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Inclusion relations among methods of sulnmability com- 

pounded from given matrix methods 

B y  R A L P H  P A L M E R  A G N E W  

1. In t roduct ion.  I t  is our object to clarify and generalize Some theorems on 
inclusion among matr ix  methods of summabi l i ty  given by RUDBERG [1944], and 
to give applications involving the Ceshro, Abel, Euler, Borel, binary, and other  
methods. While RUDBERG gives no references, we observe tha t  some fundamenta l  
ideas underlying the paper of RUDBER~ and this one were used by HARDY and 
CHAPMAN [1911], JACOBSTttAL [1920] and KNOm" [1920]. Other references appear  
later. 

For  each r = 1, 2, 3, . . . ,  let A (r) be a t r iangular  matr ix  of elements ank (r) 
such tha t  

(1.01) a=k(r) > 0 , a ~ = > 0 ,  0 < k  < n ;  n = 0 ,  1 . . . .  

(1.02) lim an~ (r) = 0 

and 
n 

(1.03) ,~lim k=-~o a~e (r) = 1. 

k = 0, 1, 2 . . . .  

Then, for each r, A (r) determines a regular Silverman-Toeplitz t ransformat ion 

(1.1) a~(r) = ~ a~(r ) s~  
k = 0  

by means of which a given sequence s~ is evaluable to s if a~ (r) --> s as n -+ c~. 
Our terminology agrees with tha t  of HARDY [1949]. 

Let  the elements of a given sequence So, sl, s2 . . . .  be denoted by so(0 ), 
s 1 (0), s 2 (0) . . . . .  Le t  s o (1), sl (1), s 2 (1) . . . .  denote the A (1) t ransform of s o (0), 
s 1 (0), s2 (0) . . . .  ; let s o (2), s 1 (2), s2 (2) . . . .  denote the A 2 t ransform of s o (1), s 1 (1), 
s2(1) . . . .  ; and so on. Then, for each r = l ,  2, 3 . . . .  

(1.2) s~ (r) = k~o a~k (r) sk (r - -  1) n = 0, 1, 2 . . . . .  

The elements of these sequences form the double ~equence 
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(1.3) so (0), sl (0), s2 (0), s3 (0) . . . .  

So(l) ,  s1(1),  s2(1),  s3 (1) . . . .  

so (2), s~ (2), s~ (2), s3 (2) . . . .  

so (3), s~ (3), s2 (3), s~ (3) . . . .  

F o r  each r = l ,  2, 3 . . . . .  t he  e lements  of the  r - th  row below the  f irst  in (1.3) 
cons t i tu te  the t rans form of the  given sequence So, s~ . . . .  by  the  p roduc t  ma-  
t r i x  B ( r )  def ined by  

(1.4) B(r) = A(r)A (r-- 1) . . .  A ( 2 ) A  (1). 

Thus,  for each r = l ,  2, 3 . . . .  

(1.5) s~ (r) = ~ b ~  (r) s~ 
k = 0  

n=O,  1,2 . . . .  

where  the  numbers  b~k(r) are  the e lements  of the  m a t r i x  B(r). 
Suppose  now t h a t  s~ is a p a r t i c u l a r  sequence evaluable  to s by  one of the  

mat r ices  B( r ) ,  say  B(ro). Then the  r0-th row below the  f i rs t  in (1.3) is con- 
vergent  to  s, and  i t  follows from regu la r i ty  of the  mat r ices  Ar t h a t  each lower 
row is l ikewise convergent  to  s. This means,  roughly  speaking,  t h a t  s~ (r) is 
near  s whenever  r > r 0 and  n is large in compar ison  to  r. Hence,  as is well 
known and  easi ly shown, there  is a sequence R~ such t h a t  R~--> oo and the  
re la t ion  

(1.6) l im s~ (r~) -- s 
n . o o  

holds for each sequence r~ such t h a t  r 0 <_- r~ < R~ for each n. This implies  t h a t  
if s~ is a sequence evaluable  to  s by  one of .the mat r ices  B (r), t hen  there  is a 
sequence r0, r l  . . . .  such t h a t  r~ ~ oo and the  sequence s~ is eva luable  to s by  
the  m a t r i x  which t rans forms  sn into 

b (1.7) s~ (r~) = k~__0 ~ (r~) sk, n = 0, 1, 2 . . . . .  

Whi le  B (r0, r l  . . . .  ) and  bnk (to, r l  . . . .  ) are  na tu r a l  no ta t ions  for th is  m a t r i x  and  
i ts  elements,  we see t h a t  b,~(ro, r l , . . . ) =  b~ (rn). Hence  we shall  use the  
s impler  no ta t ions  B (r~) and  b~k (r~) for the  m a t r i x  and  i ts  elements.  We  observe 
t h a t  if r .  = r for each n, t hen  B(r~)= B(r). While  i t  could be p resumed t h a t  
different  sequences r~ would be required for different  sequences s~, we shall  see 
in Sect ion 3 t h a t  th is  is no t  so. I n  o ther  words, a single sequence r~ can be 
chosen in  such a way  t h a t  the  m a t r i x  B{r~) defines a me thod  of summab i l i t y  
which includes each one of the  methods  BI ,  B 2, . . . .  Moreover,  re la t ions  among 
some such methods  B(r~) will be obta ined.  We shall  somet imes  refer  to  a m a t r i x  
B(r~) ,  which resul ts  from combining mat r ices  A (r) and  selecting from mat r i ces  
B(r), as a compounded mat r ix .  
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2. Two examples. Before passing to constructive theorems and significant 
examples, we look briefly at two trivial examples. Suppose first that A (r) is, 
for each r = 1, 2, . . . ,  the identity matrix which transforms each sequence into 
itself. Then each row of the double sequence (1.3) is identical with the first row. 
I t  is therefore clear that  the transformation B(r~) defined by (1.7) is regular 

r p if and only if r~ -+ o0, and, moreover, that  two transformations B(rn) and B ( ~ )  
for which rn ~ c~ and r',~ --> c~ are equivalent to convergence and hence to 
each other. 

Our second trivial example involves the double sequence 

(2.1) 2, s 1(0), 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, . . .  

2, s 1(1), 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . .  

2,  81 (2) ,  0 ,  1, 0 ,  1, 0, 1, 0, 1, 0, 1 . . . .  

2, s~(3), 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 . . . .  

2, s~(4),0, 1,0,  1,0,  1,0,  1,0,  1 . . . .  

in which s 1 (0), sl (1) . . . .  is a given sequence of real numbers such t h a t -  2 = 
= s  l ( 0 ) < s l ( 1 ) < s ~ ( 2 ) <  . . . a n d s l ( r ) < - - l f o r e a c h r = 0 ,  1 ,2  . . . . .  For each 

= 2, 3, 4, . . .  the row containing sl(r) is identical with the row containing 
s l ( r - - 2 )  except that  s l ( r ) ~ s  1 ( r - 2 ) .  For each r = l ,  2, 3, . . . , l e t  A(r) b e a  
matrix which carries the row of (2.1) containing s l ( r - - 1 )  into the row con- 
taining sl (r) and which is not only regular but satisfies the stronger conditions 

(2.2) ank (r) > O, 

and 
n 

(2.3) e=~x ank (r) = 1 

0 < k < n ;  n = O ,  1 , 2  . . . .  

n = 0 , 1 , 2  . . . . .  

I t  is easy to see that  such matrices A (r) exist, but  are not uniquely determined 
by our specification of the sequences obtained by starting with the one partic- 
ular sequence given in the first row of (2.1). The service of this example, to 
which one may profitably refer occasionally, is to establish the truth of asser- 
tions such as the following. The hypotheses on A (r) given in Section 1, even 
when supplemented by the stronger hypotheses in (2.2)and (2.3), imply neither 

r ~ equivalence nor consistency of the two transformations B ( r ~ ) a n d  B ( n )  of 
the form (1.7) for which r~ and r~ are the sequences 1, 2, 1, 2, 1, 2 . . . .  and 
2, 3~ 2, 3, 2, 3, . . . .  

3. I n c l u s i o n  t h e o r e m s .  The theorems of this section are generalizations of 
Theorem 1 of RUDBERG [1944]. The matrices/ '1,  T~ . . . .  introduced at the top of 
page 2 of Rudberg's paper correspond to the matrices A(1), A(2), . . .  of this 
paper. Rudberg assumed, in the notation of this paper, tha t  ank > 0 when 

n 
0 < k = < n ;  and he needed the cond i t ionk~0a~k( r )= l ,  n = 0 ,  1, 2 , . . . ,  to 

obtain some of his equalities, i t  should be pointed out that  the matrices A (r) 
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and B(r ) ,  which are different  except  in ve ry  special  cases, are deno ted  by  the  
same symbol  TT in Rudbe rg ' s  pape r ;  accordingly  one cannot  i n t e rp re t  the  argu-  
men t s  and  resul ts  of t h a t  p a p e r ,  wi thou t  giving ve ry  close a t t en t i on  to  the  
detai ls .  

, T h e o r e m  3.1. There is a monotone increasing sequence R1, R2, . . .  such that 
R~ > 1, R~ ---> c~, and the matrix trans]ormation B(rn) de/ined by (1.7) is regular 
whenever 1 < r~ < Rn ~or each n. 

P r o o f .  Since the  m a t r i x  B(r) ,  defined by  (1.4), is the  p roduc t  of regular  
mat r ices  wi th  nonnega t ive  elements ,  i t  has  these same proper t ies .  L e t  

R R 

(3.11) F ( R ,  n ) =  ~ o  T~I bnk(r) R = 1, 2 . . . . .  

Then 

(3.12) 

Hence  
If  1 < rn < R~, then  

(3.13) 

Le t  

(3.14) 

Then 

(3.15) 

!imr162 F (R, n) = 0 R = 1, 2 . . . . .  

there  is a sequence R ) such t h a t  R'  n -+ oo and  F (R'~, n) ---> 0 as n -+ oo. 

l im b~, (r~) = 0 k = O, 1, 2 . . . . .  
n §  

l ira G(R, n) = O R =  l,  2, . . . . .  

Hence there  is a sequence R "  such t h a t  R "  = n -+ c~ and  G (R'~', n) ---> O. I f  1 < 
< rn < R "  then  

. 

(3.16) lira b~k (rn) 1. 

If ,  for each n, R~ is the  min imum of the  posi t ive  in tegers  R'~, R'~', R '  R "  n + l ~  n + l ~  

R ~ + 2 , . . . t h e n  1 < R 1  < R 2  < . . . ,  Rn-->c~,  and  bo th  (3.13) and  (3.16) hold 
when 1 < r~ < R~. Since b~k(r~) > 0, i t  follows t h a t  bnk(rn) is regular  when 
1 < r~ _-< R~ and Theorem 3.1 is proved.  

T h e o r e m  3.2. I]  r'~ and rn are sequences such that r~ is monotone increasing, 
i~ r; > r~ /or all su//iciently great n, and i/  the trans/ormations B(r~) and B(rn) 

r I are regular, then B ( ~ )  includes B (r~). 

P r o o f .  Since the  a l t e ra t ion  of a f in i te  set  of e lements  of the  sequence r~ 
has  no effect on B(r'n) eva luab i l i ty  of sequences,  we can and  shall  assume t h a t  
r~ _-> r~ for each n = 1, 2, 3, . . . .  Le t  n be a f ixed pos i t ive  integer.  We  make  
t e m p o r a r y  use of the  abbrev ia t ion  a = L [ql, q2 . . . . .  qv]  to  signify t h a t  a is a 
l inear  combinat ion ,  wi th  nonnegat ive  mul t ip l iers ,  of the  numbers  in b racke t s .  
Since r~ > r~, our hypotheses  on the mat r ices  A (r) imply  t h a t  
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(3.21) s,(r'~) = L [ s o ( r ' ~ - - l ) ,  s l ( r ' - - 1 ) , . . . ,  sn(r~ - -  t)] . . . .  

r = L[so(r~),  s l ( r ~ ) , . . . ,  s=( ~)j 

= L[so(r=), . . . ,  s~-l(r~)]  + c~s ,~(r~)  

where c , ,  > 0. Since rk > rk-1,  this reduction can be continued until  we obtain 
nonnegative coefficients c~k such tha t  

. n 

(3.22) s~(r~) = k ~ o C ~ S k ( r k )  n = 1, 2, 3 . . . . .  

Since c ~  -> 0, we can show tha t  this t ransformation is regular, and hence tha t  
B ( r ' )  includes B(r~) ,  by showing tha t  

(3.23) lira e~k = 0 k = 0, 1, 2 . . . . .  

and 
n 

(3.24) lim k~o c~k = 1. 

To prove (3.23), we use (3.22) and (1.7) to obtain 

n 

(3.25) s~(~) = ;-~1 c~sj(rs) 

n ] 

Since the matr ix  B (r~) which transforms s~ into sn (r ' )  is regular by hypothesis, 
it mus t  be true tha t  

n 

(3.251) lim ~ c~jbj~(r~) = O, k = O, 1, 2 . . . . .  

Since all terms appearing in these sums are nonnegative,  it follows tha t  

( 3 . 2 5 2 )  = 0 ,  k = 0 ,  1,  2 . . . . .  

Since the hypothesis t ha t  akk ( r ) >  0 for each k and r implies t ha t  bkk ( r ) >  0 
for each k and r, the conclusion (3.23) follows from (3.252). To prove (3.24), 
we observe from (1.7) t ha t  s~(r~) and s~(r'~) are the B(rn)  and B(r'~) trans- 
forms of the sequence sn for which sn = 1 when n = 0, ], 2 . . . . .  Since B (r=) 

r I and B ( ~ )  are regular by hypothesis,  it follows tha t  s=(r=)= 1 + s =  and 
r p s n ( r ' ) =  1 + e ~  where ~ - + 0  and s ~ - + 0  as n - > c ~ .  Use of (3.22) then gives 

(3.26) 
n 

1 + s~ = k=~o c~k(1 + ~k). 
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Since c~k > 0 and (3.23) holds, this implies (3.24) and Theorem 3.2 is proved. 
The fact that  the conclusion of Theorem 3.2 will  fail to be obtainable if we 

delete one or the other of the hypotheses that  B ( r ; ) a n d  B ( r n ) a r e  regular can 
be seen from the example of the unique sequence of matrices A (r) for which 
the double sequence (1.3) takes the form 

(3.27) So, sl, s2, s3, s~, s s , . . .  

So, 281, s2, s3, st, Ss, . . . 

80~ Sl~ S2~ 83~ 84~ 85,  �9 . . 

SO~ Sl~ S2,  2s3, s4, ss, . . .  

Here sn ( r ) =  s~ except that  s t ( r ) =  2st when r is odd. Another example is ob- 
tained by making s t ( r ) =  2st for each r > 0. if, however, the matrices A(r)  
satisfy the additional condition 

n 

(3.28) ~ = = 0, 1, ~) oa~k(r) 1 n -, . . .  

then the matrices B(r) satisfy the condition 

(3.281) ~ b~ k ( r )=  1 n=0.~ 1,-,9 . . . ;  
k = 0  

in this case the numbers G and sk in (3.26) are zero and we obtain the con- 
clusion of Theorem (3.2) without the hypothesis tha t  B(rn) is regular. 

T h e o r e m  3.3. There is a monotone increasing sequence R1, R~ . . . .  such that 
Rn >= 1, Rn -~ c<), and the matrix trans/ormation B (rn) includes each one o / B  (1), 
B(2), B(3) . . . .  whenever 1 <= r~ < Rn and r n  -~ C~. 

Proof .  With the sequence R1, R2 . . . .  determined as in Theorem 3.1, we 
obtain the desired conclusion with the aid of Theorem 3.2. 

T h e o r e m  3.4. The regular trans/ormations o~ the /orm B (r~) [or which rl <-- 
< r2 < ra <= . . .  constitute a consistent /amily.  

Proof .  I,et r~ and r'~ denote monotone increasing sequences of integers such 
that  B(r'~) and B ( r ' )  are regular. For each n, let r~ be the maximum of r~ 
and r" .  Then, for each n, one or the other of the two formulas 

r r (3.41) ank(r , )  = a~k(r ' ) ,  a~k(r~) = a~k( ~) 

holds when 0 < k < n. Thus regularity of B ( G )  and B(G ' )  implies that  of B(rn).  
Hence Theorem 3.2 implies tha t  B(r~) includes both B ( r ' )  and B(G' ) .  There- 
fore B(r'~) and BIr"~ ~ t must be consistent and Theorem 3.4 is proved. 

4. The condition a ~ k ( r ) >  O. We assumed in (1.01) that  a~k(r)>= 0 for each 
n, k. and r. If  this hypothesis were deleted and replaced by the hypothesis 
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k = 0  

then the matrices A(r) would still be regular, but  Theorem 3.1 and our de- 
ductions from it would fail. The following example provides proof. Let  T be the regu- 
lar t ransformation which transforms s~ into So, 2 s o - -  s~, 2 s~ - -  s2, 2 s2 - s3 . . . . .  Let  
A ( r ) =  T for each r =  1 ,2  . . . .  so tha t  B ( r ) = T  ~. I t  is readily verified that ,  
for this example, B(r,) is regular if and only if the sequence rn is bounded. 

5. Applicability o f  Theorem 3.4. Theorem 3.4 establishes existence of matr ix  
methods B(r=) of summabil i ty such tha t  B(r~) includes B(r)for each r =  
= 1, 2, 3 . . . . .  This does not  necessarily imply tha t  B (r~) includes A (r) for 
each r =  1, 2, . . . .  Suppose, for example, tha t  A~ and A2 are two inconsistent 
methods. Then no method can include both A~ and A~. The point is, of course, 
tha t  the relations B~A~ and B~A2A ~ do not  imply tha t  B ~ A  2. 

I t  therefore becomes of part icular  interest to know what  given sequences of 
matr ix  methods are representable in the form B(1), B(2), . . .  defined in Section 
1. The answer is obvious. A given sequence B ( ] ) , / } ( 2 )  . . . .  has the form if and 
only if (i) for each r = 1, 2, 3 . . . .  the matr ix  B (r) is a regular tr iangular matr ix  of 
nonnegative elements which has an inverse and (i i)the matrices .4 (1), zi ( 2 ) . . .  
defined by A ( 1 ) = / ~ ( 1 )  and 

(5.1) A(r)  = B ( r ) B - ~ ( r - -  1) r = 2, 3 , . . .  

are such that ,  for each r = 1, 2, . . . ,  A(r)  is a regular tr iangular matr ix  of 
nonnegative elements which has an inverse. When a given sequence B (r) has 
the properties (i) and (i i), put t ing  A ( r ) =  z] (r) gives B(r)= B(r). 

There is an impor tant  case in which the hypothesis  t ha t  

(5.2) B(r~)~A(r)A(r--1)  A(1),  r 1, '} 

implies t ha t  B(rn)~A(r) for each r = 1, 2 , . . . .  Suppose the matrices A(r), 
r = 1, 2 , . . .  satisfy the conditions of Section 1 and, in addition, consti tute a 
commutat ive  family in the sense tha t  A(r)A (s)= A (s) A (r) for each r, s = 
= l ,  2 . . . . .  Then 

(5.3) .4(r)A (r-- 1) . . . . 4  (1) = .4(1)A(2) . . .  A(r)mA(r) 

and accordingly (5.2) implies t ha t  B(r~)~A (r) for each r = 1, 2 . . . . .  
The Cess and Euler matrices are members of a large family of comnmtat ive  

matrices first studied by  HURWITZ and SILVERMAN [1917] and by HAUSDORF~ 
[1921].. 

6. Ceshro methods.  For  each positive number  :r let C (a) denote the Ces~ro 
matr ix  of order r which t ransforms a given sequence sn into 

8k. 
k=0 n - - I t  / n 
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If  ~1, ~2 . . . .  is a monotone increasing sequence of positive numbers, then for 
each fixed r, the matrices C(~r) and C(~r)C l(~r_~) are regular triangular 
matrices of nonnegative elements which have inverses; see HAUSDORFF [1921]. 
Hence our theorems apply to the case in which the matrices B(r )  are the 
Ces~ro matrices C (~) .  i t  is well known and easy to show that,  since the elements 
of Ces~ro matrices of positive order are positive and satisfy the strong condition 
in (3.281), the compounded Cess matr ix  C(~n) is regular if and only if its 
elements C,k(~n) are such that  lira C = k ( ~ n ) = 0  for each k and hence if 

n --~ r162 

and only if lira :~(n)/n = 0. The nonregular matr ix  C(~,) for which ~n = n, and 
a closely related regular matr ix  that  includes C(~) for each fixed positive 
~, has been studied by OBRECHKOFF [1926]; see also KOGBETLIANTZ [1931, page 
47]. RU~)BERG [1944, Th6or6me I I I ]  compared methods of the form C(~n)wi th  
the Abel power series method. We turn to this subject here because the stated 
results are supported by inadequate arguments and some are false. 

A series E u ,  of complex terms is evaluable to s by the Abe l  po.wer series 
method P if the series in 

(6.02) P ( x )  = ~ xkuk  
k = 0  

converges when 0 < x < l  to a function P(x)  such that  P ( x ) - ~ s  as x ~ l .  
T h e o r e m  6. t .  I~ 2 u ~  is a series such that Y~x kuk converges when 0 < x 

< 1, and i] xl, x 2 . . . .  is a sequence such that 0 < xn < 1 and x~ ---> l, then there 
is a regular compounded Cesdro matrix C(a=) such that 

(6.11) lim I (rn (~n) - -  P (xv(n)) [ = 0 
n - - ~  

where p(1), p(2) . . . .  is a monotone increasing sequence o/ positive integers which 
contains each positive integer and /or which p (n)-+ c~ as n - ~  c~. 

Let Eu= be a given series satisfying the hypotheses of the theorem. For 
each q = 1, 2, 3, . . .  let k(q) be the least integer greater  than q such that  

(6.12) ~ I x ~ u k [ < l .  
k = k (q) q 

The series-to-sequence form of the Cess transformation (6.01) is 

~ U k  
k=0~ n - - k  n 

The coefficient of uk in (6.13) is 

n ( n - - 1 ) ( n - - 2 )  . . .  ( n - - k  + l) 
(6.14) c.k (o~) = 

( n + ~ ) ( n +  ~ - - 1 ) ( n + ~ - - 2 )  . .  ( n +  ~ - - k +  1) 

Setting x = (1 + ~/'n) 2, we put  this in the form 

1 - 1  1 2 1 -  k - - 1  

(6.15) c.k (~) n n n xk" 
1 - -  x 1 --2~x 1 ( k - -  1)x 

n n n 
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With positive integers p(1), p(2) . . . .  to be determined below, 
the equivalent formulas 

(6.16) ~ = n  x--~(,)--I , x,<~) = 1 1 + 

we define con by 

and put the C(a~) transform of Y,u~ in the form 

o~ 

(6.17) a~(~n) ~ x ~ ~."n k io (n) U/c 
k = 0  

where ~ 0  = 1, 

(6.18) Ynk = 

1 2 k - - 1  
1 - - -  1 - - -  1 - - - -  

n n n 

xv <~) 2 xp (n) (k - -  1) xv <n) 
1 1 1 

n n n 

when 0 ~ k  < n, and y~k = 0 when k ~  n. Since 0 < ynk < 1, we find that 

(6.2) 
c~ 

I ~.  ( : : ) -  P( . . , .~ ) I  : ~ o l  ~ -  1[ * ~,`") l u~ I 

k (p~n)) X k oo 

k = O  k f k ( l ~ ( n ) )  

k 
Xp(n) ] Uk l * 

Since (6.12) shows that the last term of (6.2) is less than 1 /p (n ) ,  we can obtain 
the desired conclusion (6.11) by determining a sequence p(n)  of the required 
type such that  

k (p(n)) 1 
(6.21) v I rn~ a J ~  - -  , .  - . < . ) l u k  I < p(n)  kffiO 

for each sufficiently great n. Using (6.18), we see that  we can choose an integer 
n 1 ~  1 such that  (6.21) holds when p ( n ) =  1 and n > nl. Then choose n 2 ~  % 
such that (6.21) holds when p (n) = 2 and n > n 2. Continue the process to obtain 
an increasing sequence nj of integers such that  (6.21) holds when p ( n ) = / "  and 
n _ - n j .  On setting p(n) = 1  when l < n ~ n 2 ,  p(  n ) = 2 w h e n  n2=<-n~na,  and 
so on, we obtain the sequence p i  n) and complete the proof of Theorem 6.1. 
The impossibility of proving (6.11) with p ( n ) =  n follows from consideration of 
the series Zun for which un = 1, sn = n + 1 and P ( x )  = 1] (1 - -x ) .  In  this case 
an(a,) always lies between 0 and n + 1 while P(xn)  could be (n + 1) 2. 

T h e o r e m  6.3. / /  Z un is a series evaluable to s by the Abel power series 
method P,  then there is a regular compounded" Cesdro method C(o~n) by which the 
series is also evaluable to s. 

This follows immediately from Theorem 6.1, since (6.11) and the consequence 
lira P(x~<n)) = s of Abel evaluability imply that  lim a~ (~,) = s. The same argu- 
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ment shows that if the Abel transform P ( x )  exists over 0 < x < 1 but, as is 
true in the case of the example P ( x )  = sin ( 1/(1 x)}, different sequences xn 
give different limit points lira P(xn)  of P(x) ,  then each limit point must be 
the actual limit of ~n(~n) for some regular compounded Ces~ro matrix C(~n). 
Such a compounded Ces~ro matrix generates a method of summability not 
included by the Abel method, and two such matrices can generate inconsistent 
methods which, by Theorem 3.4, cannot both have the form C(~n) where ~ 
is monotone increasing. 

7. Euler methods. For each ~ for which 0 < ~ < 1, let E (~) denote the Euler 
matrix of order ~ which transforms a given sequence s, into 

(7.0~) E~(~)  = ~ : 0 ~ k !  

If  ~,, ~2 . . . .  is a monotone decreasing sequence of positive numbers for which 
~1 < 1 then, for each r the matrices E ( ~ )  and E(:c~)E-*(u~_I)are  regular 
triangular matrices which have inverses and nonnegative elements; for these and 
other facts relating to Euler transformations, see AGNEW [1944], references 
given there, and HARDY [1949]. Hence the theorems of Section 3 apply to 
cases in which the matrices B(r)  are the matrices E(~.).  A compounded Euler 
matrix E(~n) with elements enk(an) is regular if and only if lira enk(~n)= 0 

n :-> go  

for each k and hence if and only if lira nun = c<~. RUDBERG [1944, Th6or~me 
IV] compared methods E ( 1 / n )  with the Borel exponential method B*. 

A series Z un with partial sums sn is evaluable to s* by the Borel exponential 
method B* if the series in 

z X 

(7.02) a* (x) = e- ~0: k.v s~ 

converges for each x > 0 and a* (x)-+ s* as x-+ c~. 

T h e o r e m  7.1. I /  so, s 1 . . . .  is a sequence such that E (xk /k  1)sk converges ]or 
each x > O and i] xl , x2 , . . .  is a sequence such that xn > O and xn --+ o% then 
there is a regular compounded Euler matrix E(~n) such that 

(7.11) l i r a  I E. (~n) - (r* (X,<n)) I = 0 
n .--~ go  

where p(1), p(2) . . . .  is a monotone increasing sequence o] positive integers which 
contains each positive integer and ]or which p ( n ) ~  go as n - ~  c~. 

Let So, s,, . . .  be a given sequence satisfying the hypotheses of the theorem. 
For each q = 1, 2, 3 . . . .  let k(q) be the least integer greater than q such that  

(7.12) I 
k = ~ <q> q 

Choose n, such that  xl < n ,  and x~ < nl. Let ~n = p(n) = 1 when 1 < n _-< hi. 
With positive integers p (n, + 1), p (hi +7 2) . . .  to be determined below to satisfy 
the conditions of the theorem and the additional condition 
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(7.13) xp(~)/n < 1, 

we define ~ when n > n~ by  the equiva len t  fornmlas  

n _--> n l ,  

(7.14) ~= = x,~n)/n, xp(n) = n ~  

and pu t  the  E ( ~ )  t ransform of sn in the  form 

k•= 
Xp (n) 

(7.15) E ,  (an) = an k (1 - -  a=)" -kSk  = ~V~k k!- 
0 k = 0  

where 

(7.16) ~f=k : (n ~ k)! n ~ 

Sk 

when O _ - < k - < n  and ~v .k=  0 when k > n .  Since 0 <y~z_<- 1 and O_-_exp-  
�9 [ -  xv(~)] =< 1, we f ind t h a t  when n > n~ 

k (p (n)) X k 

(7.17) IE,~(~Zn--a*(Xp(n))l <= y_, IWnk--e- ,(n) I "(n) 

v(n) + ~ xk 
k=k(p(n)) k! ISk]" 

Since (7.12) shows t h a t  the  las t  t e rm  of (7.17) is less t han  1 / ( p - - n ) ,  we cart 
" o b t a i n  the  desired conclusion (7.11) by  de te rmin ing  a sequence p ( n ) o f  t he  

r equ i red  t ype  such t h a t  

k (p (n)) /c 1 
(7.18) Z .x,(n) - - e -  , ( " ) I - - - [ s k i <  --  

k=o lc ! p (n) 

for each suff icient ly g rea t  n. I t  fo l lows . f rom (7.16) t h a t  if p(n) has a cons tan t  
value  q, t hen  (7.18) will hold for all  suff icient ly g rea t  values  of n. We  have 
a l r eady  defined nl .  When  j > 1 and nj_ 1 has been defined,  choose nj such t h a t  
n j _ ~ < n j ,  x k < n j  when k = 1, 2 . . . .  , i, and  such t h a t  (7.13) holds when n > nj 
and  p ( n ) =  j - - 1 .  I n  t e rms  of n l ,  n~, n 3 . . . .  we now comple te  the  defini- 
t ion  of the  sequence p (n) b y  se t t ing  p (n) = 1 when nl < n < n~ and,  for each 
i = 2, 3, : . . ,  p(n) = j - - 1  when nj < n < n j + l .  Then p(n) = 1 when 1 < n < n  3 
and (7.18) holds when n _-> n2. To show t h a t  (7.13) holds, we observe t h a t  if 
nl  < n < m .  then  x v ( , ) = x  l < n l  ~ n  and if j > 2  and ni < n < n j + l  then  

(7.19) x v ( n )  = x j - 1  --< 7/ ; / -1 < n /  <: n .  

I t  is now obvious t h a t  the  sequences p (n) and  ~ have  all of the  requi red  prop-  
ert ies and  Theorem 7.1 is proved.  

Theorem 7.2. I[  Z u ,  is a series with partial sums s,  which is evaluable to 
s by the Borel exponential method B*, then there is a regular compounded Euler 
method E(ctn) by which the series is also evaluable to s. 
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This follows from Theorem 7.1 in the same way tha t  Theorem 6.3 follows 
from Theorem 6.1. Obvious modifications of the remarks following Theorem 6.3 
apply  here. 

8. The binary,  Euler ,  and Borel methods.  Corresponding to each :r in the 
interval  0 < ~ < 1, let T(:r denote the matr ix  of the b i n a r y  t ransformation of 
order ~ which transforms a given sequence So, s~, s2, . . .  into the sequence 

(8.1) so,  (1 --zr  o + ~81, (1 - - ~ ) s  1 + ~s e . . . . .  

The t ransformations T(a )  were used by HuRwITz [1926] to illustrate the theory  
of Tauberian theorems. The special t ransformation T(1 /2 )  and its powers are 
among  those studied by SILVERMAN and Szasz [1944] and by  SZASZ [1944]. The 
matrices T (:r satisfy the conditions imposed upon the matrices A (r) in Section 
l. Hence we m a y  set A (r) = T (:r for each r = l, 2 . . . .  and obtain B (r) = T~(:r 
for each r = l, 2, . . . .  

For  each r = 0 ,  1 , 2 , . . . , l e t  the t ransform of a given sequence s~ by the 
mat r ix  T~(:r be denoted by 

(8.2) s o (r, :r sl (r, ~), s 2 (r, ~) . . . .  ; 

in particular, s~ (0, ~) = s~. To facilitate the writing of formulas, let s~ (r, :r 
be defined for negative integer values of n by the formulas 

(8.3) sn(r ,  or = s  o(r, ~r = s  o , n = - - 1 ,  - - 2 ,  - - 3  . . . . . .  

Then, for each n = 0, • 1, q- 2 . . . .  , 

s~ (1, :r = (1 - -  ~r 1 + 0~s, (8.41) 

and 

(8.42) s , (2;  ~) = ( 1 - - ~ ) s , _ i ( 1 ,  ~) + a s ,  0 , ~) 

= ( 1 - - a ) 2 s , _ 2  + 2 a ( 1 - - : r  + :r 

Thus when r = 1 and when r = 2 the formula 

(8.43) s , ( r , ~ ) = k = n _ r  ~ ( n - - k r ) r + k _ n (  I _ C r  ~ 

holds when n = 0, + 1, • 2 , . . . ;  and it is easily shown by induction tha t  
(8.43) holds for each r = 1, 2, 3 . . . . .  The double sequence whose rows consist 
of the t ransforms of s~ by the various powers of T (~) tu rn  out  to  be very inter- 
esting. In  particular, the sequence of elements on the main diagonal of the 
double sequence is generated by  the regular t ransformation by  which s~ is 
evaluable to s if sn (n, a ) -+  s where 

(8.5) n ( n ) : c k ( 1 - - ~ ) ' - ~ S k ;  
s~(n, :r k 
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and (8.5) is precisely the Euler transformation E (a) of order ~. I t  follows from 
Theorem 3.2 that  T(a)  and all of its powers are included by E(~). Using the 
very well known fact (see HARDY [1949, p. 183]) that  E (a) is included by B*, 
we conclude that  T(~) and all of its powers are included by B*. 

Therefore the extensive family F of regular transformations, whose elements 
comprise the totali ty of binary transformations T(~) for which 0 < ~ < 1 and 
the totali ty of positive integer powers of these, constitutes a consistent family 
F of transformations included by the Borel exponential method B*. 

9. The binary, Niirlund, and generalized Abel methods. Let T (~) be the binary 
transformation defined in Section 8. Each sequence Po, Pl, P2 . . . .  for which 
p > 0, p= =>_ 0, and p=/P~  ~ 0 where P~ = Po + Pl A- " ' "  -4- Pn, generates a NSrlund 
transformation N (pn) by which a sequence s= is evaluable to s if a= -+ s where 

(9.1) ~ = (pns  o + p ~ _ l s  1 + . . .  + poS~) /P~,  n = O, 1 . . . . .  

:For each ~ = 1, 2, 3 . . . .  the transform s= (r, ~) of a sequence s~ by the trans- 
formation T r (~) is almost identical with the transform an (r, ~) by the N6rlund 
transformation N ( p = ( r ,  ~)) generated by the sequence po(r, o~), p l ( r ,  ~) . . . .  for 
which 

/ \ 

(9.2) 

and p = ( r , ~ ) = 0  when n > r ;  in fact (8.43) shows that  

(9 .3)  s~ (r, ~ ) =  ~= (r, ~) n -> r. 

I t  follows from this that  T (r) (:r is equivalent to N ( p =  (r, ~)), and using results 
of Section 8 we see that  such a N5rlund method is included by the Euler 
method E ( r )  an d hence is also included by the Bore] exponential  method B*. 

Let  a series Y u~ with partial sums s= be called evaluable to a by the gener- 
alized Abel method P* if the series in 

or 

(9.4) / (z) = (1 - -  Z)k~oZk SZ 

has a positive radius of convergence R and the function / ( z )  defined by (9.4) 
when [z I <  R determines, by analytic extension along radial lines emanating 
from the origin, a function / (z) such that  / (z) -+ a as z -+ 1 over the real inter- 
val 0 < z < 1. I t  was shown by SILVERMAN and TAMARKIN [1929] and by TA- 
~naKi~ [1932] that  if N (p,) is regular and ~,  > 0 then N (p=) c P* ; and the same 
proof shows tha t  if N ( p ~ )  is regular, p 0 > 0 ,  and p , > 0 ,  then N ( p , ) c P * .  
Therefore T(~) and all of its powers are included in P*. This shows again tha t  
the family F, consisting of the binary transformations T (~) for which 0 < ~ < 1 
and their powers, constitute a consistent family. 

I t  is not true that  the ordinary Abel method P includes all members of F. 
For example, it is easy to show that  the sequence s~ = ( - - 2 ) "  is evaluable T (2/3) 
to 0; but in this case the series E z ~ s= has radius of convergence 1/2 and therefore 
the sequence is nonevaluable by the Abel method P. 

10. The symmetric binary method and its powers. Let T denote the symmetric 
binary method T(1/2)  which transforms a given sequence s o, s~, s2, . . .  into 
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(10.1) 1 
1 1 (81 • 82), 2 (82 ~- 83), . .. So, 2 (So + sl), 2 

SzAsz [1944] used this simple method T to illustrate many  points in the theory 
of summability. In particular, he found it very easy to show that  for each 
r = 0, l, 2, . . .  the alternating zeta series, the series in the right member of 
the familiar equation 

1 1 1 1 
(10.2) ( 1 - 2 ~ - 1 ) ~ ( s ) -  is 22 + 3~-4-~ + -.. 

is evaluable T T for each s = a + it in the half-plane a > - - r .  This simple 
result and Sections 8 and 9 show that  the alternating zeta series is evaluable 
over the entire plane by the Euler method E(1 /2)  and,hence also by the Borel 
exponential method B* and the generalized Abel power series method P*. 
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