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Integral representation of certain linear functionals 
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w l.  Introduction 

Any addition to the already enormous literature on integral representations 
for abstract linear functionals on general function spaces must show good cause 
for its appearance. The justification submitted for the present paper consists of 
three assertions: (1) the exhibition of integral representations is carried out 
here under what must be truly minimal hypotheses; (2) the limitations inherent 
in any possible integral representation are clearly indicated by means of exam- 
ples; (3) the results obtained have applications in the study of certain topo- 
logical algebras associated with groups. 

We are concerned in the present communication with the following problem. 
Let  there be given a set X, a linear space g of real or complex functions 
defined on X, and a linear functional I defined on ~. Under what conditions 
is it possible to find a finitely (or countably) additive measure 9'*, defined on 
a certain family of subsets of X, such that  

1.1 I(/) = f / (x)  dr* (x) 
X 

for all, or at least part  of, the functions / in ~?  A reasonably satisfactory 
answer to this question is contained in the present paper. 

We use the following symbols and terminology. For a set X and a family 
of subsets r of X, the symbol ~ ( ~ )  denotes the smallest ring of sets con- 
taining ~ (i.e., the smallest family o[ sets containing r and closed under the 
formation of finite unions and differences). The symbol 8 ( ~ ) d e n o t e s  the 
smallest a-ring containing ~ '  (i.e., the smallest ring containing ~ which is closed 
under the formation of countable unions). The symbol r162 the 
family of all subsets Q of X such that  for some A s ~ ,  Q c A. For P ~ X, the 
symbol gv denotes the characteristic function of P,  i.e., the function equal to 
1 on P and 0 on X f l P ' .  A function ~ defined on a ring ~3 of subsets of X 
such that  0 < ~ < + co is said to be a finitely additive measure on ~73 if 
is not identically + c~ and if the relation q(A UB) = q(A) + q(B) holds for 
all A, B s ~  such that  Afl  B = 0. A finitely additive measure on r is said to 
be countably additive if ( A , } ~ I ~  J3,  U,~IA,e~3 ,  and A,  fl Am = 0 for n ~ m 
imply that  q ( U ~1 An) = Z , ~  q (A,). If ~s is permitted to assume values in the 
closed interval [ - -  c~, 0], then certain complications in the definition enter. We 
shall have occasion to consider negative measures only in 4.8 and 4.9, and in 
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these cases, as will be seen, no ambiguity can occur. The symbols R and C 
designate the real and complex number systems, respectively. A family ~ of 
subsets of X will be called an algebra (a-algebra) if it is closed under the 
formation of finite (countable) unions and of complements. 

w 2. The fundamental  theorem 

2.1 Definition. Throughout the present w let X denote a fixed non-void set, 
and let ~ denote a fixed set of real-valued functions defined on X such that  

2.1.1 ] , g e ~  and ~, /3eR imply cc/ + /3ge~;  
2.1.2 ], g e ~ imply min (/, g) e ~ ; 
2.1.3 ] e ~ and ~ > 0 imply min (/, ~r e ~. 

We shall also consider occasionally the more stringent condition 
2.1.4 the constant function / ( x ) ~  1 (denoted by the symbol "1")  is in ~ ;  

plainly, 2.1.4, 2.1.1, and 2.1.2 imply 2.1.3. We shall not assume that  2.1.4 
holds, however, without specifically mentioning this assumption. 

Assumptions 2.1.1 and 2.1.2 show that  max (/, g) = - -  rain ( - - / ,  --g) ~ ~ for [, 
geq~ and that  [ / [ = ] - - 2  min ( ] , 0 ) e ~  for ] e~ .  Also, I - - r a i n  ( / , ~ ) = m a x  
( ] ,~ ) - -  ~, so that  max (/, r162 - - ~ e ~  f o r / e ~  and ~ > 0. 

2.2 Definition. Let  J ) d e n o t e  the family of all subsets of X having the form 
E [ x ; / ( x )  > 0] for / e~ .  Let ~ denote the family of all subsets of X having 
the form E [ x ; / ( x ) > : r  for ] e ~ a n d  ~ > 0 .  

2.3 Since E [ x ; / ( x ) > a ] = E [ x ;  m a x  ( ] , a ) - - a > O ] ,  we see that  all sets 
E[x; ](x) > a] for a > 0 are in 3 ). I t  is plain from 2.2 that  if K e ~ ,  then K ~ G  
for some G e ~9. We note also that  K' fl Ge 3 ) for all K e ~" and G e J) .  For, if 
G = E[x; g(x) > 0] and K = E [ x ; / ( x )  > cz >0],  it is a routine mat ter  to verify 
that  K '  [1 G = E [x; rain [~, g (x) + min (/(x), ~) ] - -  rain (/(x), :r > 0]. 

2.4 If G1, G2eJ), and G~ = E[x; ]~(x)>0] ,  then 

G 1 U G 2 = E [x; max (h (x), ]2 (x)) > 0] 
and 

G 1 N G 2 = E [x; rain (]1 (x), ]2 (x)) > 0]. 

Hence Gx U G 2 and G 1 fl G2 e ~ .  Similar computations show that  if K1, K~ e ~ ,  
then K 1 UK S and K lfl  K 2 e ~ .  ' 

2.5 Finally, we see at once from 2.2 and 2.3 that  every set in ~ i s  the intersection 
of a countable decreasing sequence of sets in ~ and that  every set in ~,~ is ]- 

t h e  union of a countable increasing sequence of sets in ~7. Namely, E [ x ;  /(z) 
L 

We next  define a certain "separation" property for subsets of X, as follows. 

2.6 Definition. For  subsets A, B of X, we write A/X B if there exists a func- 
tion ] e~  such that  ] > 0, [ ( x ) =  1 for x eA,  and ] ( x ) =  0 for x eB. 

We now consider the functional on ~ which it is our purpose to represent, 
so far as possible, by an integral. 

2.7 Definition. Let  I be a real-valued functional defined on ~ such that:  
2.7.1 I (:r / + / 3  O) = or I (]) + fl I (g) for all a , /3  e R and ], g e ~ ;  
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2.7.2 / > 0 implies I (/) > 0. 

2.8 Remark.  If all functions in ~ are bounded and one other condition holds, 
we shall see that  I can be completely represented by an integral. However, our 
construction uses only the bounded functions in ~, and it is perfectly possible 
for a functional to satisfy 2.7.1 and 2.7.2, be ~ 0, and vanish for all bounded 
functions in ~. For example, 05A~'s generalized integral [14] may have this 
property. A simpler example is the following. Let  (~ be the set of all con- 
tinuous real functions g on R such that  g (x) = O (x) (x-~ + c~). Obviously, ~i 
is a linear space containing all bounded continuous realfunctions.  Let  p(g)= 

lim g(x). I t  is easily verified that  p ( g + h )  < p ( g ) + p ( h )  and that  p(ocg) 
X ~ + ~  X 

= 0r for ~ > 0. On the subspace ~)~ of (~ for which lim g(x) exists, p is 
X ~ + ~  X 

a non-negative linear functional. By t he  Hahn-Banach theorem ([2], pp. 27--29), 
there exists a real-valued functional Q on (~ satisfying 2.7.1--2.7.2 and also 

the inequalities --p (--g) <= Q(g) < p(g). Thus Q(g) = lim g(x) whenever this 

limit exists. In particular, Q = 0 for all bounded functions in (~. 
Our problem is now to find a finitely additive measure ~* defined on some 

ring of subsets of X such that  I is represented, so far as is possible, by an 
integral over X with respect to y*. We find that  the ring ~ (c~) serves very 
well as the ring of sets; and we proceed to define and to study the measure 7*- 

2.9 Definition. Let  H be any  set in J) .  Then the set-function ~ (H) is defined 
as sup o~_r<=ZHI(/). For every subset A of X which is contained in some H e ~  
(i.e., which is in the ring r  let r* (A)  be defined as i n f , ~ , . ~ r ( H ) .  

The set-function y is well-defined, since 0 e ~ and 0 < 0 < Z~. The set-function 
7* is well-defined, in view of the restriction of its domain. As we shall see, 
7* has some of the properties of an outer measure, and a reasonable concept 
of measurability can be defined in terms of it. We first list some essential facts 
concerning 7 and y*. 

2.10 Theorem. For all sets G, He,:~, we have: 
2.10.1 0 =< r (G)  _-< + co; 
2.10.2 G c H  implies 7(G) < ~(H). 
These facts are obvious. 
2.I1 Theorem. For all K e ~ ,  ~,* ( K ) ~  + oo. 
By 2.2, ther~ exists a function / e ~  (which may be taken > 0) and a number 

0r ~ 0 such that  K = E[x; ](x) > :r Let  fl be such tha t  0 ~ fl ~ ~r The function 
1 
/~ min (/, fl) is equal to 1 on G = E [x; ] (x) > ill, which contains K. If 0 < h < 

1 1 
then h < ~ min (/, fl), and by 2.7.2, I(h) < -~I (min (/,fl)). Hence r(a) is Zv, 

P 

< f l I  (rain (/, fl)), and ~*(K) i s  likewise < ~ I  (rain ( / , f l ) ) <  + oo. 

2.12 Theorem. Every set G e , ~  is a-finite. 
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K , =E[x ; g ( x ) >  ln] n--1,'~ ~, . . . )  are clearly such that G~cK~, O,~G, 

= G, and 7(G~) < 7*(K~) (by 2.10.2 and 2.9). The present theorem now follows 
from 2.11. 

2.13 Theorem. Let  G be a set in J )  such that  7 ( G ) <  + co. For every 
e > 0 ,  there exists a set K s ~  such that  K e G  and 7(K'flG)<s. 

Let / s ~  have the properties that  0 < / < Z ~  and I ( / ) + e / 3  > 7 ( G ) .  Let  
gr-  ~ 

K= EIx ; / ( x )>~l .  Then K is in ~ b y  definition. If g e ~  and 0 < g < g~,na, 

then 0 -< 3 ( ] +  g) < ZG, and C o n s e q u e n t l y ~  I ( / )  + I(g)  < 7(G)- 
- 3 + e  = 

Therefore 

I(~)__< 1+  ( a ) - - I ( l ) ~  ( a ) - - I ( / ) + ~  (a )<  + ~,(G). 

The present theorem follows at once. 

3 ( m i n ( / , ~ ) )  Noting that  ~ = 1  o n K  Using the notation of 2.13, let 9 = ~  

and 0 on" G', we have: 
2.14 Theorem. Let  G be i n  J )  and let ~,(G) be finite. Then, for every 

e >  0, there exists K e ~  s/tch that  K e G ,  K A G ' ,  and 7 ( K ' 0  G) < e. 
By a simple adaptation of the arguments used in proving 2.13 and 2.14, we 

establish the following result. 
2.15 Theorem. For all Ge//-) such that  7(G) is finite, and for every e > 0, 

there exists a set H e 3  ) such that  H o G ,  H/~G' ,  and 7(H)  + e > 7(G). 

2.16 Note. If y ( e )  = + oo, then sets K and H analogous to those in 2.13--2.15 
need not exist, as example 2.29 in]ra shows. 

2 . 1 7  T h e o r e m .  For all G1, G2e,~, we have 7(GlOG2) < 7(G1)+  7(G2). 
If r (a l )  or r(G,) is + c~, the theorem is obvious. Thus we suppose 

that  7 (G1) and 7 (G2) are both finite. Let  e be any positive real number. Let Kf 
be sets in ~ such that  K, c G, and ~, (K~ fl G ) <  e/3, and for which functions 
~ ie~  exist such that  0 < q ,  < l, ~0,=0 on G~ and q , =  1 on K, ( i =  1,2); qt 
and Ki exist in view of 2.14. Let ]e~ be such that  0 < / <i~a, ua, and I(])+ 
e/3>7(G1UG2) .  Let  g ~ - - m i n ( / , ~ ) ,  and l e t g , = m i n ( ] - - g x , ~ 0 z ) .  I t  is clear 
tha t  gl + g~. = ] except possibly on the sets (Gxfl K~) and (G 213 K~). On the 
first set, ] - - (g l  + g,)= P~, say, and 0 =< Pl < go, n K(. The func t ion / - - (g l  + g2)-- 
PI = P2 satisfies the inequalities 0 < P2 < Xa, n K,,. Observing that  0 < g~ < 
Z~ (i = 1,2), we have the following relations: 

e e _ 

r (GI 0 a2) < I (/) + 3 = I (el + a2 + pl + p2) + 3 

e e e 8 

IT (gl) + ~/ (~2) -~- I (p~) + I @2) + 3 < 7 (G~) + 7 (G,) + 3 + 3 + ~. 

Since e is arbitrary, the present theorem is proved. 
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2.18 Theorem. If Gi, G ~ E 3  ) and GIfl G~ = 0, then 

9' (G, U G2) = 9' (G,) + 9' (G2). 

If 9'(G,) or 9'(G2)= +cx~, then we have 9'(GxUG2)= + c ~ ,  and the theo- 
rem is verified. Thus suppose that  both 9'(G1) and 7(G~) are finite. Let  e be 
any positive real number, and let ]~ be functions in ~ such that  0 _</~ < gc~ and 
I (/~) + ~/2 > 9' (G~) (i = 1, 2). Then 9' (G1 U G~) => I (/1 +/2) > 9' (G,) + 9' (G2) - -  e. 
This inequality, combined with 2.17, proves the present theorem. 

We turn now to the set function 9'*, listing first some obvious properties. 

2.19 Theorem. On J) ,  the set-functions 9' and 9'* coincide. 

2.20 Theorem. For all sets A and B in ~ ( 3 ) ) ,  the following relations 
obtain: 

2.20.1 0 < 9'* (A) =< + c~; 
~. 2.20.2 9'* (A) < 9'* (B) if A c B ; 

2.20.3 9'* (A U B) =< 9'* (A) + 9'* (B). 
We next introduce measurability, in the standard way. 

2.21 Definition. A set A~c~t~(~ )) is said to be 9'*-measurable if for every 
set Qer ~,*(Q) = 9'*(Qn A) + 9"*(Qn A'). 

2.22 Theorem. Every set in J ) i s  9'*-measurable. 
In view of 2.20.3, we have only to prove that  9'* (Q) > 9'* (Q fi G) + 9'* (Q fl G'), 

G being a set in ~ and Q being a set in ~ ( o ~ ) .  We may suppose that  9', (Q) 
is finite, in which case 9'* (Qfl G) and 9'* (Qn G') are also finite, by 2.20.2. Let  

be any positive number ; let D be a set in ~ such that  D ~ Q and 9' (D) < 
9'*(Q)+cr and let H be a set in ~ such that  Q I 1 G c H ~ G t l D .  Let  J be 
a set in ~ such that  J ~ H, J A H', and 9' (J) + cr > 9' (H). Let / be a function 
in ~ such that  ] = 1 on J and 0 on H',  and let K = E [ x ; / ( x )  > �89 Finally, let 
P e  3 ) have the property that  P ~ Q n G'. The set P fl K '  fl D c]early has this 
property as well, so we may suppose that  P c K '  tl D and that  P fi J = 0. As- 
sembling the relations now established, and applying 2.18, we have 9'* (Q [1 G) + 
9'* (Q n G') < 
9' (H) + 9'* (Q fl G') < 9' (J) + 7" (Q I1 G') + ~r < ? (J) + 7 (P) + ~ = 
9' (J  u P) + cr < 9' (D) + ~ < ~* (Q) ~- 2 ~. Since 2 cr can be made arbitrarily small, 
we have ?* (Q fl G) + 9'* (Q fl G') < ~* (Q), and the present theorem is established. 

2.23 T h e o r e m .  The family r 9'*-measurable sets is a ring of sets 
containing ~ ( ~ ) ,  and r* is a finitely additive measure on r 

To establish this assertion, one may refer to the proof given in [16], pp. 44--45, 
(4.1) and (4.4). Everything proved there except for countable additivity can be 
proved using only 2.20. 

In a forthcoming treatment  of Lebesgue measure [15], M. RIESZ has em- 
ployed a useful criterion for measurability, which we use in the two following 
theorems. 

2 .24  T h e o r e m .  A set  A er of finite y*-measure is y*-measurable if and 
only if for e v e r y  e > 0 ,  there exists a set Ge, .~ such that  G = A  and 
~*(G n A') < e. 

The necessity of this condition is obvious. To prove its sufficiency, let 
be an arbitrary positive number and let A and G be as  stated in the 
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theorem. Let P be any set in J ( ( J ) ) .  Since G is measurable, we have 7* (P) = 
7* (G n P) + 7* (G" N P). Comparing 7* (Afl P) and 7* (G fl P), we find 7* (G [1 P) = 
7* ((A fl P) u(GN A" oP) ) <7* (A nP)+ 7*(Gfl A' nP) <~,*(AnP)+~,*(Go A')< 
7* (A n P ) +  e. In a slightly different form, this is 

2.24.1 7* (-i[ n P) =< 7* (G o P) < 7* (A o P) + e. 

In like manner, we show 

2.24.2 7*(A'nP)--e<~,*(G'nP)<7*(A'nP).  

Adding 2.24.1 and 2.24.2, we find 

17" ( A ' n P )  § 7*(AnP)--7*(P)[ <e, 

which shows that  A is 7*-measurable. 
From 2.24, we derive a useful fact. 

2.25 Theorem. Let  A be a 7*-measurable set of finite measure. Then for 
every e > 0, there exist functions g and h e~  such that  0 < g < h, B = E [x; ] (x) -- 
0 and h ( x ) > 0 ] c A ,  and 7 * ( B ' f l A ) < e .  

Let  H e J )  be a set such that  H m A  and 7 ( H ) <  + o z .  The set A ' 0 H  is 
measurable and has finite measure 7 ( H ) - - 7 "  (A). By 2.24, there exists a set 
G ~ 3 ) such that  G m A' fl H and 7* (G fl (A' [1 H)') < e. We may suppose G c H, 
of course. We thus have 7" (G fl A) = 7* (G fl (A' fl H)') < e, and the set B = G' I1 H 
clearly satisfies the requirements of the theorem. 

We now discuss the relation between the original functional I and the integral 
which can be formed with the measure 7*- We recall that  a non-negative 
function q0 on X is 7*-measurable if E[x; ~ ( x ) >  :r is 7*-measurable for 
all cr > 0; and that  an arbitrary real function ~ on X is 7*-measurable if 
max (q, 0) and - -min  (T, 0) are 7*-measurable. Under this definition, it is plain 
that  all functions in ~ are 7*-measurable. Of the possible definitions of integral, 
we select the following. 

2.26 Definition. Let  ~ (x) be any non-negative, bounded, 7~measurable func- 
tion on X. By the integral f q (x)d T* (x), we shall mean the expression 

X 

2.26.1 lim Z,21 ~,_~7*(E[x;ot,_~<cf(x) < ~,]). 

Here A = { i n f q ( x ) = a o < ~ l < ~ < . . .  < a - = s u p q ( x ) ) ,  and l iAI]=max 
l $ i ' < n  

( ~ - - ~ - 1 ) .  If  ~ (x) is non-negative and unbounded, then we d e f i n e / ~ ( x )  d~,* (x) 
X 

as lim .f min ( ~ (x), t) d T* (X). If ~(x) has variable sign, t h e n w e  define 
t ~  oo X 

v d r* (x) as f max (V 0) d --   --miu (V (x), 0) dr* provided that 
X X X 

at  least one of the latter integrals is non-infinite. 
I t  is a routine matter  to verify that  the integral of 2.26 is a positive linear 

functional on the class Of absolutely integrable functions. (Finite additivity of 
the measure 7* suffices to carry through all of the arguments needed here.) 
I t  is of course impossible to prove Lebesgue's theorem on term-by-term inte- 
gration, since the measure 7* may very well fail to be countably additive. We 
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present examples in/ra for  which this theorem fails (4.5). In the very general 
situation considered here, it may occeur that  I (/) and f / (x) d 7* (x) do not coin- 

X 

cide for all functions in ~. There are, however, always some functions in ~ for 
which this coincidence does obtain. 

2.27 Theorem. Let  / be a bounded function in ~ for which 7 (E [x; / (x) ~ 0] 
+ oo. Then f / (x) d 7" (x) = I (]). 

X 

I t  is obviously sufficient to consider the case / > 0. Let  e be any positive num- 
ber, and l e t a = i n f / , b = s u p / .  L e t a = ~ o ~ C r  - . -  ~ c r  be a sequence 
of real numbers such that  max ( ~ - - ~ i - 1 ) < s .  Let  G i = E [ x ; / ( x ) > ~ ]  

i = 1  . . . .  , n  

(i = 0 . . . . .  n -  I). Let the function hi be defined as 

(~,--  cq_l) -1 {max [rain (/, ~l),~l-1] - -  cq_l}, for i = 1,2 . . . . .  n. 

I t  will be noted that  h i s~  and that  0 _-< hi < %ai_ 1. We also have 

/ =  Z i 2 1 ( ~ i -  ~t-1)ht + ~0- 

Suppose first that  % = 0. In this case, we may write 

I ( / )=I(Ei__"l (~t  ~i-1) h ~ ) = v  ~ = ~ _ 

. . . .  Zi=~ ~ 7  (Gi-ln G;) + :r + zi=l~i[r(a,_,) 7(a , ) ]  + ~nT(a~-l)  ~-1 . 
( ~  - ~ - 1 ) 7  (G~_~) < Y,,:I ~,-17" (E [z; ~,-1 < / (x) _-< ~i] ) + 

~7(Go) <= f /(z)d7*(~) + ~7(ao). 
X 

Since 7 (Go) < + 0% this implies that  I (/) < f/(x) dT* (x). The same argument can 
X 

be used with a non-positive function with sup = 0, so that  I ( - - / )  _-< f - - / (x )  d 7" (x). 
X 

Hence I ( / ) =  f /(x) dT* (x). 
X 

T h e  case a = inf / ( x ) ~ O  requires separate consideration. Here we have 
a -1 min( / ,a )  = 1 in the class ~, so that  I (1 )  exists. If I (1)  = 0, then I is 0 
for all bounded functions in ~, and 7" ~ 0. The equality I (/) = f / (x) d 7" (x) is 

X 

trivially verified here. Thus we may suppose that  I ( 1 ) ~ 0 .  Writing / as 
~o + Z t21(a~-  ~l-1)h,, we may now carry through the above computations with 
only minor changes; we omit the details. The present theorem is therefore 
established. 

2.28 Theorem. For every non-negative bounded f u n c t i o n / e ~ ,  the inequality 
/ ]  (x) d 7* (x) < I (/) obtains. 
x 

Unless inf ] = 0, there is nothing to prove. For positive real numbers ~r -~ sup / ,  
let Ka = E[x ; / ( x )  > ~r and let 

2.28.1 ga = min [], ~ [ m a x  ( m i n  (/, ~r 2 ) -  21}" 
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Since go = 0 on K~, and since y*(Ka) is finite (2.1)), 2.27 shows that  
2 ~2 

I (go) = f go (x) d Y* (x). 
x 

We also have ] = g, on K,  and 0 < g, _-</ everywhere. Thus the inequalities 
0 =< ]ZK~ < go =< ] obtain, and hence also f ] ( x ) xK , ( x )dy* (x )  < f g , ( x ) d T *  (x) = 

X X 

l (go) --< z (I). 
From 2.26, it is clear that lira f / (x) Xxo (x) d : (x) = f / (x) d :  (x), and this proves 

a * O  x X 

the present theorem. 

2.29 Remark.  The inequality 2.28 cannot be replaced by an equality, as the 
following example shows. Let ~ consist of all continuous real functions ] on 
[0, + c ~ )  such that  ] = 0  @-1) (x-+ +c~ ) .  Let  p ( / ) = l i m  x/(x) .  I t  is clear 

that  p(] + g) < p(/)  + ~p(g) and that  p(cc/) = ~p(]) for ~ > 0. Therefore, as 
in 2.8, we infer that  there exists a linear functional W on ~ such that  
- - p  ( - - / )  = lim x/(x)  -< W(/)  < p (]). For this functional, the corresponding measure 

co* has the property that  all open sets are measurable, that  co*= 0 for all 
bounded sets, and that  oJ((a, + c~ ) )=  + c~ for all a >  0. For the function 
(1 + x) -~, for example, we have . f (1  + x) = 0 and W((1 + x) -1) = 1. 

X 

2.30 Remark.  For unbounded / in ~, I (]) may fail to be equal to f ] (x) d ~* (x), 
X 

even though X has total measure finite. :For /_-> 0, it is easy to see that  
I ( / )  >= f / (x)d~,*(x) ,  but as in 2.29, one can produce an example where equality 

X 

fails. Consider the space (~ and the linear functional Q of 2.8. Let  Q1 (g)=  
= Q ( / ) + / ( 0 ) .  Then Q1 satisfies 2.7 and also QI (1 )=  1; a measure a~ can be 
defined by 2.9 for Q1 so that  a~ satisfies 2.20. I t  is easy to see that  all subsets 
of R are a~-measurable and that  a~ (A) = ZA (0). The functior~/(x) = x has the 
two properties that  Q1 (X) = 1 and that  

f rain (x, t) d a~ (x) = 0 for all t >= 0. Therefore f x d ai* (x) = 0, 
R R 

and we see that  Qs fails to be representable by the standard integral. Indeed, 
if we consider Q alone, we find that  there is no finitely additive measure Q, 
0 =< ~ =< + co, for which all functions in (~ are measurable and for which 
Q(g)=  f g ( z ) d ~ ( x )  for all g e ~ .  The reason for this, of course, is that  if 

o < e ( A )  <= + ~ for some subset A of R, then f l d~ (x )  > Q(A); and Q(1) = 0. 
R 

2.3I Remark.  A countably additive measure ~ could be obtained from our 
y of 2.9 by defining y (Q) for every Q~r162162 as inf Zn~l y (Gn), taken over 
all (G= / ~=~ such that  Q c u ==~ ~ G,. In this way, we make our integration theory 
simpler, but quite useless for present purposes. As one can easily see from 
example 4.5, ~ may be ~ 0 for non-zero I. 

2.32 Remark.  Examples 2.29 and 2.30 show the limitations of our present 
methods of obtaining integral representations. However, if we t ry  to find inte- 
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gral representations of any kind at all for functionals on function spaces satisfying 
2.7 and 2.1, so that  all functions in ~ are measurable, we find upon a little 
reflection that  7 is our only choice for sets in 3 ) and that  ?* is the largest 
possible outer measure on the ring r Hence the results of the present are 
the best possible: unless we radically alter the notion of integral to be employed. 

w 3. Various  special  condit ions  

Other writers on the topic of integral representation have ordinarily added 
certain conditions to 2.7.1 and 2.7.2 which ensure that  the measure ?* 
defined by 2.9 shall be countably additive on the family of ?*-measurable sets. 
We first present a condition (3.2), equivalent to countable additivity, which 
appears to be simpler than many of those found elsewhere and which is in 
consonance with the point of view adopted here. This condition, it will be noted, 
is exactly the condition (L) of DANIELL ([3], p. 280), and is of course well 
known. Throughout the present w we make the assumption 

3.1 r ( E [ / ( x ) > O ] ) <  + oo for all [ e~ .  

We now list two conditions which may be imposed on I.  
3.2 Let  (/~} =21 be a decreasing sequence of bounded functions in ~ with 

pointwise limit 0. Then l i rn  I ( /n)  = O. 

3.3 Let  (/=}~1 be an arbitrary decreasing sequence of functions in ~ with 
limit 0. Then lira I (]=)= 0. 

n ~ o o  

3.4 Theorem. If condition 3.1 holds, then 3.2 is both necessary and sufficient 
for ?* to be countably additive on the ring r 

Suppose that  ~* is countably additive. Then ?* admits a unique countably 
additive extension ?** over the a-ring 8 ( ~ ( ~ * ) )  ([5], p. 54). For functions 
measurable ~,*, the integrals of q with respect to y* and ?** are equal. Under 
assumption 3.1, we have by 2.27 I (/n) =f/.(x)d~,* (x) for all ]= mentioned in 

X 

3.2. Since/1 eL~ (?**), we apply a classical theorem ([16] p. 28) to infer that 

0 = lim f / n  (x) d ?** (x) = lim f / n  (x) d r* (x) = lim I (/~). 
7 t ~  r ~ r t ~ X  n ~ o o  

To prove the sufficiency of 3.2, we note that  3.1 implies, in view of the very 
definition of ?*, that  ?* is a finite-valued, although possibly unbounded outer 
measure on J t r ( J ) ) .  This fact enables us to replace the condition of countable 
additivity by 

3.4.1 {A~}~ c r A 1 ~ A2 ~ . . . ,  and fl ~=~ A~ = 0 imply lim r* (An) = 0. 
n ~ o o  

Verification of 3.4.1 requires several steps. First, suppose that  {G~}~I c 3 ) 
is a decreasing sequence of sets with intersection 0 such that  G~ A G' r t - 1  

(n = 2, 3, . .  .). Let h~e~ have the properties that  0 =< h~ = < 1, h= = 0 on G'=_I and 
hn=  1 on G,; let p=e~  have the properties that  0 <p~_-<Zz= and I ( p = ) +  
n-~>~,(G~); let g~ = max (p,,h,~) (n = 1 , 2 , 3 , . . . ) .  Then I(gn) + n- l>~ ' (G~)  
and the g~ are a decreasing, bounded sequence with limit 0. Thus, by 3.2, 
lim I (g=)= 0. I t  follows that  lim ? (G~)= 0. 
n ~  oo / t ~  oo 

277 



E. HEWITT, Integral representation of certain linear fanctionals 

Next, let {G4}n~0 c 3 ) be any  decreasing sequence of sets with intersection 0. 
Let  s be an arbi trary positive number, and let {an}~l  be any sequence of 
positive numbers such tha t  En~l~n < s. Let H i s  3 ) have the properties tha t  
HlcGo, H1 A Gg, and ?(HI) + ~l>?(Go) (as shown possible by 2.15). Then 
clearly ?* (Hi I1 Go)<  al .  Considering the set G1, we have 

y(G~) = y(H1N G~) + r*(Hi  n G1) =< y ( H l n  G1) + ? * ( H i n  Go)<  

? (H~ n G~) + ~ .  Also, it is clear that  H I n G1/~ Gg. Let  H 2 e 3 ) have the prop- 
erties tha t  H 2 c / / 1  fl G1, H 2 A ( H i  fl G1)' , and ?* (H~ [1 Hi  I1 G1) < ~ .  

Then we have ?(G2)= 

? (H 2 fl G2) § ?* (H~ [1 H~ fl G2) § ?* (Hi N G2) _-< 

? (H 2 N G2) ?* H' ?* § ( 2fl H~ fl G1) § (H~NGo)< 

? (H2 n G2) + ~2 + ~ .  Also, H2 n G2 A (H~ n GI) ' .  

Carrying out an obvious finite induction, we find tha t  there exists a sequence 
H ~ D H 2 ~  . . .  DH~D . . . o f  sets in 3 ) such tha t  

H~ n G,~ A (H, ~ I"1 G,_~)' and ? (G~) < ? (Hn n Gn) § ~ + �9 �9 �9 § ~1. 

I t  follows at once that  lira ? (G~) < lim ? (H~ n G~) + Z ~ I  con = 0 + Z ~  a~ < e, 
n ~ o o  n ~ o o  

and that  lim ?(Gn)= O. 
n ~ o o  

~ K  = 0 ,  Next, let ( K ~ ) ~ I  be a decreasing sequence of sets such tha t  fl ~1 , 
where each K~ has the form E [/4 ~ 0] [1E [gn = 0] for some /~, gn e ~, and 0 _-< 
g,~</4. I t  is easy to see tha t  K,~=N,n~E[x; min (m-1 , / ,+gn)- -g ,~O] ,  
i.e., that  K~ is the intersection of a countable decreasing sequence of sets in 3 ). 

= ~ G with G n . ~ 3  ). By renumbering, we can write Thus we have K~ n ~=~ . . . .  
( 4. m} . . . .  1 as  (Uk)k~-i. Let Jp H~ fl I1 H~ (p = 1, 2, 3, .). Then clearly 
J~ D J2 D . . .  and fl p~--i J p  = ['~ n~--1Kn = 0. By the above, we have lim ? (J~) = 0. 

p ~ o o  

However, every J~ contains some K,,  say Kn(~), and it follows tha t  lim ?* (K~(~)) = O. 

If lim n ( p ) =  c~, then we have lim ? * ( K n ) = 0 .  i f  lim n ( p ) = n  0 < o %  then 

?* (K~o) = O. 
A o~ Finally, suppose tha t  ( n)~=0 is any decreasing sequence of ?*-measurable 

sets with intersection 0. By 2.25, there exists for every C ~ ( ? * )  a set K of 
the kind described in the last paragraph such tha t  K c C and 7" (C n K')  is 
arbitrarily small. This fact enables us to apply the argument of the last para-  
graph but one, with only notational changes, and we conclude tha t  lim ?* (An) = 0. 

n ~ o o  

Thus ?* is countably additive on ~ ( ? * ) .  

3.5 Note. As we shall see below (4.4), the family ~ ( ? * )  need not be a 
a-ring even when ?* is countably additive. However, if the bounded par t  
of ~ is closed under the formation of uniform limits, we have the equality 
U4:~ ~ "E[x; / n ( x ) > 0 ]  = E[x; Z n ~ 2  -n min (/, (x), l) ~ 0], for non-negative ]n; 

thus ~ is closed under the formation of countable unions. In this case, i f ?*  
is countably additive, we find tha t  ? ( V n?~ G~) < Z~2~ ? (Gn) for all (G,)~21 c ~ ;  
and routine calculations show tha t  r is a a-ring. 

278 



ARKIV FOR MATEMATIK. Bd 2 n r  11 

There remain two possible properties of I and ~* that  deserve attention: 
3.6 For all bounded / e ~ ,  I ( / )=  .f /(x)dr* (x). 

x 

3.7 For all ] e ~, I (/) = f / (x) a r* (x). 
x 

3.8 We have not succeeded in finding reasonable necessary and sufficient 
conditions, expressed in terms of I alone, for the validity of 3.6 and 3.7. 
Condition 3.1 is sufficient for 3.6, but not necessary, as the example 
L 1 (--  c~, + c~) with Lebesgue integration shows. Note, however, that conditions 
3.3 and 3.6 together are necessary and sufficient for 3.7, as one can easily prove. 

w 4. Examples 
The theory expounded in w167 2- -3  finds, as is natural, applications to many 

of the standard examples of linear functionals. In addition to these, we obtain 
integral representations for functionals which apparently have not been discussed 
in print heretofore. 

4.1 Perhaps the best-known example is that  afforded by a locally compact 
Hausdorff space T taken as X and the class ~ (T, R) taken as ~. ( ~  ~(T, R)) 
denotes the set of all continuous real functions on T such that  (E [x; ]/(x)] > 0])- 
is compact; ..... denotes the closure operator in T.) I t  is an elementary exercise 
to show that  for every set G = E[x;I/(x)]> 0] ( ] ~  (T,R)) there exists a 
function c e ~ ( T , R )  such that  c= 1 on G; hence ? ( G ) <  I(]c  D, and con: 
dition 3.1 obtains. Next, it is clear that  all functions in ~ ~ (T, R) are bounded. 
I t  is also elementary to show that  a sequence {/n)n~l as in 3.2 converges uniformly, 
and hence that  3.2 is satisfied. Hence ~* is countably additive; and (as we show in 4.3) 
the family ~ ( y * )  is a a-ring. Hence the standard representation theorem follows. 

4.2 Let  X be the space T of 4.1 and let ~ be the space of function ~ (T, R) 
obtained by  completing ~ ~ (T, R) in the uniform metric. Functions in ~ (T, R) 
are just those continuous real ] such that  E[x;]/(x)l > ~] is compact for every 
a > 0. A positive linear functional on ~ (T, R) is easily identified with a func- 
tional I on ~ |  (T, R) such that  I (/) is bounded for all / such that  0 -< / < 1. 
Hence 4.1 applies, and one obtains an integral representation for I in terms of 
a measure ?* which is both countably additive and bounded on the domain 
~ ( ? * ) .  As the writer has pointed out in another communication [7], one can 
define a measure, call it ~,*, which coincides with ?* on ~ ( ? * ) a n d  for which 
~ ( T  t) is a a-algebra of sets. 

4.3 One case of some interest is that  in which X is a topological space, say 
T;  ~ is any linear space ~ of continuous functions satisfying 2.1 such that  
E [x; [ / (x) ] > ~] is countably compact for all / e ~ and ~ > 0; and 7 (H) is finite 
for all H e ~ .  In this case, we infer quickly that  7* is countably additive. For, 
consider any set H e  ~ and any family {G~)n~ ~ 3 ) such that  H c U ~ G~. 
By 2.14, there is a set K = E[x;f(x)> ~r 0] such that  K ~ H  and r*(K)+ 
+ e > ? (H). We have K c V ~2~ G~, and hence K c V N1G. for some positive 
integer N. I t  follows from 2.17 that  

Example 2.29 shows that  this may fail if 7 (H) is allowed to be infinite. 
4.4 Another example which is quite elementary but  not devoid of interest 

is that  provided by X = [0,1), ~ = all finite linear combinations of functions 
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Zta. ~) (we denote this function space by ~ (0,1)), and I any positive linear functional. 
Here our definition of y* may not produce a a-ring ~ ( ~ , * )  even if y* is count- 
ably additive. For I (Z[~. a))= f i - - ~ ,  the outer measure 9'* is exactly Jordan 
content, and for this set-function, any countable dense subset of [0,1)is man- 
ifestly non-measurable. Note tha t  ~ ( ~ , * )  is, however, an algebra. By taking 
X = R and ~ = all finite linear combinations of characteristic functions X[-.~), 
- -  co < ~ < fl < + co (which function-space we denote by  ~ ( - -  co, + co)), we 
obtain an example where o9/'(7* ) is not an algebra a t  all. 

In both of the examples ~ (0,1) and ~ ( - -  co, + co), the functionals Lt (/) = / (t - 0) 
are particularly interesting. (The corresponding measures At have been discussed 
elsewhere by the writer [9].) We note here tha t  the family of sets ~ ( A * t ) i s  
characterized as follows. A bounded set A is 2~-measurable if and only if there 
is an s > 0 such tha t  (t - -  e, t) c A or there is an s > 0 such tha t  (t - -  ~, t) A A = 0. 

2" Hence r  is never closed under the formation of countable unions. 
4.5 Let X be any uniform space, say W, and let ~ be the set lib of all bounded 

uniformly continuous real functions on W. Theorem 2.27 gives us an integral 
representation valid for all functions in liB, since 1 el/B, and all sets have outer 
measure not exceeding I (1) .  S ince  lib is closed under the formation of sums, 
products, and uniform limits, is provided with a norm II]]] _~ SUpw~/ I/(w)[ 
such tha t  ]!P]I = i,/ti ~, and has the property tha t  (1 + / 2 ) -  exists for all 
/ s  liB, one may apply a theorem of GEL'FAND [4] to show that  118 is realizable 
as the algebra of all continuous real functions on its space of maximal ideals, 
which we denote a s ] 7  W. This space contains W as an open dense subspace ; 
and permits us to study I from a different point of view. As a functional on 
the space ~ (Y W, R), I has an integral representation with respect to a eountably 
additive measure, say ~, on the Borel sets of Y W. As an open subset of Y W, 
W is always i-measurable.  One may  then ask, what is the relation between 
~* and ~? To exclude pathological cases, let us now suppose tha t  W is the  
union of an increasing sequence of compact supspaces. Then we find: 7" is countably 
additive if and only if ~ ( Y W n  W ' ) =  0; and in this case, 9'* and ~ can be 
identified with each other in an obvious way. On the other hand, y* may  be 
purely finitely additive [18], and this occurs if and only if ~ ( W ) =  0. 

4.6 I f  X is any topological space, say T, and ~ = ~B (T, R ) =  all bounded 
continuous real functions on T, and I is any functional on ~B (T, R)sa t i s fy ing  
2.7, then we can apply 2.27 and the fact tha t  l e~B(T,R) to obtain an inte- 
gral representation valid for all /e~B(T,R). 

4.7 Let  T b e  as in 4.6, and let ~ be the space ~(T,R) consisting of all 
continuous real functions on T ;  let I be any functional as in 2.7. The writer 
has shown elsewhere that  I has a representat ion,  valid for all /s ~ (T, R), as 
an integral with respect to a finite-valued, countably additive measure 9'* [6]. This 
fact, which is not obvious from the definition of ~,*, may  be combined with 
3.4 and 3.8 to assert tha t  for any decreasing sequence { / ~ } ~ l c ~ ( T , R )  with 
limit 0, lim I ( / , ) =  0. 

n ~ o o  

4.8 Hypothesis 2.7.2, which makes the arguments in w 2 much simpler than  
they would otherwise be, can be weakened for an arbi t rary X and ~ as in 2.1, by 
admitt ing also those functionals I which can be written as the difference of  
two functionals satisfying 2.7. If I (/) is bounded for all ] in any bounded 
set of functions in ~, then I can be so written: I -  I + -  I7~, where I + ( / ) =  
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supo__< g__< ! I (g) (for / _-> 0, and I+(/) = I + (max (/, 0)) - -  I+( - -min  (], 0)) for arbitrary 
/) and I -  = I + - I .  The measure ~ on 3 ) corresponding to I has the form 
? + - - ~ - ,  where ?+ (G) is defined from I + and y-(G)  is defined from I - .  I t  is 
plain that  ~ is well-defined, in tha t  ~+ (G)=  + c~, y- (G)= - -0% can never 
occur for G e 3). Defining ~,* as @+)* - -  @-)*, we obtain a set-function on J t r (3 ) ) ;  
and integral representation goes through as before. 

4.9 Let  X be any set, and let ~ be any complex linear space of complex functions 
defined on X such that  for / e ~, the complex conjugate ] is also in ~ and such that  
the set of real functions in ~ satisfies 2.1. Let  I be any complex-valued 
complex-linear functional defined on ~. Then any possible representation of I 
as an integral with respect to a complex-valued finitely additive measure can 
be obtained by the following well-known reduction. Let  / = ~ + i~p be an element 
of ~, where q and ~ are real. Then I ( ~ ) =  I1 (~ )+  iI2 (~0), where /1 and I2 
are, as one sees immediately, real functionals satisfying 2.7.1. For a pure ima- 
ginary i~, we have I ( i ~ p ) = i I ( ~ ) =  i I l ( ~ ) - - I 2 0 p ) .  Thus I is completely 
determined by its real and imaginary parts applied to real functions in ~, and 
we have the general formula I (~0 + i~) = I1(~0)-  12 (~) + i(I1 (y,) + 12 (qJ)). Ii 
and 12 may be quite arbitrary linear functionals on the real part  of ~. If 11 and I2 
are as in 4.8, they may be written as differences I~ - -  I ;  and 13 - -  I2-, so that  
I = (I~ - - I ~ )  + i ( I~- - I~) ,  and any integral representation possible for I can be 
built up from integral representations for the four non-negative functionals just listed. 

w 5. Relat ions  wi th  other results  

Beyond the early work of F. RIESZ and J. RADON, which is of only historical 
interest in the present context, there are a number of results which bear a close 
connection to those set forth here and which deserve mention. 

5.1 The fundamental paper of DANIELL [4] can be connected with the present 
treatment only by showing that  summability in his sense is equivalent to 
integrability with respect to 7*, in the sense that  a function on X is integrable 
with respect to ~* if and only if it is summable, and that  the processes of 
integration and summation yield the same value whenever they are applicable. 
All this, of course, is under assumption 3.2, which forms an essential part of 
Daniell's hypotheses. (Actually, the proof of this equivalence has been carried 
out b y  H. S. Zuekerman and the writer, for the case in which X is a locally 
compact Hausdorff space and ~ is the set of all continuous real functions 
vanishing outside of compact sets [8].) So far as the writer knows, no one has 
studied this equivalence problem for the general case. 

5.2 The four notes recently published by M. H .  STONE [17] on abstract integra- 
tion start from our hypotheses and an additional assumption (I (3)) which is clearly 
sufficient to establish countable additivity. The correlative note of MCSHAN~ 
[12], which is, to be sure, subsumed under [17], IV, imposes yet stronger con- 
ditions to ensure countable additivity. Note also a far-reaching generalization 
recently announced by MCSHANE [13], still with hypotheses to ensure countable 
additivity. 

5.3 The encyclopedic paper of A. D. ALEXANDROFF [1] stands in a very close 
relation to our results, as he assumes beyond our hypotheses 2.1 and 2.7 only 
that  all functions to be considered are bounded and that  1 e~.  However, his 
theorems are for the most part couched in terms of cumbersome quasi-topological 
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spaces, and his main results can be readily inferred from ours. Nevertheless, he 
has anticipated BOURBAKI'8 integral ([17], IV) in his study of "real charges" 
and has proved a number of interesting theorems regarding weak convergence 
of finitely additive measures (Ch. IV and Ch. V). 

5.4 One should also mention the paper of A. MARKOV [11], which deals with 
the case of the bounded continuous real functions on a topological space 
satisfying the axiom of normality but not necessarily any separation axiom. 
His results on integral representation are completely subsumed under our ex- 
ample 4.6. 
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