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Inclusion relations among methods of summability com-

pounded from given matrix methods

By Rarpa PALMER AGNEW

1. Introduction. It is our object to clarify and generalize some theorems on
inclusion among matrix methods of summability given by RupBErc [1944], and
to give applications involving the Cesaro, Abel, Euler, Borel, binary, and other
methods. While RUDBERG gives no references, we observe that some fundamental
ideas underlying the paper of RupBERG and this one were used by Harpy and

CHapmaN [1911], JacoBsTHAL [1920] and Knopp [1920]. Other references appear
later.

For each r=1,2,3,...,let 4(r) be a triangular matrix of elements @, (r)
such that
(1.01) Gnic (1) Z 0, @np >0, 0=2k=n n=0,1,...
(1.02) rlll»nio ani (r) =0 k=0,1,2,...
and
(1.03) lim i i (r) = 1.

nr0 k=0

Then, for each 7, 4 (r) determines a regular Silverman-Toeplitz transformation
(1.1) o, (r) = kgo @n () 81

by means of which a given sequence s, is evaluable to s if ¢, (r) — s as n — oo,
Our terminology agrees with that of Harpy [1949].

Let the elements of a given sequence sy, s;, 8;, . .. be denoted by $,(0),
$,(0), 55(0), .... Let sy(1), s;(1), s5(1), ... denote the A4 (1) transform of s,(0),
8,(0), 8,(0), .. .; let 54(2), :(2), 52(2), . .. denote the 4, transform of s, (1), s, (1),

$,(1), ...; and so on. Then, for each r=1,2, 3, ...
(1.2) Sn(r) = kzo Gnr (r) 8 (r — 1) n=20,1,2....

The elements of these sequences form the double sequence
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R. P. AGNEW, Inclusion relations among methods of summability

(1.3) 50(0), 81 (0), 55 (0), 5(0), .

SO (1)7 81(1‘): 82 (1)7 83 (1); -

$0(2), 81(2), 52(2), 85(2), - .

50(3), 81(3), 82(3), 83(3), . -
For each r=1, 2, 3, ..., the elements of the r-th row below the first in (1.3)
constitute the transform of the given sequence s,, s;, ... by the product ma-
trix B(r) defined by
(1.4) Br)=AdA(rd@r—1)...4(2)4(1).
Thus, for each r =1,2 3, ... .
(1.5) sp{r) = 20 bax (1) sk n=0,1,2,...

, e

where the numbers b, (r) are the elements of the matrix B(r).

Suppose now that s, is a particular sequence evaluable to s by one of the
matrices B(r), say B(ry). Then the 7,-th row below the first in (1.3) is con-
vergent to s, and it follows from regularity of the matrices 4, that each lower
row is likewise convergent to s. This means, roughly speaking, that s,(r) is
near s whenever r > r, and # is large in comparison to r. Hence, as is well
known and easily shown, there is a sequence R, such that R, - co and the
relation

(1.6) ‘ Him s, (ra) = s

7>

holds for each sequence 7, such that ry < r, < R, for each ». This implies that
if s, is a sequence evaluable to s by one of the matrices B(r), then there is a
sequence 7,, 1, - . . such that r, > oo and the sequence s, is evaluable to s by

the matrix which transforms s, into

(1.7 $n(rn) = 2 bak (rs) Sk, n=20,1,2,....
k=0

While B(ry, 7, -..) and bax (79, 75, . . .) are natural notations for this matrix and

its elements, we see that b (79, 73, - . .} = bk (rn). Hence we shall use the

simpler notations B(r,) and by (r,) for the matrix and its elements. We observe
that if 7, = r for each m, then B(r,) = B(r). While it could be presumed that
different sequences r, would be required for different sequences s., we shall see
in Section 3 that this is not so. In other words, a single sequence 7, can be
chosen in such a way that the matrix B{r,) defines a method of summability
which includes each one of the methods B,, B,, .... Moreover, relations among
some such methods B(rs) will be obtained. We shall sometimes refer to a matrix
B(r,), which results from combining matrices 4 (r) and selecting from matrices
B(r), as a compounded matrix.
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2. Two examples. Before passing to constructive theorems and significant
examples, we look briefly at two trivial examples. Suppose first that 4 (r) is,
for each » =1, 2, ..., the identity matrix which transforms each sequence into
itself. Then each row of the double sequence (1.3) is identical with the first row.
It is therefore clear that the transformation B(r,) defined by (1.7) is regular
if and only if r, - oo, and, moreover, that two transformations B (r,) and B(rz)
for which 7, —~oco and 7, > oo are equivalent to convergence and hence to
each other.

Our second trivial example involves the double sequence
(2.1) 2, 8 (0
8 (1
> 81(2
,51(3
» 8 (4

),0,1,0,1,0,1,0,1,0,1, ...
),1,0,1,0,1,0,1,0,1,0, ...
),0,1,0,1,0,1,0,1,0,1, ...
)s
)s

(4]

1,0,1,0,1,0,1,0,1,0, ...
0,1,0,1,0,1,0,1,0,1, ...

(SN SR O

in which s, (0), s;(1), ...1s a given sequence of real numbers such that —2 =
=5(0)<s(1)<s5(2)<...and s, (r) << —1foreachr =0, 1,2, .... For each
r=2,34,... the row containing s,(r) is identical with the row containing
$;1(r — 2) except that s;(r) % s, (r —2). For each r=1,2,3,...,let A(r) bea
matrix which carries the row of (2.1) containing s, (r —1) into the row con-
taining s, (r) and which is not only regular but satisfies the stronger conditions

(2.2) anr (1) >0, 0zk=n;n=0,1,2,...
and
(2.3) kzl ani (r) = 1 n=012....

It is easy to see that such matrices 4 (r) exist, but are not uniquely determined
by our specification of the sequences obtained by starting with the one partic-
ular sequence given in the first row of (2.1). The service of this example, to
which one may profitably refer occasionally, is to establish the truth of asser-
tions such as the following. The hypotheses on A4 (r) given in Section 1, even
when supplemented by the stronger hypotheses in (2.2) and (2.3), imply neither
equivalence nor consistency of the two transformations B(r,) and B(r3) of
the form (1.7) for which 7, and 7, are the sequences 1, 2,1,2,1,2,... and
2,3,2,32,3,....

3. Inclusion theorems. The theorems of this section are generalizations of
Theorem 1 of RubBERG [1944]. The matrices 7, T}, . . . introduced at the top of
page 2 of Rudberg’s paper correspond to the matrices 4 (1), 4(2), ... of this
paper. Rudberg assumed, in the notation of this paper, that @, > 0 when

n

0=k=n; and he needed the condition > anc(r)=1, n=10,1,2, ..., to
k=0
obtain some of his equalities. It should be pointed out that the matrices 4 (r)
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and B(r), which are different except in very special cases, are denoted by the
same symbol 7, in Rudberg’s paper; accordingly one cannot interpret the argu-
ments and results of that paper - without giving very close attention to the
details.

. Theorem 3.1. There is a monotone increasing sequence By, B,, ... such that
R,z 1, R, > oo, and the matriz transformation B(r,) defined by (1.7) is regular
whenever 1 £ r, = R, for each n.

Proof. Since the matrix B{(r), defined by (1.4), is the product of regular
matrices with nonnegative elements, it has these same properties. Let

R R
(8.11) F(R, n) = kgo Zl bu(r) R=1,2,....
Then
(3.12) lim F(R, n) =0 R=1,2,....

n-> o0

Hence there is a sequence R, such that Rj - oo and F(R,, n) >0 as n — co.
If 127, £R;, then

(3.13) lim b (rn) = 0 k=0,1,2,....
Let o

(3.14) G(R, n) = ERI 3 bt —1].

Then

(3.15) lim G(R, n) =0 R=1,2 ....

Hence there is a sequence R. such that R; —oco and G(R,,n)—~0. If 1 =
=7, £ R, then

(3.16) lim kﬁ Bk () = 1.
0

n>00 K=

’

If, for each n, R, is the minimum of the positive integers Ry, Ry, Rn .1, Ry's1,

wig, ...then 1SR SR,=< ..., R,— oo, and both (3.13) and (3.16) hold
when 1 =7, £ R,. Since b,x(rs) 20, it follows that b, (rn) is regular when
1 =27, £ R, and Theorem 3.1 is proved.

Theorem 3.2. If r, and r, are sequences such that r, s monotone increasing,
if 1, = rn for all sufficiently great n, and if the transformations B (ry) and B(rx)
are regular, then B(ry) includes B(r,).

Proof. Since the alteration of a finite set of elements of the sequence 77,
has no effect on B(ry) evaluability of sequences, we can and shall assume that
rn Z r, for each n=1,2,3,.... Let n be a fixed positive integer. We make
temporary use of the abbreviation o = Lfq, q,, . - ., g»} to signify that o is a
linear combination, with nonnegative multipliers, of the numbers in brackets.
Since 5, = r,, our hypotheses on the matrices 4 (r) imply that
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(3.21) Sulrn) = L[sog(rn—1), s;(rn—1), ..., sp (b —1)] = -
= L[so(*a), 81 (Ts)s -« ., Sa (7] ’
= L[so(r,,), ey Sn—1 ()] F CanSn(ra)

where ¢, > 0. Since 7, 2 7, _1, this reduction can be continued until we obtain
nonnegative coefficients ¢, such that

(3.22) Z Cnk Sk (T) n=1,23....

Since ¢.x 2 0, we can show that this transformation is regular, and hence that
B(ry) includes B(r,), by showing that

(3.23) L ' lim enz =0 £E=0,1,2, ....
and
(3.24) lim - Z ek = 1.

nroc k=0

To prove (3.23), we use (3.22) and (1.7) to obtain

s

(3.25) $n(r2) = 2 cn;8i(r3)

7
7
Z bix(r:)s

2 [ bik (71)]3k~

Since the matrix B(r;) which transforms sy into s, (r7.) is regular by hypothesis,
it must be true that

1

nMa

R‘

||M:1

(3.251) lim 2 Caibix (1) = £=0,1,2,....

n+rw j=
Since all terms appearing in these sums are nonnegative, it follows that

(3252) lim anbkk(fk) = 0, k= 0, 1, 2, e e

Since the hypothesis that axr(r) > 0 for each % and r implies that by (r) >0
for each £ and 7, the conclusion (3.23) follows from (3.252). To prove (3.24),
we observe from (1.7) that s, (r,) and s,{r,) are the B(rs) and B(ry) trans-
forms of the sequence s, for which s, =1 when »=0,1,2,.... Since B(rs)
and B(r;) are regular by hypothesis, it follows that Sn (rn) =1+¢& and
$a(rn) =1+ e, where &, >0 and &, >0 as n—>co. Use of (3.22) then gives

(3.26) 1+e¢,= 2 eni (1 + &)
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Since cpx 2 0 and (3.23) holds, this implies (3.24) and Theorem 3.2 is proved.

The fact that the conclusion of Theorem 3.2 will fail to be obtainable if we
delete one or the other of the hypotheses that B(r,) and B(r,) are regular can
be seen from the example of the unique sequence of matrices A (r) for which
the double sequence (1.3) takes the form

(3.27) S, 815 Sa, S3, Sy, S5. - e«
Sy, 281, So, Sz, 84, Szs - .
SO) 815 825 835 s4: 855 + - -

3
Sy S15 Sas 283, S4, 855 - - -

Here s,(r) = s, except that s, (r) = 2s, when r is odd. Another example is ob-
tained by making s, (r) = 25, for each r > 0. If, however, the matrices 4 (r)
satisfy the additional condition ’

(3.28) > ani(r) =1 n=0,1,2, ...
K=o
then the matrices B(r) satisfy the condition
(3.281) S bk (r)=1 n=0,1,2 ...
K=o

in this case the numbers &, and e in (3.26) are zero and we obtain the con-
clusion of Theorem (3.2) without the hypothesis that B(r,) is regular.

Theorem 3.3. There 1s a monotone increasing sequence Ry, R,, ... such that
R,z 1, R, - 0o, and the matriz transformation B(r,) includes each one of B (1),
B(2), B(3), ... whenever 1 = r, = R, and r, - 0.

Prooi. With the sequence R,, R,, ... determined as in Theorem 3.1, we
obtain the desired conclusion with the aid of Theorem 3.2.

Theorem 3.4. The regular transformations of the form B(r,) for which r, =
Sry =1y = ... constitute a consistent family.

Proof. Let 7, and ¢, denote monotone increasing sequences of integers such
that B(r,) and B(ry) are regular. For each n, let 7, be the maximum of 7,
and 7;'. Then, for each n, one or the other of the two formulas

(3.41) Gnrc(Ta) = @k (rh), Gni(ra) = Gni (rh)
holds when 0 = k = n. Thus regularity of B(ry) and B (r7) implies that of B(r.).
Hence Theorem 3.2 implies that B(r,) includes both B(r;) and B(r;). There-

fore B(rz) and B(r;) must be consistent and Theorem 3.4 is proved.

4. The condition a,(r) 2 0. We assumed in (1.01) that a,x(r) = 0 for each
n, k. and 7. If this hypothesis were deleted and replaced by the hypothesis

366



ARKIV FOR MATEMATIK. Bd 2 nr 17

n

2 lane(n)|> M,
o

then the matrices 4 (r) would still be regular, but Theorem 3.1 and our de-
ductions from it would fail. The following example provides proof. Let 7 be the regu-
lar transformation which transforms s, into s, 25y — 8;, 28; — 83, 285 — 83, . - .. Let
A(r)=1T for each r=1, 2, ... so that B(r) = T". It is readily verified that,
for this example, B(r,) is regular if and only if the sequence 7, is bounded.

5. Applicability of Theorem 3.4. Theorem 3.4 establishes existence of matrix
methods B(r,) of summability such that B(r,) includes B(r) for each r =
=1,2,3,.... This does not necessarily imply that B(r,) includes 4 (r) for
each =1, 2, .... Suppose, for example, that 4, and A4, are two inconsistent
methods. Then no method can include both 4; and 4,. The point is, of course,
that the relations B> 4, and B> 4,4, do not imply that B> 4,.

It therefore becomes of particular interest to know what given sequences of

matrix methods are representable in the form B(1), B(2), ... defined in Section
1. The answer is obvious. A given sequence B(1), B(2), ... has the form if and
only if (7) for each r = 1,2, 3, .. . the matrix B(r) is a regular triangular matrix of

nonnegative elements which has an inverse and (:7) the matrices 4 (1), 4@ ...
defined by 4 ( )= B( ) and

(5.1) : A@r)=BE)B'(r—1) r=23,...

are such that, for each » =1, 2, A~ (r) 1s a regular triangular matrix of
nonnegative elements which has an inverse. When a given sequence j?(r) has
the properties () and (i), putting 4 (r) = A(r) gives B(r) = B(r).

There is an important case in which the hypothesis that

5.2) Bra)2A4@)A(r—1)... A1), r=1,2...
implies that B(r,)D2 A4 (r) for each r=1,2,.... Suppose the matrices 4 (r),
r=1,2, ... satisfy the conditions of Section 1 and, in addition, constitute a

commutative family in the sense that A(r)A(s) = A(s)A(r) for each r, s =
=1,2,.... Then

(5.3) ‘ﬂﬁAu~U.”Aa)=Aapum”.AMDAO)

and accordingly (5.2) implies that B(r,)> 4 (r) for each r =1, 2,

The Cesiro and Euler matrices are members of a large famlly of commutatlve
matrices first studied by Hurwirz and SiLverman [1917] and by HAUSDORFF
[1921]..

6..Cesinro methods. For each positive number «, let C(a«) denote the Cesaro
matrix of order « which transforms a given sequence s, into

(6.01) %wngin_iiz_d}“+“y¥b

/ n
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If a;, o5, ... 18 a monotone increasing sequence of positive numbers, then for
each fixed r, the matrices C(«;) and CO(x,)C '(x,-1) are regular triangular
matrices of nonnegative elements which have inverses; see HAUSDORFF [1921].
Hence our theorems applv to the case in which the matrices B(r) are the
Cesaro matrices C(«,). It is well known and easy to show that, since the elements
of Cesaro matrices of positive order are positive and satisfy the strong condition
in (3.281), the compounded Cesiro matrix C(x,) is regular if and only if its
elements Crx(x,) are such that lim C,x(x.) =0 for each % and hence if

n-»00

and only if lim « (n)/n = 0. The nonregular matrix C («,) for which &, = %, and
a closely related regular matrix that includes C(«) for each fixed positive
o, has been studied by OBrEcHKOFF [1926]; see also KoGgBETLIANTZ [1931, page
47]. RupBEre [1944, Théoréme IIT] compared methods of the form C(«.) with
the Abel power series method. We turn to this subject here because the stated
results are supported by inadequate arguments and some are false.

A series Zu, of complex terms is evaluable to s by the Abel power series
method P if the series in

(6.02) P) = kioxk e

converges when 0 <<x <1 to a function P(z) such that P(z)—>s as z— 1.
Theorem 6.1. If Su, is a series such that X a"ur converges when 0 <<z <<

<1, and if %, x,, ... 15 a sequence such that 0 <z, <1 and x, — 1, then there
is a regular compounded Cesdro matrix C(a,) such that
(6.11) Hm | 65 (0n) — P @pmy) | = 0
n—=>0c0
where p(1), p(2), ... 1s a monotone increasing sequence of positive integers which

contains each positive integer and for which p(n)—> oo as n — o,
Tet Xu, be a given series satisfying the hypotheses of the theorem. For
each ¢ =1, 2,3,...let k(g) be the least integer greater than ¢ such that

< 1
(6.12) > zhu] <=
E=k@ q
The series-to-sequence form of the Cesiro transformation (6.01) is
Lofn—k+ o) (n+a)?
(6.13) on (o) -kgo( "k ) ( N ) Uk

The coefficient of u; in (6.13) is

nin—1)(n—2)...(n—k+1)

614) (@) = Tt et a—2) . mt a—k+ 1)

Setting = (1 + «/n)" !, we put this in the form

1—i1—~% 1—’0—;—3
(6.15) Cnk (@) = —— "
1_§1_2m 1 (k— 1)z
n n n
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Witk positive integers p(1), »(2), ... to be determined below, we define a, by
the equivalent formulas .
1 An
(6.16) %= 1) 2y =1 (1 + 2
Ly (n) n

and put the C(«,) transform of Xu, in the form

(6.17) G (tn) =k§;ynk T (ny U
where yno =1,
T Al
(6.18) Vak = 1‘;*@@ L e : im’”
n n

when 0 <% < n, and y»x =0 when £>n. Since 0 < 9, =1, we find that

o0
(6.2) IGn(“n)_P(%(m)l = kZOIYnk‘l [x’;(n)|uk|
k(@ (n)) o0
= kgo Iynk —1 le;(n)lukl + k=kg(n))z§(n)|“k|~

Since (6.12) shows that the last term of (6.2) is less than 1/p(n), we can obtain
the desired conclusion (6.11) by determining a sequence p(n) of the required
type such that

k

)

(m) . 1
I')’nk _llxﬂn)lukl <

(6.21) 0 o)

|

k

for each sufficiently great n. Using (6.18), we see that we can choose an integer
n; > 1 such that (6.21) holds when p(n) =1 and n = n,. Then choose n, > n,
such that (6.21) holds when p(n) = 2 and »n = n,. Continue the process to obtain
an increasing sequence n; of integers such that (6.21) holds when p(n) = j and
n Z n;. On setting p(n) =1 when 1 = n<<m,, p(n) =2 when n, = n <ng, and
so on, we obtain the sequence p(n) and complete the proof of Theorem 6.1.
The impossibility of proving (6.11) with »(n) = n follows from consideration of
the series Xu, for which u, =1, s, =% + 1 and P(z) = 1/(1 —). In this case
on (®n) always lies between 0 and n + 1 while P (z,) could be (n + 1)%

Theorem 6.3. If Xu, is a series evaluable to s by the Abel power series
method P, then there is a reqular compounded: Cesiro method C(x.) by whick the
series is also evaluable to s.

This follows immediately from Theorem 6.1, since (6.11) and the consequence
lim P(x,m) = s of Abel evaluability imply that lim o, (x.) =$. The same argu-
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ment shows that if the Abel transform P (z) exists over 0 <<x <1 but, as is
true in the case of the example P(z) = sin {1/(1 —x)}, different sequences z,
give different limit points lim P(x,) of P(x), then each limit point must be
the actual limit of o, («,) for some regular compounded Cesaro matrix C(«x,).
Such a compounded Cesiro matrix generates a method of summability not
included by the Abel method, and two such matrices can generate inconsistent
methods which, by Theorem 3.4, cannot both have the form C(x,) where a,
1S monotone Increasing.

7. Euler methods. For each o for which 0 <« << 1, let B (x) denote the Euler
matrix of order o which transforms-a given sequence s, into

(7.01) Bola) = kzio(z)ak (1— 2)" ¥ 5.

If o, oy, ... 1s a monotone decreasing sequence of positive numbers for which
a; =1 then, for each r the matrices E () and E(«,)E~'(xr 1) are regular
triangular matrices which have inverses and nonnegative elements; for these and
other facts relating to Kuler transformations, see AcNEw [1944], references
given there, and Harpy [1949]. Hence the theorems of Section 3 apply to
cases in which the matrices B(r) are the matrices ¥ {(x,). A compounded Euler
matrix E(x,) with elements e,y («,) is regular if and only if lim ex () = 0

for each %k and hence if and only if lim na, = co. RubpBERG [1944, Théoréme
IV] compared methods E(1/n) with the Borel exponential method B*.

A series Xu, with partial sums s, is evaluable to s* by the Borel exponential
method B* if the series in

(7.02) o*(z) = e “g %

converges for each z> 0 and ¢ (z) > s* as z — oo.

Theorem 7.1. If s,, s, ... 1s a sequence such that X (xx/k/!)s, converges for
each ©>0 and if x,, T,, ... s a sequence such that z, >0 and x, — oo, then
there s a regular compounded Euler matriz E(x,) such that

(7.11) lim | B, (#) ~ 0" (25 m) | = 0

where p(1), p(2), ... s a monotone increasing sequence of positive integers which
contains each posztwe mteger and for which p(n)—> oo as n—> oo,

Let s,, 81, ... be a given sequence satisfying the hypotheses of the theorem.
For each ¢ = 1 2,3, ...let k(g) be the least integer greater than g such that

o0

(7.12) S @lklsl <.

k=k(®

Choose %, such that =, <<n, and 2, <<n;. Let an = p(n) =1 when 1 = n £ n,.
With positive integers p(n, + 1), p(n, + 2) . .. to be determined below to satisfy
the conditions of the theorem and the additional condition
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(7.13) Tpmyln <1, n = Ny,
we define «, when n>n, by the equivalent formulas
(7.14) An = Tpimy| My Tpemy = Mt

and put the E(«,) transform of s, in the form

(7,15) En ((Zn) = z (’Z) OLZ (1 - O(n) Sk: - z ’lpnkx;::('n) Sk
E=0\F
where
LY PR )
(7.16) ‘ Yuk = (1 n )

when 0 =%k =<#n and y,, =0 when k>n. Since 0 Sy, =1 and 0 < exp -
- [—%ym] =1, we find that when n>n,

k(p(ny

(7.17) | En (tn — 0" (2p ) |

1A

[ — e 2| 221, |
Ynr — € ! Sk

Qif;(n)l kl

_i.<

Kk =k(p@n) k!

Since (7.12) shows that the last term of (7.17) is less than 1/(p —n), we can
" obtain the desired conclusion (7.11) by determining a sequence p(n) of the
required type such that

18 k(p(n) Z’; ™ 1
o Tpmy | 22 T
(7 ) kgo lwﬂk e r )l A |8k|<p(n)

for each sufficiently great n. It follows from (7.16) that if p(n) has a constant
value ¢, then (7.18) will hold for all sufficiently great values of n. We have
already defined #,. When j>1 and m;_, has been defined, choose »; such that
n-1<<m, o <<m; when k=1,2, ..., 4, and such that (7.13) holds when n = »;
and p(n)=4j—1. In terms of n,, n,, ng, ... we now complete the defini-
tion of the sequence p(n) by setting p(n) =1 when n, £ n <n, and, for each
1=2,3,...,p(n)=7—1 when n; £n<m;;;. Then p(n) =1 when 1 = n<n,
and (7.18) holds when # = n,. To show that (7.13) holds, we observe that if
ny = n<<ny, then &, =2, <<n, = and if j 22 and n; £ n<n;;1 then

(719) Ip(n)zfl'j_lé’ﬂ-j_1<nj§”.

It is now obvious that the sequences p(n) and a, have all of the required prop-
erties and Theorem 7.1 is proved.

Theorem 7.2. If Xu, is a series with pamal sums s, which is evaluable to
s by the Borel exponential method B*, then there is a regular compounded Euler
method E (x,) by which the series is also evaluable to s.
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This follows from Theorem 7.1 in the same way that Theorem 6.3 follows
from Theorem 6.1. Obvious modifications of the remarks following Theorem 6.3
apply here,

8. The binary, Euler, and Borel methods. Corresponding to each « in the
interval 0 <a <1, let T(x) denote the matrix of the binary transformation of
order o« which transforms a given sequence s, $;, S,, ... into the sequence

(8.1) So, (1 —a)sg + sy, (1 —o)sy + sy, .. ..

The transformations 7 (x) were used by Hurwirz [1926] to illustrate the theory
of Tauberian theorems. The special transformation 7'(1/2) and its powers are
among those studied by SILVERMAN and Szasz [1944] and by Szasz [1944]. The
matrices T («) satisfy the conditions imposed upon the matrices 4 (r) in Section
1. Hence we may set 4 (r) = T (x) for each r =1, 2, ... and obtain B(r) = T"(«)
for each r =1, 2, . ...

For each r=0,1, 2, ..., let the transform of a given sequence s, by the
matrix 17 () be denoted by

(8.2) So(r, &), 8;(r, ), So(r, o), .. .5

in particular, s, (0, ) =s,. To facilitate the writing of formulas, let s, (r, x)
be defined for negative integer values of n by the formulas

(8.3) sulr, @) = so(r, ) = 85, m=—1,—2 —3 ...

Then, for each n =10, +1, =2,...,

(8.41) sn(l, a) = (1 —a)sp_1 + S,
and _
(8.42) $n(2y o) = (1 —a)sp-1 (1, ) + asa(l, @)

- (1”—&)26'”_2 + 20((1*1)37;_1 + OLZ-S'n.

Thus when r =1 and when r = 2 the formula

(8.43) sp(r, o) = i ( rk)a”"‘"(l—oc)"‘ksk

k=n—r \R

holds when n =0, 1, +2, ...; and it is easily shown by induction that
(8.43) holds for each r=1,2,3,.... The double sequence whose rows consist
of the transforms of s, by the various powers of T («) turn out to be very inter-
esting. In particular, the sequence of elements on the main diagonal of the
double sequence is generated by the regular transformation by which s, is
evaluable to s if s,(n, &) >s where

(8.5) Sn (n, @) =kf (2) o (1 — )" * i3
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and (8.5) is precisely the Euler transformation E (x) of order «. It follows from
Theorem 3.2 that T'(«) and all of its powers are included by E («). Using the
very well known fact (see Harpy [1949, p. 183]) that E(«) is included by B*,
we conclude that 7' () and all of its powers are included by B*.

Therefore the extensive family F of regular transformations, whose elements
comprise the totality of binary transformations 7' («) for which 0 <« <1 and
the totality of positive integer powers of these, constitutes a consistent family
F of transformations included by the Borel exponential method B*.

9. The binary, Norlund, and generalized Abel methods. Let 7' («) be the binary

transformation defined in Section 8. Each sequence Dos P1> P2 - - - for which
p>0, p, 2 0, and p,/P, — 0 where P, = p, -+ Py + -+ Pn, generates a Noérlund
transformatlon N (pn) by which a sequence s, is evaluable to s if o, — s where
(9.1) On = (PnSg + Du-18 + - + Py$u)/ Pn, n=0,1,....
For each r = 1, 2, 3, ... the transform s, (r, «) of a sequence s, by the trans-
formation 77 (x) is almost identical with the transform @, (r, «) by the Nérlund
transformation N (p.(r, a)) generated by the sequence p,(r, &), o, (7, a), ... for
which
(9.2) PDu(r, 2} = (;)a"”(l—a)", n=20,1,...,r

and p,(r, «) = 0 when n > r; in fact (8.43) shows that
9.3) ‘ Sn (7, ) = o (r, @) ,  omzr

It follows from this that 7 (a) is equivalent to N (p.(r, «)), and using results
of Section 8 we see that such a Norlund method is included by the Euler
method % (r ) and hence is also included by the Borel exponential method B*.
 Let a series X u, with partial sums s, be called evaluable to o by the gener-
ahzed Abel method P* if the series in

(9.4) f(z) =(1—2) 2

has -a positive radius of convergence B and the function [(z) defined by (9.4)
when |z] <R determines, by analytic extension along radial lines emanating
from the origin, a function f(z) such that f(z) > ¢ as z— 1 over the real inter-
val 0 <z<<1. It was shown by SiLvierman and Tamarxin [1929] and by Ta-
MARKIN [1932] that if N (pa.) is regular and p, > 0 then N (p.) € P*; and the same
proof shows that if N (p,) is regular, p,>0, and p, = 0, then N (p.)cP".
Therefore 7T(x) and all of its powers are included in P*. This shows again that
the family F, consisting of the binary transformations 7 («) for which 0 <a <1
and their powers, constitute a consistent family.

It is not true that the ordinary Abel method P includes all members of F.
For example, it is easy to show that the sequence s, = (— 2)" is evaluable 7'(2/3)
to 0; but in this case the series ¥ 2" s, has radius of convergence 1/2 and therefore
the sequence is nonevaluable by the Abel method P.

10. The symmetric binary method and its powers. Let T denote the symmetnc
binary method 7'(1/2) which transforms a given sequence sy, 81, Sy, - . . into
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(sg + 83), .. ..

[ SRR

1 1
(101) SO:Q(SO + 31)7 9 (81 + 82), b

Szasz [1944] used this simple method 7' to illustrate many points in the theory
of summability. In particular, he found it very easy to show that for each
r=0,1, 2, ... the alternating zeta series, the series in the right member of
the familiar equation

1 1 1 1
10.2 —9s-1 - = ==
( ) (1 2 )C(S) 13 23 + 33 45 +

is evaluable 77 for each s = ¢ + it in the half-plane ¢ > —r. This simple
result and Sections 8 and 9 show that the alternating zeta series is evaluable
over the entire plane by the Euler method E (1/2) and hence also by the Borel
exponential method B* and the generalized Abel power series method P*.

White Hall, Cornell University, Ithaca, New York, USA.
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