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Behavior of  solutions of linear second order differential 

equations 

B y  ]~INAR HILLE 

1. Introduction. The present note is concerned with the differential equation 

(1.1) w " = 2 F ( x )  w, 

where F(x) is defined, positive and continuous for 0 < x  < c~, while ~t is a 
complex parameter which, except in section 2, is not allowed to take on real 
values < 0. We are mainly interested in qualitative properties of the solutions 
for large positive values of x including integrability properties on the interval 
(0, co). In section 6 we shall discuss certain extremal problems for this class 
of differentiel equations. 

The results are of some importance for the theory of the partial differential 
equations of the Fokker-Planck-Kolmogoroff type corresponding to temporally 
homogeneous stochastic processes. These applications will be published else- 
where. The results also admit of a dynamical formulation and interpretation. 
This will be used frequently in the following for purposes of exposition. With 
x =  t, the equation 

(1.2) w" = ). F (t) w 

is the equation of motion in complex vector form of a particle 

(1.3) w = u  + i v = r e  i~ 

under the influence of a force of magnitude 

(1.4) [P l=qF( t ) r ,  2=qe i v=#  + iv, 

making the constant angle ~ with the radius vector. We can also write the 
equations of motion in the form 

(1.5) r" - -  r (0')  3 = #  F ( t )  r, 

(1.6) d [r 2 0'] = v F (t) r ~, 

where the left sides are the radial and the transverse accelerations respectively. 
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2 .  Almost uniform motion. As  a preliminary step in the discussion we 
eliminate the fairly trivial case in which x i v (x )cL  (0, co). This case is basic 
for the applications referred to above, however. 

Theorem 1. A necessary and su//icient condition that (1.1)have a/undamental 
system o/ the /orm 

(2.1) Wl(X)=X[I "Jr 0(1)], IV2(X)=I q- 0(1), X---+ oo, 

]or some ]ixed ,~ ~ 0 is that 
(2.1) holds ]or all ~ and we 

(2.2) wi(x) = 

x iv (x) e L (0, co). I] this condition is satisfied, then 
have also 

1 + o(1), w'~(x)=o(1), x -+co.  

In the dynamical interpretation we could refer to this case as almost uni]orm 
motion (uniform motion corresponds to F ( t l -  0). 

The sufficiency of the condition has been traced back to M. B0CHER [1], 
p. 47, the necessity for 2 > 0 to H. WEYL [5], p. 42, but  it does not• occur 
explicity in either place. A direct proof for ,~ = 1, F (x) real was given by the 
author [3], pp. 237--238, in 1948; the sufficiency argument is valid also for 
complex-valued F (x) and the necessity was proved when Y (x) is real and keeps 
a constant sign for large x. A considerably less restrictive sufficient condition 
for complex-valued iV(x) was given by A. WINTNER [7] in 1949 who also gave 
an alternate proof for the necessity of the condition xF(x )  eL(O, co )when  
iv(x) is real and ultimately of constant sign. Wintner referred to the case he 
studied as almost ]ree linear motion. Theorem 1 is a special case of the fol- 
lowing more general result: 

Theorem 2. I] G(x) is continuous ]or O<=x < oo and there exist a real fl 
and a positive (~ such that [arg[e- i~G(x)] l<�89  ]or all large x, then the 
di[/erential equation 

(2.3) w" = G (x) w 

has a ]undamental system o/ the ]orm (2.1) i /and only i / x G ( x ) e L ( O ,  co). This 
system also satis/ies (2.2). 

Proof.  I t  is only the necessity that  calls for a proof. Set 

e-i~G(x)=Gl(X) § iG2(x), w2(x)=x[1 + ~l(x) + i~2(x)] 

and suppose that  a is so large that  for x_-_a we have G l(x)_->0, 

cot a, In,(x)  l __< } min (I, tan a), v =  1, 2. 
~rom 

{e-i~[w'~(x)--wi(a)]} = f s G l ( s  ) 1 + ~ l ( s ) - -  ~ l ~ ( s )  ds, 
a 

it follows that  

f S a I (S) d $ ~ ~ {e - i  fl [w~ (x) - -  w~ (a)]} > ~ f s a I (8) d s, 
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Integration of this inequality shows that w2(x) cannot be O(x) unless 
XGl (x ) eL (O ,c~ )  and this implies and is implied by xG(x)  eL(O,c~) .  This 
completes the proof of Theorems 1 and 2. 

In Theorem 1 we may take as our hypothesis the existence of a solution 
satisfying any one of the three condi t ions  

(i) w i ( x ) = x [ 1  + o(1)], (ii) w2(x)=l  + o(1), (iii) w i ( x ) = l  §  

They are equivalent and imply 

(iv) wi(x)=o(1)  

as well as x F ( x ) q L  (0. c~). On the other hand, (iv) does not imply (i)--(iii) 
or *he integrability condition. 

3. Direct motion. In the remainder of this paper it will be assumed that  
x F ( x )  is not in L(0, ~ ) .  Further ,~ will be restricted r r domain A ob- 
tained by deleting the origin and the negative real axis from the, ~-plane. If 
2 is real and negative, the solutions of (1.1) are normally oscillatory and their 
behavior is entirely different from that  holding for ~ e A .  This fairly well 
known case will not be considered in the following. 

The behavior for real positive values of ~ is also well known (see, for in- 
stance H. WEY~ [5], w 1), but it sets the pattern for the rest of A so we 
shall summarize the results. Let Wo (x) = wo (x, ~), w i (x) = w i (x, ~) be the funda- 
mental system determined by the initial conditions 

(3.1) Wo (o) = o, u,~ (o) = 1 ; w~ (o) = 1, wl (o) = o. 

For x > 0, ), > 0, these solutions are positive, monotone increasing and convex 
downwards so that  wk(x ,~) /x -~  c)o with x by Theorem 1. Simple counter- 
examples show that  no stronger assertion can be made concerning the rate of 
growth (cf. section 6 below). In passing we note the Liapounoff-Birkhoff 
inequalities which in the present case may be given the form 

(3.2) 
Ckexp - -1 /~ .  [1 + F ( s ) ] d s  <[wk(x,o)]2+ [wi!x,~)] 2 

0 

0 

where Gk is the initial value of the second member for x =  0. 
For fixed x the solutions w~ (x, 2) are entire functions of ;t given by the 

power series 

(3.3) wk(x, 4)=,~=0 ~ uk'n(x)~'  uk,,,(x)=/(x--.3).Y(8)u~,,_l(s)ds 
0 
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with uo, o (x) = x, u L o (x) = 1. The coefficients being never  negative,  one sees t h a t  

(3.4) I u,k (x, ~)l --< w~ (x, e), I w~ (x, 2) I --< wl (x, e). 

This in conjunction with (3.2) shows t h a t  wk(x, ~) is an entire function of 4 
of order < �89 This could also be inferred f rom (3.3). 

For  4 > 0 the formu]a 
oo 

j " ds 
(3.5) w~ (x, 4) = wl (x, ~) [w~ (s, ~)]2 

g~ 

is obviously meaningful  and defines a subdominant solution of (1.1). I t  is 
positive, monotone decreasing, convex downwards and tends to zero when 
x - >  oo. The first  p rope r ty  is obvious;  the second follows f rom 

oo 

f ds 1 
W: (X, ] )  = Wl (X, 4) [W 1 (8, ])]2 W 1 (X, 4) 

fig 
oo 

f W'l!S,A)ds 1 
< J [wl (s, - = 0, 

and the convexi ty  is implied by  (1.1). Final ly  

oo 
W I ( x ,  ~) f W t l ( 8 ,  ~ ) d s  l 

w+ (x, < (x, (x, o. 
g~ 

aS X "--> C>O, 
The descriptive propert ies  of wk (x, 2) for complex 2 are more  complicated 

than  for 2 > 0, bu t  the following results hold. 

T h e o r e m  3. I /  x F ( x ) r  c~), i] ~=/~ + i v e A  and v # O ,  then Wk(X, 2) 
describes a spiral Sk (4) ]rom k to c~ in the complex w-plane as x goes /rom 0 

to + c~, k = 0, 1, and 1 arg u,k(x, 2) increases steadily ]rom 0 to + oo with x. 

Sk(2) has a positive radius o] curvature everywhere and is concave towards the 
origin. I /  #>0 ,  I wk(x: 2)[ is monotone increasing and [wk(x, 2)I/x-+ oo with x 
when # > O. For all 4 E A, [ wk (x, ~) ] -1 e L2 (1, cx~). 

Proof .  We set  [ wk (x, ~) ] = rk (x, 4) = rk (x) = rk and arg wk (x, ~) = Ok (x, 4) = 
= Ok (x) = Of with Of (0, 4) = 0. The functions rk (t) and Of (t) sat isfy equat ions 
(1.5) a n d  (1.6). F rom the former  we see t ha t  for #_->0 we have  r~' > 0, rk m-  
creasing, f rom 1 if k = 0 ,  f rom 0 if k =  1. Thus r~ > 0 and rk is increasing. 
Fu r the r  r~ tends to a limit, ~k say, as t -~ oo. I f  ~k is finite, rk(t) ~ ~kt. But  
t F ( t ) ~ L ( 1 ,  oo) and we have 

t 
rl ( t )  - -  rl (0) >/~  f F (s) rk (s) d s, 

0 
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which tends to infinity with t if # > 0 .  Hence r'k(t)-+c~ if # > 0  and 
rk(t)/t-+oo with t. If k = 0  the ratio r~(t)/t is increasing for t > 0  and if 
k =  1 it is increasing for all large t for 

t 

t:r'k (t) -- r~ i t) > # f s F i s) rk i s) ds -- rk (0). 
0 

If  # = 0 ,  we still have r~'>0,  r ~ > 0  and increasing so that  r~( t )>Ct .  An 
example in section 6 below shows that  rk(t) may actually be O(t) when # = 0. 

A Sturmian comparison argument applied to the equations 

R " = # F ( x ) R ,  r " = { # F ( x )  + [O'(x)]2}r 
gives 

(3.6) w~(x, I~ + / v l ) >  [wk(x,~ + iv) l>wk(x , /~) ,  x > O ,  

provided # > 0, v ~ 0. 
The expression for the transverse acceleration in (1:6) gives 

' t = v  (3.7) [r~ (t)] 2 0~( ) f F ( s )  [~:k (s)] 2 ds 
0 

s o  that (l/v)O'k(t) is positive. This equation gives the angular momentum of 
a particle of unit mass at the time t; if /t > 0 it clearly becomes infinite with 
t and, as we shall see, the same is true everywhere in A for v ~ 0. We note 
in passing that  the left side of (3.7) is never zero for t > 0 and this implies 
tha t  neither wk (t, 2) nor w~ (t, 2) can be zero for t > 0, 2 E A. 

We shall now prove that  (l /v) arg wk(x, 2) tends to infinity with x. Sup- 
pose, contrariwise, that  it tends to a finite limit wk instead and set 

Wk (x) = e -i" ~k wk (x) = U~ (x) + i Vk (x). 

For a given e > 0 ,  we can find an a=a~ such that  Uk(x)>O and 

0 < ] vk (z)[ < e Vk (x) 

for x > a .  We have 
g$ 

i3.8) W~ (x) - -  W; (a) = 2 f (s) w~ is) ds. 

Here there are two possibilities. First, the integral may tend to a finite limit 
as x-+ bo so that  W'~(x) tends to a finite limit. This limit cannot be different 
from zero since otherwise the case of almost uniform motion would be present. 
If  W~ (c~) = 0, a second integration gives 

W~ (x) = Wk ( a ) - -  2 f d s f F (t) Wk (t) d t. 
a $ 
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I~ere the repeated integral must become infinite with x since otherwise the 
almost uniform case would turn up again. This implies that  Wk(x) becomes 
infinite in such a manner that  its argument tends to zero while in the right 
member of the equation the term that  becomes infinite has an argument dif- 
fering from that  of - - 2  by at most s. Thus the first possibility leads to a 
contradiction. Secondly, the integral in (3.8) may become infinite with x. 
Integration of (3.8) then shows that  Wl,(x) differs from 

2 f (x -- t) F(t) Wk(t) dt 
a 

by (linear) terms of lower order. This alternative gives rise to the same type 
of contradiction: Wk(x) has an argument close to zero, while that  of the 
dominating term in the second member is close to arg 2. Thus the assumption 
that  arg wk(x) stays bounded must be rejected. 

Let  us now introduce some notation. We set 

(3.9) 

(3.10) 

(3.11) 

These are obviously positive increasing functions of x and it will be shown 
later that  they al l  become infinite with x. We also have 

x 

Mk (x, 2) = f I w~ (s, 2) ]3 d s, 
0 

2) P I 4) 13 
0 

L~ (x, ;t) = Mk (x, 2) + e Nk (x, 2), 0 = 1 2 ]. 

(3.12) wk (z, 4) wl (z, 4) = Mk (x, 4) + 2 Nk (x, ;t). 

This is the Green's transform of the equation (1.1) corresponding to the inter- 
val (0, x). See E. HILLE [3], p. 3, and E. L. INCE [4], p. 508. This formula 
also shows that  the product occurring on the left cannot vanish for x ~ 0 and 
; teA. 

As a first application of (3.12) let us verify the assertion concerning the 
radius of curvature For a complex curve w = w(x) the radius of curvature is 
given by 

R= Iw'l  
3 w"] 

Using (1.1) and (3.12) this reduces to 

(3.13) R,  I wl (~' ~) 13 
v F (x) Mt (x, 2) 

if v > 0. For v < 0, the sign should be reversed since the spirals Sk(2) are 
then described in the negative sense. Note that  there are no points of in- 
flection. 
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Another application of (3.12) is the observation that  if 

arg 2 = ~ =  2~,, ]),[ < �89 
then 

(3.14) cos ~ Lk (x, 2) = ~ [e -~'  wk (x, 2) w~ (x, 2)]. 

Recombined with (3.12) this leads to the basic double inequality 

(3.15) cos ~, Lk (x, 2) < ] wk (x, 2) wl (x, 2) I < L~ (x, 2). 

As a first consequence of (3.15) we note that 
P 2 t cos~ ~ < [ wk (x) l < Lk (x) 

I wk (x)]2 = [Lk (x)] s = [ ik  (x)] 2 
Hence 

f ds 1 (3.16) c~ u I w~ (s, 2)I s < L--~ (x ,  2~' 

so that  [ wk (x, 2) 1-1 E L s (1, (X)) as asserted. From this fact, together with the 
observation that arg wk(x, 2) becomes infinite with x, one concludes from (3.7) 
that  Nk (x, 2) and hence also Lk (x, 2) become infinite with x for every ~ e A. 
The same is true for Mk (x, ~) by virtue of (3.16) and the estimate 

(3.17) [ u,k (x, 2) - -  k ]2 < x Mk (x, ~) 

which follows from Schwarz's inequality applied to 

x 
wk (x, 2) - -  k = f w~ (s, 2) d s. 

0 
We also note the inequality 

x 
(3.18) I ~  (x, 2)I ~ =< k + 2 j L~ (~, 2) d~ 

0 

which may be re~d off from {3.15). This completes the proof of Theorem 3. 
Some further consequences of (3.15) are listed in 

Theorem 4. Zet q5 (u) be any non-negative ]unction integrable over every/inite 
interval (O, eo). Let O < a < b < c~, A = Lk (a, ~), B =  Lk (b, 2). Let ~, 7, ~ be 
arbitrary non-negative constants. Then 

b 

J "  { COSS 
~lu'k (x, 2)I s 

(3.19) a 

cos s ~F(x) ~2V~ cos ~ V ~ r  2)]dx 
+ ~ ~lw; (x, 2)I -~ + i~(~,~) J 

B 

f --< (~ + ,7 + r �9 ( u ) ~ .  
A 
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Proof. The inequality is obviously the sum of three inequalities obtained 
by setting two of the parameters equal to zero. Here the inequality for 

= $ = 0 is proved exactly as formula (3.16) which is the special case r (u) ~-- 1 
and the case ~= ~= 0 is handled in a similar manner using the inequality 

e F (.)  [ ~,  (~, 4) I s < Li (~, 4). 

The case ~ = ~ = 0  follows from the inequality between the geometric and the 
arithmetic means which gives 

2 Vq F (x) [ wk (x, ~) w~ (x, 4) ] < L'k (x, 4) 
whence 

L~ (x, 4) 
(3.20) 2 ~ cos ~ V ~  < i t  (x. 4~" 

Incidentally, the last inequality also shows that 

{ ; } (3.21) Lk(x, 4 ) > L ~ ( 1 , 4 )  exp 2V~ cos r ] / ~ d s  �9 
1 

Since the three fractions within the braces in (3.19) appear to have similar 
integrability properties, one might expect them to have similar behavior for 
large values of x. By analogy with the case of 4 > 0  (cf. A. WIMAN [6] p. 
17) one might expect that  

(3.22) lim V F  (x) wk (x, 4) = 1 = _~ e_i~ ' 
~ wk (x, 4) V~ 

at least if F (x) is suitably limited. We are not able to prove any such rela- 
tion, but we can show that  

I f  wk (s, 4) I (3.23) lim~sup x FI /F~ ~ d s < ~ - � 8 9  sec~ ~'" 
1 

Indeed, using (3.18) 
does not exceed 

and (3.20) one sees that  V~ cos~y times the integrand 

8 

�89 ~ k + 2 .  
0 

and an integration by parts gives the desired inequality. 

4. Retrograde motion. The results of the preceding section hold, at least for 
sufficiently large values o f  x, for all solutions with one striking exception. 
Formula (3.5) makes sense for all zl~ A and defines a solution of (1.1). This 
will be referred to as the exceptional or the subd~minant solution. 
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Theorem 5. I /  x F ( x ) r  cx~) and i/ 2 e A ,  ~ 0 ,  then the subdgminant 
solution w+ (x, ,~) describes a spiral S+ (2) in the complex w-plane as x goes ]rom 
0 to infinity. The sense o] rotation is opposite to that o] S ~ ( 2 ) a n d - - ( l / v )  
arg w+ (x, 2) increases to + co with x. S+ (2) ~a.~ a positive radius o/ curvature 
and is concave towards the origin. [w+ (x, 2) 1 is mgnotone decreasing i] # > 0 and 
tends to zero if # > 0 .  For each 2 E A  we have that w~(x, 2) w'§ 4)->O as 
x ~ c~ and F (x)[ w+ (x, 4) r" and [ w'+ (x, ,~)[~ belong to L (0, oo). 

Proof. That F(x) w+ (x, 2)[2eL(0, oo) follows from (3.5) and (3.16) together  
with 0 F (x) [ wl (x, 2) 2 < L'I (x, 4). Further 

(4.1) 

Oo 

[w+(~,2)[= wl(x,2) [w1~.2)] 2 w~(x,2) 
2: 

< sec . 71wl (~, 4)1 1 
Ll(x .  2 ) -  + Iwl(~, 4) 1 

and both terms in the third member are in L~ (1, c~) so the same is true for 
the first member. We have also 

(4.2) 
oO oo  

g~ 2: 

and by (3.15) and (3.16) both terms on the right are O{[Lx(x, 4)] -1} and thus 
tend to zero when x ~ co. 

The Green's transform for the interval (x, oo) gives 

(4.3) 
w+ (x, 4) w: (x, 4) = - f lw: (s, 4)I ~ d s - -  2 f E (*)1 w+ (~, 4)I'* ds 

2: g$ 

= M+ (x, 2) --  2 N+ (x, ;t), 

so the first member is different from Zero for 0 < x  < co, 2 e A. In particular, 
the integral occurring in formula (3.5) 'is never zero. F u r t h e r  

(4.4) d 
d~- [ w+ (x, ~)I ~ = - -  2 [M+ (x, 2) + # N+ (x, ~)] 

so tha-t ]w+ (x, 2)[ is monotone decreasingfor  tt > 0 and tends to a positive 
limit or zero. If F(x )~L(O ,  co) and # > 0 ,  the first possibility is obviously 
excluded. I t  is easily verified, however, that  

(4.5) 
2: 

Wo (~, ~) = w. (o, ~,) w+ (x, ~.) [w+~; ~.)]'~ 
0 
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so that  if I w+ (x, 2) [ -~ C > 0 it would follow that wo (x, 2) = 0 (x) and this is 
false for # >  O, but it may be true for # = 0  as shown by an example in sec- 
tion 6. Next we observe t h a t  

g~ 

fl N§ (s, 2) argw+(x ,~)=argw§ 2 ) - - v .  Iw+ (s,~)l 2ds' 
0 

whence the monotony properties of the argument ~ollow. If  now the left 
member should tend to a finite limit as x-+ o% formula (4.5) may be used to 
show that  arg Wo (x, ~) must also tend to a finite limit and this we know is 
not true: Finally the radius of curvature R+ of S+ (2)is obtained from formula 
(3.13), replacing the subscript k by + .  This completes the proof. 

In passing we note that  
oo  

f ds  , 
(4.6) (x, 2) + 2) = wl (x, 2 ) .1  (s, 2)12 

0 

where the integral is finite and different from zero for 2 E A. 
The solutions wl (x, 2) and w+ (x, ,t) are evidently linearly independent when 

2 E A. From this we conclude that  the subdominant is characterized uniquely 
up to a multiplieative constant by anyone of the properties listed in Theo- 
rem 5. In particular, C w+ (x, 2) is the only solution describing a retrograde spiral 
~'/ $1(~) is considered as de]ining the direct nwtion. Any other solution will 
describe a spiral which is ultimately direct. 

We note that  formula (3.6) has an analogue for w+ (x, 2). This is proved in 
essentially the same manner, but requires the use of part one of Theorem 8 
below. The resulting inequality is 

(4.7) ( O , # + i v )  < # > 0 ,  ~+ (o, ~)' 

The other formulas of section 3 may also be extended. Introducing 

(4.8) L+ (x, 4) = M+ (x, 2) + Q N+ (x, 2), 

we obtain inequalities like 

(4.9) cos r L+ (x, 2) < I w+ (x, 2) w: (x, 2) I < L+ (x, 2), 

(4.10) L+(x, 2) < L+ (0, 2) exp - 2 V ~ c o s 7  V ~ d s  , 
0 

as well as analogues of formulas (3.19) and (3.20). 
The three functions L0, L1, and L+ are not unrelated. We conclude from 

(4.6) that  wo (x, 2)/wl (x, 2) and w'o (x, 2)/w'x (x, 2) tend to the same limit as x -~ ~ ,  
namely the integral in the right member. I t  follows that  Lo(x, 2)]Ll(x,  2) is 
bounded away from zero and infinity with bounds depending upon y. Similarly, 
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(4.2) shows that  L 1 (x, X) L.  (x, X) is bounded above, the bound depending upon y. 
Thus there is essentially only one L-function governing the rate of growth of 
the solutions of (1.1) or, more precisely, of the products 

w (~, ~) w' (x, ,~) = �89 d [w (x, ~)]2 

which apparently behave in a more regular manner than the solutions them- 
selves when # < 0. 

5. Further study o f  the subdominant .  In  the study of Cauchy's problem 
for the generalized beat equation 

02U ~ OU 
~ 2 -  = F ( x )  Ot 

and the adjoint (Fokker-Planck) equation one needs solutions of (1.1) having 
special properties. These properties are satisfied by the subdominant solution 
for ~t > 0 and cannot possibly be satisfied by any other solution. For/x < 0 we 
need more information than what is given by Theorem 5. In particular, we 
want to know if 

(5.1) lira w§ (x, ,~) = 0, 
~---> oo  

(5.2) $" (x) w+ (x, ~) e L (0, ~ )  

:for values of ), in the left half-plane at some distance from the negative real 
axis. The present section is concerned with these and related questions. We 
s t a r t  by introducing some notation anc~ definitions. 

We set 

~(5.3) F 1 (x) = f $" (s) d 8, $'�89 (x) = f V F  (s) d 8. 
o 0 

A positive function G (x) will be said to be of upper order eo~ and lower order 
�9 ol (at infinity) if 

(5.4) lim sup log G (x) = { co2 
~-.0r inf log x o) 1 

F(x )  satisfies the condition M (a) if 

(5.5) lira sup log $'1 (x) a < oo. 
~ - ~  $'�89 (x) 

Finally P(~) shall denote the part  of the complex 2-plane to the right of the 
parabola 

(5.6) 4 ~ cos 2 ~ = ~/~, it = ~ e ~ i r, 

having its focus at the origin and its axis directed along the 'negatixe real axis. 
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Theorem 6. I /  L+ (x, +1)EL (0, oo), then the area swept by the radius vector of 
w+ (x, +1) is finite and (5.1) holds. 

Proof. From the expression for the transverse acceleration in (1.6) we get 

I w+ (x, 2) 12 0+ (x, 2)= - -~N+ (x, +1) 

so that  a necessary and sufficient condition that  the radius vector sweep a 
finite area is that N+ (x, +1) E L (0, co) and this is certainly satisfied if L+ (x, +1) E 
E L (0, co) or, what is equivalent, that  [L1 (x, ~)]-i E L (1, c~). Formula (4.9) 
shows then that  w+ (x, 2) tends to a limit which must be zero since x F (x)r 
eL(0 ,  c~). Formula (4.10) gives a 

Corollary. The area swept by the radius vector o] w+ (x, 2) is ]inite and (5.1) 
holds, both /or +1 in P(a), i] exp [F�89 is o] l~wer ordzr 1/a. 

Theorem 7. A su/]icient condition that S+(+1) be o/ ]inite length is that: 
I wi (x, 2) ]-1 E L (1, co). In  this case (5.1) also holds. 

This follows from (4.1) combined with (3.15). The condition is not necessary 
even for real positive +1. 

Let us now turn to the validity of (5.2)the dynamical interpretation of 
which is that  the length o/ the hodograph o/ S§ (+1) is finite. 

Theorem 8. (5.3) is valid i/ anyone o/ the /ollowing conditions is satis/ied .~ 

(i) ~ > 0 ,  
(if) F (x) E L (0, c~), 2 E A, 
(iii) F (x) satis]ies condition M (a) and +1 E P (a). 

Proof. Case (i) follows from (1.5) wit.h r = r . - I w .  (t, 2)I. If  # > 0, we know 
that  r ~ 0 ,  r+ d 0 ,  so that  r: tends to a finite limit when t -+c~.  Hence 
r :  E L (0, oo) and the conclusion is immediate. The fact that  also (0+) 2 r+ EL (0, cx~) 
is used in the proof of (4.7). Case (if)follows from Theorem 5 and Schwarz's; 
inequality. 

Case (iii) is based upon the implications of formula (3.15). We have 

f fF(~)lwl(~,+1)ld~ f Li(~,+1)d~ F (x) I w+ (x, 2) I d x < sec 2 y Lx (x, +1) < 1 sec2 Y 
e [ wi (x, +1) ]Li (x, +l) 

a u a 

This means that  if ] w~ (x, +1)] _-> [L~ (x, 2)] ~ with a fixed s > 0 in the interval 
(a, fl), then the first member is dominated by (ee) - i  sec2 Y [51 (a, 2)] -~. For 
a given s ~ 0, let 

S~ = [x ][ w~ (x, +1)] > [ix (x, 2)] ~, x > 0] 

and let E~ be the complementary set in (0, co). Then the integral of 
F(x) iw + (x, +1)[ over the set S~ is finite. The assertion is consequently proved 
if we can show that  condition M (a) implies the existence for every )l E P(a) 
of an eo=eo (+1) such that the exceptional set E, is bounded for e ~ e0. This 
is proved by showing that  the assumptions give two estimates of ]w~ (x, 2) 1 in 
E~ and these become inconsistent if e is small and E~ is unbounded. 
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:But 

.SO 

For x in E~ we have by (3.15) 

l wl (x, 2)] > cos 7 [L~ (x, 2)] 1-e. 

g~ 

wl (z, ~) = 2 f ~' (s) wl (s, 2) ds, 
0 

I Wrl (X, ~) 12 ~= ~2 1~ 1 (X) N 1 (X, ~) < ~ F 1 (x) L 1 (x, 2). 

On the other hand, if 6 ) 0  is given, condition M (a) combined with (3.2) 
show that  for large x, x_>- xo, 

~I(X)  (= e (a§189 (x) < Co (2) [L 1 (x, 2)] �89 (a§189 ser y 

The resulting double inequality for ]w~ (x, 2)] implies that  a certain power of 
L 1 (x, 2) is bounded away from zero on the set E~. If E, is unbounded, this 
requires that  the exponent of L I (x, ~) be non-negative. Since 6 is arbitrary, 
this gives 

a 2 

provided e ~ � 8 9  as we may assume. But if 2 = ~ e  2i~ is a point in P(a), this 
inequality cannot hold for arbitrarily small values of ~. This shows the existence 
of an So (2) such that  E~ is actually bounded for s ~ So and that  

(5.7) ] wl (x, 2) 1_-> [L1 (x, ~)]~ 

holds for all large x when ~ ~ eo. This completes the proof. 
I t  shold be observed that  (5:2) also implies 

(5.8) w+ (x, 2) ~ arg w§ (x, ~) c~), 

(5.9) lim w~ (x, A) = 0. 

The first relation follows readily from (1.5), the second is implied by 

0 

and x F (x) r L (0, c~). 
The peculiar condition M(a) serves to exclude functions E(x) of highly ir- 

regular behavior. I t  is not necessarily satisfied by increasing functions F (x); 
for such a function the inferior limit of the quotient in (5.5) is always zero, 
but the superior limit may very well be infinite. This happens, for instance, if 

I Gn-i, n - -  l <=x<=n--gni , 

] / ~ ) = [ G n - 1  + g ~ ( x - - n  + gnl), n - - g n l  < X < n  , n = l ,  2, 3 , . . .  
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where 

Gn= ~gk, gk=e kgk-:, go =1.  
k = 0  

While the sudden spurts of $'(x) have very little local effect on $'�89 (x), they 
do affect F1 (x) so strongly that  log $'1 (n) > C n $'�89 (n). 

Condition M (a) is satisfied if there exists a monotone increasing function 
Q (x) such that  
(5.1o) [Q' (x)] ~ _-< $" (x) _-< Q' (x) e ~ ~ (x) 

as is easily seen. Another sufficient condition is the existence of a positive 
integrable function G(u) such that  

t$ 

(5.11) $'(x)<G[F�89 f 
0 

In particular, taking G (u) as a constant, we see that  i/ F(x) is bounded then 
(5.2) holds in some parabolic domain P(a) i] Fi  (c~)< 00 and everywhere in A 
i/ ~'�89 (~ )  = ~ .  

Theorem 9. There exists a parabolic domain P(e) in which (5.1) and (5.2) 
are both satis]ied i] either 

(1) F(x) satis]ies condition M(a), F:(x) is o~ lower order 1/(~, and 
C => max (a, (r a), or 

(2) exp [F�89 is o] lower order l /v,  $'(x) is o] upper order to, and 
c>v(~o + 1). 

Proof. In the first case [F:(x)]-~ c~) for every e > 0  and condition 
M (a) gives 

[$'1 (x)]-~-~ = exp [-- (a + e) (a + ~) $'�89 (x)] 

for x>x~. But if 2qP(aa) ,  then 2r189 cos y=>(a+ s)(a + (~), provided ~ and s 
are sufficiently small. I t  then follows from'(4.10) that  L§ (x, 2) eL(0, c~) so 
the conclusion of Theorem 6 applies in P (aa) while that  of Theorem 8 holds 
in P (a). 

In the second case the Corollary of Theorem 6 shows that  (5.1) holds for 
,~EP(r). For (5.2) we have to go back to the proof of Theorem 8. If E~ is 
the exceptional set in which (5.7) fails to hold for a particular fixed ~, then 

f F ( x )  Iw+ (x, 4)Idx < sec ~ ~ f F ( x )  [L: (x, ~t)]~-: dx. 
E e E 6 

For large values of x we have F ( x ) <  x ~'+~, 8 > 0, while 

log L: (x, 2) > log L: (1, 2) + ( ~ - - ~ )  2~�89 cos ? log x 

by (3.21) and the hypothesis. Since e > 0 is at our disposal, a simple calcula- 
tion shows that  the integral over the exceptional set is finite as soon as 

E P [3 (co + 1)]. This completes the proof. 
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We shall see in the next section that  w+ (x, 4) need not tend to zero when 
x - >  oo and 4 is purely imaginary, but  we have no example of an equation 
for which F(x)w+ (x, 4) fails to be in L (0, oo) for any 4 e A. We have spoken 
above of the exceptional set E~ in which (5.7) fails to hold for a particular e, 
0 ~ e < � 8 9  We do not know if E~ can be unbounded no mat ter  how small e 
is; at any rate the exceptional intervals must  be quite short and far apar t  
because for every 6 > 0 the integral of [L 1 (x, 4)] 1-2~-~ over E~ exists as may 
be shown with the aid of Theorem 4 taking r  u 1-~. 

6. Extremal  problems.  We shall discuss briefly the question of the extrem- 
als for the rate of growth of the solutions. To measure the rate of growth 
of a solution w (x, 4) we use its upper order 

log l ~  (x, 4) 1, 
(6.1) a (4) = a (2, w) = lim sup - -  

x->~ log x 

which may  be finite or infinite. For a given F(x),  the upper order of a 
solution has only two possible values, a ,  (4) and as (4), the former corresponding 
to wl (x, 4), the latter to w+ (x, 2). These orders satisfy the following inequalities : 

(6.2) 

(6.3) 

(6.4) 

a, (4) < �89 < a,, (2) _-< a~ (~), 4 e A .  

,rs(Z) < 0, 1 <  ~ ( 4 ) ,  ~ > 0 ,  

~ (4) < ,r, (~) ,  cr~ (~)  < ~ (2), ~ > 0, 

where as usual 4 = # + i v, Q = 14 I. 
The first par t  of (6.2) follows from 

1~+ (x, 4) - w+ (0, 4)I ~ =< �9 f lw'+ (s, 4)I ~ d8 <: Cx, 
0 

the second from (3.16), and the third from (3.4); (6.3)follows from Theorems 
3 and 5, while (6.4) is derived from (3.6) and (4.7). 

Here (6.2) is a best possible inequality, for if # is given, # < 0, we can 
choose a > 0  and v such tha t  when F ( x ) = ( 1  + ax) -2, the orders as(/~ + iv)  
and a~ (# + i v) both differ from �89 by  less than any preassigned mtmber (see 
also below). This of course also implies that  I w+ (x, 4)[ may  be monotone in- 
creasing to infinity when # < 0, a behavior total]y different from what  takes 
place for #_-__ 0. Formula (6.3) is also a best possible estimate and here we 
can show tha t  the bounds are reached everywhere in the right half-plane for 
a suitable choice of F(x). Thus if 

F(x) = (x + 2) -2 [log (x + 2)] -1 {1 + (a - -  1).[log (x + 2)] -1} 

with a > 1 and 141 =< ~, we have 

I wl (x, 4) 1 =< ~,1 (~, 12 I) =< wl (~, ~). 
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But for ; t = a  the equation has the solution (x + 2)[log (x + 2)] ~ and this is 
manifestly not the subdominant solution. Its order being unity, it follows that  
O'n (2 )  = 1 for # > 0. Further 

w+ (x, a) = [co + o (1)] [log (x + 2)] -o,  

so that  a s (a )=0  and a simple argument shows that  as(A)=0 holds for /~>0. 
Theorems 3 and 5 suggest the possibility of wl (x, vi)= O(x) and w+ (x, vi)= 

=0(1 ) ,  not o(1), for suitable choices of F(x). This is indeed the ease, but  
examples are harder to construct. We may take, however,  as argument the 
function 

0+ (x) = [log c] ~ - -  [log (x + c)] ~, c > 1, 

and determine the corresponding absolute value r+(x)=r+(x, 1) as the sub- 
dominant solution of the differential equation 

r"  = ~ (x + c) -2 [log (x + c)]-] r. 

By Theorem 1, r+ (x) = 1 + o (1) (with a suitable normalization of the solution) 
and the function r+(x) d~ (~) satisfies a differential equation of type (1.1)with 
2 = i  and F ( x ) >  0 for x_>0, provided c is sufficiently large to start  with. 
For large x we have 

F(x)=~(x + c)-2 [log (x + c)] - t  [1 + o (1)]. 

This means that  for the corresponding equation (1.1) the solution w+ (x, i ) i s  
a constant multiple of a function which for large x is of the form 

[1 + o (1)] e - i  [,og (x+c)]~ 

so that  the spiral S+ (i) has an asymptotic circle. Naturally such a circle can 
arise only when F (x) E L (0, c~). The corresponding solution w 1 (x, i) may be 
shown to be O(x), the minimal order, with the aid of (4.5) and (4.6). 

Let  us finally consider the class L of all linear differential equations of type 
(1.1) with xF(x)r For each equation in L there are two indices 
an(2;-~) and as (2 ;F) .  For a given XEA we consider inf a~ (2 ;E)  and 
sup as().; F ) w h e r e  F(x) ranges over all admissible functions. These two 
quantities depend only on arg 2 = q  and not on I) l]=~ since 

a(eei~; ~')=a(eir eF). 
Therefore we define 

(6.5) cos(q) = sup as (eir F), o~, (q )= inf  an(eir ~). 
Evidently 

(6.6) ws (q0) =-- 0, co,(~0) ~ l, - -  �89 ~0< �89 

In the remainder of A. the situation is different, but  we are unable to deter- 
mine the exact values of the extremal functions. We shall prove merely the 
following inequalities : 

(6.7) cos (V) > �89 [1 - -  sin I~ol], r189 + s i n l v l ]  , � 89  
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For F ( x ) = ( 1  + ax) -2 the solutions are linear combinations of powers (1 + ax)" 
where a satisfies the indicial equation a a ( a - - 1 ) - - ~ = 0 .  Here we set ~=Q e i~ 
and keep ~ fixed, �89 z ~ [ ~ ] <. z. There is a root al with ~ (al) ~ �89 and ~ (al) 
will be a minimum if Q = - - � 8 9  2 cos ~0 and simultaneously the real part  of the 
other root will reach its maximum. Calculating the values of these extrema 
we obtain (6.7). We have no means of telling if these inequalities are actually 
equalities; at least the right hand sides have the growth and convexity pro- 
perties as functions of ~0 as we expect the extremal functions o8 (~) and o~, (~) 
to have. 

If it should really turn out that  the functions o[ the form (ax + b) -2 give 
the solution of the extremal problems defined by (6.5), it might be of some 
interest to observe that  the same class of functions is connected with condition 
M(a) of (5.5). One might ask if the related functional equation 

log [1 + a F 1 (x)] = a F�89 (x) 

has a solution. Here we have replaced Fl(x)  by 1 + aFl(X) to get the ap- 
propriate normalization at  the origin. Twofold differentiation gives a first order 
differential equation for F(x) and 

F (x) = (1 - -  ax) -2 

satisfies the equation for O < x ~  1/a. The fact that  the solution has only a 
finite range of existence, underlies the fact observed above that  the inferior 
limit of the quotient in (5.5) is zero for increasing functions. 
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