 97 (2,12, 6, 3) e=a~—11
1164 (3, 6, — 14, 6) e=-9a+98+79
108 - 97 (2,18, 42, 3) £=200+3 125

Tryckt den 16 januari 1954

Uppsala 1954. Almqvist & Wiksells Boktryckeri AB
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