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§ 0. Infroduetion

That non-empty, connected, non-orientable compact surfaces Y, with non-
empty boundary 98Y, can bear a structure, a dianalytic structure, which allows one
to define the notion of analytic “functions’ on them has been known essentially since
Klein’s 1882 monograph [6]. However, only recently have the standard algebra
A(Y) of all continuous “functions’ on Y that are analyticon Y\2Y = Y°, and
the algebra H”(Y°) of all bounded analytic “functions” on Y°, been studied by
Alling, Campbell, and Greenleaf [2, 3, 4, 5]. In these papers it has been shown that
A(Y) is a real Banach algebra which does not admit a complex scalar multiplication,
whose maximal ideal space is ¥, and whose Silov boundary is 0Y. Further it
has been shown that A(Y) is a hypo-Dirichlet algebra whose deficiency is ¢ — 1,
¢ being the first Betti number of Y, and that A-%(Y)/exp A(Y), the factor group
of units modulo exponentials, is isomorphic to Z, ® Z°".

The purpose of this paper is the study of the closed ideals of 4(Y). ¥ admits
an unramified double covering morphism p of a compact bordered Riemann surface
X such that p(8Y) = 0X, and X admits an antianalytic involution ¢ that
commutes with p. This orienting double (X, p, 1) of Y is unique up to an analytic
isomorphism. Let A(X) be the standard algebra on X and for f in A(X), let
o(fy=wuofor, % being complex conjugation. Then ¢ is an R-automorphism
of A(X) of period 2 that is an isometry. A(Y) is naturally R-isomorphic and
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isometric to {f in A(X):o(f) = f}: ie., to the set of all symmeiric elements of
A(X). Let A(Y) then be identified with this set. If X is any compact bordered
Riemann surface, the ideal theory of A(X) has been extensively studied. If b is
the first Betti number of X, the classical case b = 0 where X 1is the closed
unit disk, was done by Beurling [unpublished] and by Rudin [10]. The case b > 0
was handled in {7, 11, 12] by Limaye, Stanton, and Voichick. While in [12], Voichick
used so-called multiple-valued “functions”, the results of Stanton [11] are not as
strong as those of the classical case. We have, therefore, included in § 2 the in-
trinsic characterization given in the second author’s thesis [7], written under the
direction of the first author, which proves to be particularly useful in pushing the
results down to Y from its orienting double X.

Since the above characterization is in terms of inner functions, we felt it necessary
to give in § 1 the foundations of the theory of generalized inner functions, functions
which are independent of the choice of a basis of 4(X) modulo exp 4(X). In
order to get sharp technical results, though, we do use inner functions relative to a
fixed basis. A particularly suitable basis had to be found to be able to define
symmetric inner functions in a satisfactory fashion. This we achieve in § 8 and § 4.
It also enables us to carry the factorization of functions in H*(X°), Limaye [8, 9],
to those in H”(Y°), and to show that each ‘“function” in H®(Y°) is in some sense
a g-square root of a function in H*(X°). This we do in § 5. In § 6 the notion of
symmetric closed ideals of A(X) is introduced and is shown to reflect exactly the
theory of the closed ideals pulled up from A(Y). We illustrate this by considering
the standard algebra on the Mébius strip. While Theorem 4.2 is the crucial technical
result, the main theorem of the paper is Theorem 6.2.

§ 1. Inner and outer functions

Let z, be a point in the interior X° of a compact bordered Riemann surface X,
and consider the harmonic measure m, = m on 98X with respect to z, It is well
known that the space L*(9X, dm) does not depend on the choice of the point z,
in X° Let H”(dm) denote the weak-star closure of {f],x :f in A(X)} in L*(dm).
It is isometrically isomorphic to the space H*(X°) of all bounded analytic functions
on X°, where a function f in H”(dm) corresponds to the function f in H*(X®)
whose non-tangential boundary values are equal to f.

Let (log [A~YX)|> denote the real span of {log |f|:f in 4A-4X)}, considered
as imbedded in LY(dm). If f is a non-zero element of H*(dm), then log |f| belongs
to Il(dm), by the Jensen inequality.

Definition 1.1. A function f in H®(dm) is called a generalized inner function
(gif.) if log |f| belongs to dlog |AXX)|>. It is called an ouler function if

log 1f(zo)| = [5x log |fldm.
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Remark 1.2. The definition of the generalized inner functions is intrinsic for the
algebra A(X). It is also easy to see that the definition of the outer functions does
not depend on the choice of the point z, in X° It is natural to investigate the
overlap between the g.i.f.s and the outer functions. For this we need to know the
structure of A-1(X). The basic result, proved by Wermer [14, Lemma 1] states that
if {y1,...,9s} is a basis of the first homology group of X with integral coefficients
then there exist Z;, ..., Z; in A-1X), which are analytic across 98X, such that

(1/2n) ‘/’b d(log |Z,]) = 0;,0, 1 <,k <D.

¥j

It shows that {log |Z,],...,log |Z|} is a basis of the real vector space V of all
real-valued harmonic functions on X° modulo the subspace of the real parts of
all analytic functions on X°, and that {Z,, ..., Z} is a basis of the multiplicative
group A-1X) modulo the exponentials in A(X). This, in turn, implies that
if {Wy,...,Ws} is any other basis of 4-YX) modulo exp A(X), then
{log |W1], ..., log |Ws|} is a basis of V.

ProrostrionN 1.3. A4 function f in H™(dm) is a g.i.f. as well as an outer function
if and only if f belongs to A—YX).

Proof. A function f in AY(X) isa g.if. by definition. That it is an outer function
follows by using the Jensen inequality both ways. Conversely, let f be an outer
function and let log |f| = > i&;log |f;|, where «; are real numbers and f;
are in A"Y(X). Then

A n

tog [f)] = 3 [ oo fidm, = 3 a5 Tog 1521

=1
ox
for each z in X°, since the definition of the outer functions does not depend on
the point z, in X°. Letnow {Z,...,Z} bea basis of 43(X) modulo exp A(X),
as in Remark 1.2. Then, f; = Zi%i-....- Zj»i - expg;, where n,; is an integer
and g; is in A(X), for 1 <k <b. Hence there exist real numbers a; and a g
in A(X) such that

N b
log | f(2) :V;a’k log |Zy(2)] + Re g(z) .

Now if we integrate the conjugate differentials over the homology cycle y;, 1 <j < b,
it becomes clear that each @, is an integer, and that f= Z3...Zp -expyg.
The above proposition indicates that if we use the g.i.f.s in the description of
the closed ideals of A(X), the characterization could be unique only up to a factor
of a function in 4-'(X). Since we know the structure of 4-1(X) modulo exp A(X),
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we shall get more precise information if we define and use inner functions relative
to a fixed basis of 4A1X) modulo exp A(X).

Definition 1.4. Let {Z,...,Z,} be a basis of AYX) modulo exp A(X).

Then a function f in H%(dm) is called an inner function relative to {Z, ..., Z}
if log |f| Dbelongs to og |Z;|,...,log |Zi}>. If log |fl = z]';l «; log |Z;|, then
the real numbers «; are uniquely determined by f.

A function f in H®(dm) would be an inner function relative to {Z,, ..., Z;}
as well as an outer function if and only if f=¢Z]1-...- Zy®, where ¢ is a complex
constant of absolute value 1, and m,, ..., ms are integers. Such a function will
be called a trivial inner function relative to {Z, ..., Zs}.

Remark 1.5. It is clear that an inner function relative to {Z,,...,Z} is a
g.if., and conversely if f isa g.i.f., then there existsa g in A(X) suchthat f-expg
is an inner function relative to {Zi, ..., Z:}.

Remark 1.6. A factorization of a function in H*(dm) into an inner function
relative to {Z;,...,Zs} and an outer function, unique up to a factor of a trivial
inner function, was given by Limaye in [9]. In developing the ideal theory of 4(X),
we shall use the following two facts from this function theory.

(i) Given a point z in X°, there exists an inner function f in 4(X) such that
the only zero of f on X is a simple zero at =z.

(i1) Given a closed subset E of 0X, of m-measure zero, there exists an outer
function ¢ in A(X) such that E is precisely the zero set of ¢ on X.

§ 2. Closed ideals of A(X)

The characterization of the non-zero closed ideals of A(X) which we give
here is based on two celebrated function algebraic results, we now quote.

ToE F. AND M. Riesz THEOREM. Let u be a finite complex Baire measure on
0X and let pa + ps be its Lebesque decomposition w.r.t. the harmonic measure m.
Then p is orthogonal to an ideal I of A(X) if and only if . and ps are orthogonal
to I. If, in particular, u is orthogonal to A(X), then u, = 0. (Cf., Theorem 3.1
of Ahern’s and Sarason’s [1], and Lemma 3 of Wermer’s [14].)

THE INVARIANT SUBSPACE THEOREM. Let M be a simply invartant subspace of
H*(dm): that is, let M be a weak-siar closed subspace of H®(dm) such that
AX)M c M, and the closure of A,M 1is strictly contained in M, where
Ay ={fin A(X) : f(z)) = 0}; then there exists an inner function w (relative to
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{Zy, ..., 7Z}) such that M = wH®(dm). (Cf., Lemma 14.3 of Ahern’s and Sarason’s
(1)

We now prove a lemma which shows that a closed ideal I of A(X) is determined
by its weak-star closure in L*(dm) and its hull on 0X.

LemMA 2.1. Let I be a closed ideal of A(X), and let [I], denote its weak-star
closure in L*(dm). Let E={xmX:flx)=0, for every f in I}, and
IE)y={gm A(X):g=10 on E}. Then

I=[I,NIE).
Proof. Let C(0X)* denote the continuous dual of C(8X): that is, the space
of all finite complex Baire measures on 9X. We shall write f L pu, for f in C(2X)

and g in C(dX)*, if f is orthogonal to u; yy < u,, if py is absolutely continuous
w.rb. py; and py Loy, if gy and p, are mutually singular. Define

I* = {uin C@X)* :p L I},
ID ={ginI':p<m} and I} ={uinl*:u L m}.
By the F. and M. Riesz theorem, I* = I} 4 I!. Thus,
I={finCX):f LI}
= {fin C(3X):f L I*} N {fin C(3X) : f L I}}.

But Ic[I],NC0OX)c{finC(@X):f L It}, and the second part of the F.
and M. Riesz theorem shows that I c I(E) c {fin C(éX):f L I}}. Thus, I =
[I], D I(E).

THEOREM 2.2. Let I be a non-zero closed ideal of A(X). Then there exists an

inner function w (relative to {Z,...,7Z}) and a unique closed subset E of 09X,
of harmonic measure zero, such that I = wI(E). The inner function w is determined
up to a trivial tnner function relative to {Z, . .., Z}.

Proof. Lemma 2.1 gives I = [I], N I(E). Now suppose that there exists a
function f in I such that f(z)) % 0. Then [I], is a simply invariant subspace of
H>(dm) and by the Invariant Subspace Theorem, there exists an inner function
w relative to {Zj,...,Z} such that [I], = wH”. If, on the contrary, every
function in I vanishes at 2z, then let £ be the smallest positive integer such
that each f in I has a zero of order at least &k at z, If f is an inner function
in A(X) relative to {Z,...,Z} having its only zero on X a simple zero at
20 [f7*I]4 is again a simply invariant subspace of H®(dm). Thus, in any case,
there exists an inner function w relative to {Z, ..., Z;} such that [I], = wH®
and hence I = wH> N I(E).
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We now note that if w is an inner function relative to {Zi, ..., Z}, and x
a point in 80X, then @ can be extended continuously to a neighbourhood of
in 9X if and only if w is bounded away from zero in a neighbourhood of z in X
(cf. §3 of Limaye’s [8]). This, in particular, shows that if w is invertible in L*(dm),
then w is invertible in A(X), and hence is a trivial inner function. Also, it shows
that if f = wg, where f isin A(X) and g isin H®, then ¢ is, in fact, in A(X)
and ¢ vanishes on X wherever f does. These considerations enable us to con-
clude that wH”* N I[(E) = wl(E).

Finally, let us consider the question of uniqueness. Assume that I is also
given by wI(H,). Let g be an outer function in A(X) that vanishes precisely on
E. Then wg = wyg,, where ¢, is in I(E,). Since g is outer, the uniqueness of
the inner-outer factorization shows that w; divides w in L*(dm), and since g¢
vanishes precisely on X, E,c E. Similarly, w divides w; in L*(dm) and
E c E;. Thus, w/w;, being invertible in L®(dm), is a trivial inner function, and
E=E,.

COROLLARY 2.3. Every closed ideal of A(X) ts the principal closed ideal generated
by a function in A(X).

Proof. Let I be a non-zero closed ideal of 4(X) and I = wI(E) asin Theorem
2.2. Let g be an outer function in A(X) which vanishes precisely on Z. Then
I is the closure in A(X) of the ideal generated by wyg.

§ 3. Symmetric and antisymmetric harmonic functions

In this section we shall give an account of symmetric and antisymmetric real-
valued harmonic functions and solve the obstruction problem occasioned by asking
when such functions are real parts of global analytic functions. These results will
then be applied in § 4 to questions involving the groups A-YX)/exp 4(X) and
A3 (Y)/exp A(Y).

Let ¢ be the first Betti number of Y; then 2¢ — 1 = b, the first Betti number
of the orienting double X (Cf., Alling [4], (2.b) and (2.¢)).

Let Lg(X°), 4(X°), and A(X°) denote the spaces of all real-valued harmonic
functions on X°, of all analytic differentials on X°, and of all analytic functions on
X°, respectively. For h in Lg(X°), let t*(h) = h o 1; for w in A(X°), represented
by (w;)jes» Where (U}, 2);e; is the maximal analytic structure on X°, let o(w)
be represented by (o(w;))jes; and for f in A(X°) let o(f) =xofo7, where x
is the complex conjugation. 7* and ¢ are R-linear involutions of Ly(X°), 4(X?),
and A4(X°).

Definition 3.1. A function h in Lg(X°) will be called symmetric (resp. anti-
symmetric) if k) =k (vesp. v*(h) = — k).
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Let Lg(X°) (resp. Lg(X°)*) be the subspace of all symmetric (resp. anti-
symmetric) elements of Lg(X°). Since &= (b + t%(h))/2 + (A — 7*(h))/2,
Lp(X°) = Lg(X°y @ Lg(X°)". Of course, each of the direct summands is invariant,
as a set, under 7*: i.e., eachisa submodule over the group algebra R(1, 7*) = R(Z,).
Ly(X°)y and Lg(Y°) are naturally isomorphic, since Y° = X°/{1,7}. We can
similarly define A(X°)’, A(X°)*; A(X°y and A(X°)". For h in Lgp(X°), let
O(h) = dh + i*dh; thus ¢ is an R-linear map of Lg(X°) into A(X°). The kernel
of § is easily seen to be R. For f= 1w+ i, w and v being real-valued, let
Re (f) = u.

Lemuma 3.2. The following diagram is commutative:

A(X?) ° > Lg(X°) > A(X°)
o T* g
v ¥ v
A(X°) —Re_> LR(XO) 5 > A(X°).

Thus Re and & are R(Zy)-linear; and Re (A(X°)) c Lp(X°) and 8(Lx(X°)) c
AX°Y, for j=s or a.

Proof. That the first half of the diagram commutes is clear. As for the second
half, let & be in Ly(X°) and o = d(k). If 2z is a point in X°, then o is locally
of the form dg for some locally defined analytic function g at z, of the form
h 4 ik. If () = 2’, o(g) is an analytic function locally defined at z’, of the form
v*(h) — it*(k). Now, at z’, the real part of o(w) = o(dg) = d(o(g)) is d(z*(h)),
which is also the real part at 2’ of 8(z*(h)). Since this is true for all z in X°,
the real parts of o(8(h)) and &(v*(k)) agree globally. Since an analytic differential
is uniquely determined by its real part, o(d(h)) = o(v*(h)).

Consider now the spaces Lg(X°)/Re A(X°), for j= @, s and a.

THEOREM 3.3. Lgp(X°)/Re A(X°) ~ (Lg(X°)F/Re A(X°)) @ (Lg(X)"/Re A(X°)") .

b, if j=9
dimy Lp(X°)Y/Re A(X°) =3¢ —1, if j=s
¢, if j=a.

Proof. Case j = @ is classical. (cf. Remark 1.2.) In case j = s, the question
was settled by Alling in [4, (4.7)]. Since b = 2¢ — 1, case j = a follows from
the above two. ,

Let I'y,..., I, be oriented Jordan curves in Y° that form a basis for the first
homology group of Y° with integral coefficients such that I3,...,I,_, lie in

c—
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tubular annular neighbourhoods and I, lies in a Mébius strip neighbourhood.
For 1 <j < ¢, the preimage of Ij, under the canonical map p of X° onto
X°[{1, 7} = Y°, has two components, I and I';, which inherit an orientation from
I'. I, has a connected oriented preimage I under p. {I',IYy,..., ., Ti_y, T}
then forms a basis for the first homology group H;(X°, Z), of X° with integral
coefficients.

LeMMA 3.4, Let I' be an oriented Jordan arc or curve in X°; then so is v(I").
If @ belongs to A(X°), then f,(p)w = nof,.a(w).

Proof. This follows by a simple modification of Lemma 3.1. of Alling [4].

Let 4, = (1 —=I)f2, ..., A =T — )2, A =T +1N2,...,
Aye s = (T + I'_y)[2 and /126_1 =1I; and for h in Lg(X°) let

zk(h)=1mf S(h), 1<k<2 —1.
Each 2, is an R-linear functional on Lg(X°). Since d(k) has an exact real part,

namely dh, it is only the imaginary periods of d(h) that concern us.

LemMa 3.5. For h in Lo(X°), A(h) = ... = 2y_,(h) = 0. For h in Lg(X°),
Mh)y=...=2_,(h)=0.

Proof. If h is symmetric (resp. antisymmetric), so is d(h), by Lemma 3.2.
Hence for & in Lg(X°), by Lemma 3.4,

fﬁh), if j=s

ih f o, if j=a.
_ Since each 4, is trivial on Re A(X°), each induces an R-linear functional
A on Lp(X°)/Re A(X°). Given h in Lg(X°)such that 4,(h) = ... = A3,_1(h) = 0,

we find that *dh is exact and &, in fact, belongs to Re 4(X°); thus we have the
following main result of this section.

THEOREM 3.6. {711,.. 1,,} is & basis of Hompg (LR(X°)/ReA(X°), R).

Lg(X°)/Re A(X°) ~ {i, .. };,,}l and Lg(X°)*[Re A(X°)* ~ {/11, .. C_I}L
Proof. Since 51(;&) =.,..= /ll(i:) =0 implies b= 0, as noted above,
{A ov vy Zb} spans. By Theorem 3.3, dimp Lp(X°)/Re A(X°) = b; thus it is a

basis. Using Lemma 3.5 and Theorem 3.3, the rest follows.
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§ 4. Relations between A~'(X)/exp A(X) and A~'(Y)/exp A(Y)

Since there exists a natural R-isomorphism of A(Y) into A(X), and since
under this isomorphism units go to units and exponentials go to exponentials, there
exists a homomorphism o of A-1(Y)/exp A(Y) = G(Y) into A(X)/exp 4(X) =
G(X). Since — 1 belongs to exp A(X) but not to exp A(Y), its image in G(Y)
is a non-trivial element of the kernel of «. It is well known (cf. Remark 1.2) that
G(X) =Z° and (Alling [4, 5]) that G(Y) ~Z, @ Z° . In this section we shall
analyse the kernel of «, the image of «, and the action of ¢ on G(X). While
doing so we shall find a basis of G(X) that will serve us well in § 5.

Given f in AYX), let dI(f) = df/2zf on X°, then dl is a homomorphism
of A7(X) into A(X°). It is easy to see that dI(f) is an exact differential if and
only if f is an exponential. Thus dl induces a monomorphism of G(X) into
A(X°)/dA(X°). For each f in A}X), di(f) has only imaginary periods.

LemMA 4.1. Given [ in AYX), then dl(a(f)) = o(dl(f)).

Proof. If w in A(X°) has a representation gdk locally, then o(w) has a re-
presentation o(g)do(h) locally. Now, o(dl(f)) = o(df/2nf) = do(f)/2no(f) = dl(a(f))-

In order to investigate the action of ¢ on A-Y(X), let us proceed, following
Wermer [14], as was done in Alling [4, § 5], by imbedding X in a slightly larger
non-compact Riemann surface X’ in such a way that Iy, I'yY,...,I._, I'l_,, T.
(see § 3) is a basis of H(X',Z). Choose wu;, ..., u,_; in Lg(X') and u, ..., %
in Lg(X')* such that their images {uy, ..., %} in Ly(X')/Re A(X') form a basis
dual to {4, ..., }:,,} (See Theorem 3.6 for details.)

THEOREM 4.2. There exists a basis {Z,, ..., Z,,_,} of AX) modulo exp A(X)
such that

Zj, ISjSG——l,

o(Z) =3 Zi( it ¢c<j<2—2,

J

—Z7Y j=2 —1.

J

Moreover, each Z; is analytic across o0X.

Proof. Let vy, =uy,...,0,_1=mu,_,
Vo= (U — %)[2, . ., Vge_g = (U1 — Uy, _,)[2, and
Vge_1 = Uze_g -

It can be verified that {;,...,%,_,} is a basis of Lg(X’)/Re A(X’) dual to
{#1, . . ., fige_1}, where, for h in Lg(X’),
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wty=Tm [ o, ]
Jo 0,

|

J

”j+(c—1)(k) = Im f o(h) ,

—(l}/+1}l/)

pge—r(h) = Im o(h) .
J

Moreover, we have

g, 1<j<c—1,

i
™) = (Y- — Y € <) <2 —2,

—_— ?)j’

j=2c—1.

Let now w; = 6(y;) for 1 <j < 2¢ — 1. Then, by Lemma 3.2, o(w;) = §(v*(v;)),

which gives
;5
o(w;) = Oj_(e—1y — Wj, € <j <2 —2,

1<j<e—1,

J i
—w, J=2c—1.

Let x, be a point in I, and let I' be a positively oriented Jordan arc in I,

<

from x, to 7(xy); thus I+ o([) = I.

¢

Let f’f‘x")wzfrw and f:gxq)wzf,(r)w, for o in AX"). For 1 <j <

2¢ — 1, and for z in X, let
(o)

Z;(x) = exp (27; f w, — 7 f a)j)

X0 Xy

(Cf. Alling [4], § 5.) Since all the real periods of w; are zero and since the imaginary

periods of it, via {I}, I'f,..., [._y, I, I} — a basis for H(X',Z) — are
all integral, Z; is a well defined analytic function on X’. Now, for all z in X,

7(x) (%)

0(Z;)(x) = # o exp (2n f W — T [ wj>

X X0

z(x) ()

=exp(2nxofwj+n%o/wj).

o) Xo

By Lemma 3.4 and the relations between o(w;) and w;,
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fwj, if 1<j<e¢—1,

%

J

—fwj, if j=2 — 1

Also, for 1 <j <2 —2, 0= [p 0= [ro+ [(yo,=[ro;+xo[p00).

X o f ; = / (wj_(c_l) -—_ w) N lf C Sj S 2¢ — 2,

Hence, for 1 <j <c¢— 1, Re fpw =0, and xoft(x“) ;= — ;(Ox") w;; while for
. o t(x,,) (o)
c<j<2—2, xofpmj__———f_p )———f O o 1)+f w;. From these

calculations it follows that o(Z) =2, if 1<j<e¢—1; and =2, ,Z7,
if ¢ <j << 2¢ — 2. Finally, consider the case j=2¢ — 1. Now, 1 =1Im fpc, Wge_1

= 2TIm fI‘w2c—1' Let fzix") wy,_1 =8+ 4, s and ¢ reals; then ¢ = 1/2. Hence,

E7

6(Zg,_1) = exp (— 2n f:o W1 + 78 — 7i[2) = exp (— 2n f:“ Wgo—1 + (8 + 2/2) — ix)

= — 75, .
Since each Z; is analytic on X’ D X, each is analytic on 9X; thus it only
remains to show that {Z,,..., Z,} is a basis of 47(X) modulo exp A(X). Let

the following homomorphisms be defined for f in A1X): a,(f) =1Im f v AUS),

() =Im [ dlf), el =In [ g A aalf) =
=Tm [y pdif), and gy (f) =1Im [,7di(f). Note that each a, is
a homomorphism of A4-3X) into Z, having exp 4(X) in its kernel. Let
a(f) = (@ (f), . - ., @(f)); then @ is a homomorphism of A-YX) into Z°,
having exp A(X) as its kernel. Thus & induces a homomorphism a of

X)lexp A(X) (= &X)) into Z'. Since dl (%)) = w;, and  w; = d(vy),
{vl, ., 7} being a basis dual to the basis {iy,..., &}, it follows that
%) =6, 1<j,k<b. Thus the map a of X) into Z* is surjective.
Since G(X) is known to be a free abelian group of rank b, & is an isomorphism,

and the images of Z,...,Z, generate G(X).
Remark 4.3. It should be noticed that the above theorem has a rather easy
proof as follows. Let {Wy, Wi,..., W._,, W._,, W;} be a basis of AYX)

modulo exp A(X) corresponding to the basis {I'y, — I'{,..., I _, — I'l_y, 'y} of
H,(X',Z). (Cf., Remark 1.2.) Then we can assume without loss of generality
that W =o(Wy),..., W, ,=0aW._)). Let now Z,= W, -o(Wy),...,
Z, =W 1 o(W._), Z,=Wi...,Zg_ o= W.,, and Z,= W, Clearly
Zyy ..., Z,_y are symmetric. Also, (%) = o(W;_(_y) = Z;__1Z; ', for
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¢ <j <2 — 2. Finally, since {W, Wy, ..., W._,, W,_,, W;} is a basis of 47(X)
modulo exp A(X), o(Z)) = o(W}) = W"Wi™ ... W W W™ exp g, where
m’s and n’s are integers, and ¢ belongs to A(X). If we consider the differential
dl (¢(W;)) and its periods on the above basis of H (X', Z), it is apparent that
My=mn =...=my_y="n,_;=0, and m, = — 1. Thus, o(Z;)= 7, exp g.
Since exp g = Z;0(Z;), expg is symmetric, and o(g) = g + 2kni, where k is
an integer. Let Z, = Z;exp (— ¢/2), then o(Z,) = 4+ Z;'. It only needs to
consider the winding number of Z, around I'. to discard the positive sign and
obtain ¢(Z;) = — Z; ..

Even though the proof of Theorem 4.2 which we have given earlier is much
longer, it is move instructive in the sense that it actually gives the construction of
the required basis starting with the symmetric and antisymmetric harmonic
functions.

THEOREM 4.4. Let o be the natural homomorphism of G(Y) into G(X). Then
the kernel of « 1is isomorphicto Z, and the image of x 1s a free abelian group which is
o direct summand of G(X) of rank ¢ — 1. ¢ induces an action G on Z' which takes
(Mgy oo ey Mgy Mgy o v v s Mgy ) 8O (Mg, o vy o1, T — My o o, Ty — Mge_3, — My)e

Proof. Let f be in the kernel of «; then f= o(f) and f= expg for some ¢
in A(X). Hence exp g = exp o(g) which implies that g — o{(g) = 2kni, for some

integer k. Thus f=exp (g — o(g))/2+ exp (g + o(9))f2 = & exp (g -+ 0(9)/2,
dependmg on k being even or odd. Since (g - o(g9))/2 is symmetric, f=1 or
—1; and kerx ~ Z,. Let now {ZI, .. Z,,} be a basis of G(X), asin Theorem
4.2. Since %y, ...,7%4,_, are symmetrlc, Zl, R Z _1 belong to im«. Now let
f bein im «; then f= o(f), and }': Z’{'I ., Z’"b for some integers my, ..., M.
But o(f) = Zyvtme ., . - Zregitmaem2gom 220”2; 2. Z7™, Thus, m,=...=
my = 0. This shows that im « is generated by Zl, ce e, Z~c_1. Since we know the
action of ¢ on Z;, we know the action of o on Z°, which is written out above.

§ 5. Symmetric inner functions

The algebra H®(Y°) of all bounded analytic functions on Y° is isometrically
R-isomorphic to {fin H*(X®) : o(f) = f}, and we will identify it with this algebra.

Definition 5.1. A function f in H®(dm) such that o(f) = f is called a symmetric
generalized inmer function (s.gif) if log |f| belongs to (log |[AYY)]). If
{Wy, ..., W,_} is a basis of the free part of 4-}(Y) modulo exp 4(Y), a function
f in H®(dm) such that o(f) = f is called a symmetric inner function relative to
{Wy ..., W} if log |f| belongs to (log |W,}, ..., log |W,._;}).



IDEAL THEORY ON NON-ORIENTABLE KLEIN SURFACES 289

It should be noticed that if {Z,, ..., Z,_,} is any basis of the free part of A-1(Y)
modulo exp A(Y), there exist Z,,...,Z, in AX) such that {Z,,...,Z,} is
a basis of 4-1(X) modulo exp 4(X) satisfying the conditions of Theorem 4.2, If
f is an inner function relative to such a basis, then so is o(f). We choose such a
basis and in this section by an inner function we shall mean an inner function
relative to this basis.

PrOPOSITION 5.2. Let f be in H®(dm) such that o(f) =f. If f isa g.i.f., then,
wn fact, f is a s.g.e.f.; and if f is an inner funciion then f is a symmetric inner
SJunction.

Proof. Let log |fl = Z «; log |Z;], where %, - .. ,0q are real numbers; then

log |o(f)| = Z (0 + 80 1) log 1Z;] — z olog |Z;|. Since f=o(f), and since
J Jj=

o; is uniquely determined by f, «.=... =, = 0; thus f is a symmetric inner

function. If f were a g.i.f., it similarly follows that, in fact, f is a s.g.i.f.
We now prove a lemma which would prove to be crucial in the description of
the closed ideals of A(Y).

Levma 5.3. If w is an inner function such that o(w) differs from w by a factor
of a trivial inner function, then there exists a symmetric inner function u which differs
from w by a factor of a trivial inner function.

Proof. Let w = ¢Z - ... Zp* - o(w); then

- Me_ 1 +mMoe_ - —mg,__ —
o(w) = (— Ly™ « Zyvtme o |« ZoeqiTESt L g me L Zo MR e g

Putting this value in the expression for w, we obtain m, = — 2m, , ..., My,_, =
— 2m,_, and (— 1)™ =1, so that m, = 2n,, for some integer n,. If we now

let w=dzr1- «Zy - Zy™ - w, where d is the complex number of absolute
value 1 satisfymg d = (—1)"¢-d; then it is easily seen that o(u) = u.

Here we leave the main line of attack on the ideal theory of A(Y) for a while
and indulge ourselves in examining some of the striking consequences of the above
lemma.

An essentially unique factorization of a function in H®(X°) into a Blaschke
product, a singular function and an outer function was given in Limaye [9, § 2].
We now give a factorization of a “function” in H®(Y°). Note first that if f is a
Blaschke product, a singular function, or an outer function, then so is o(f),
respectively.

THEOREM 5.4. Let f be a function in H®(dm) such that o(f) =f. Then there
exists @ symmetric inner function w and an outer function g satisfying o(g) = g
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such that f = ug. Further, the symmetric inner function u factors into a symmetric
Blaschke product and a symmetric singular function.

Proof. Let f= wF where w is inner and F is outer, then o(f) = o(w)o(F).
Since o(f) = f, o(w) isinner and o(F) is outer, and since the factorization is unique
up to a factor of a trivial inner function, w and o(w) differ by such a factor.
Lemma 5.3 then gives a symmetric inner function » such that w = ww’, where
w’ is a trivial inner function. It then also follows that w'F is a symmetric outer
function. If « = BS, where B is a Blaschke product and § is a singular function,

then % = o(u) = o(B)o(S). Now, since the zeros of B and 063) on X° are the
same, B and o(B) differ by a factor of a trivial inner function (cf. Limaye [8],
Proposition 3.1). The required result now follows.

There are two important maps from H*(X°) to H*(Y°), namely the trace
map T(f) =f + o(f), and the norm map N(f) = f- o(f). Since, for f in H*(Y°),
T(f/2) = f, the trace map is surjective. We now prove that the norm map is also
surjective, which shows that each f in H%(Y°) has a sort of o-square root in

H*(X®).
THEOREM 5.5. The norm map N from H®(X°) to H™(Y°) is surjective.

Proof. Let first f be a trivial inner function in H*(Y°); then by Proposition
52, f=1Z" ... Z.°7}, where r = 4 1, and m,, ..., m,_, are integers. Since
— 1= 2y0(Z,), and Z; = Z; (3" 0(Zjye—y)), for 1 <j<c—1, f is clearly
in the range of the norm operator. Now, let B be a symmetric Blaschke product;
then a point @ in X° is a zero of B of order m if and only if z(a) is a zero of
B of order m. Thus, the sequence (a,), of the zeros of B on X° can be divided
as follows: (a,), = (@, 1), U (@, 3)., Where z(a,,) = @, , and (a,,),N (a,.), = 9.
Let .B; be a Blaschke product with respect to (a, ), Then B and ]§1 . o(ABl)
are both symmetric and have the same zeros on X°, and hence differ by a factor
of a trivial inner function in H®(Y°). Thus, B is in the range of N.

Now, if f is in H*(Y°), f= Bexpg, where B is a symmetric Blaschke
product and ¢ is an analytic function on X° such that o(exp ¢g) = exp o(g), by
Theorem 5.4. Since, g — o(g9) = 2kni, for some integer k,

exp g = (— 1)*exp (g -+ 0(9))/2 = Zj exp [(g + 0(9))/4] - o(Z - exp (g + 0(9))/4) -

This proves the theorem.

§ 6. Closed ideals of A(Y)

Consider the R-linear trace map T(f) = f + o(f), for each f in A(X). Since
T@f) = if — io(f) = i(f — o(f)), f=1/2T(f) — 3/2 T(if) = u -+ 4w, where » and
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v arein A(Y). Clearly they are unique. Thus 4(X) = A(Y)[¢], ¢ being quadratic
over A(Y).

Let 9 and %) be the sets of all closed ideals of A(X) and A(Y) respectively.
There is a map that sends I in 2 to INA(Y)=1° in %) called contraction.
There is also a natural map that sends J in 9 to J-A(X)=J°, which is an
ideal in A(X), called extension. Clearly J* = J[i] = J @ 4J, the sum being direct
as a vector space sum over R. Thus, J° is closed and belongs to 9.

An ideal I in 2 will be called symmetric if I = o(I).

ProrosirioN 6.1. The set 7)° of extended ideals is exactly the set D, of symmetric
tdeals of D. Given I in 90, I* =1, and given J in ?, JC = J.

Proof. Let J be in ) and note that J*=J @ iJ. Thus o(J*) =J —iJ =
J + iJ = J°% showing that 7 c 9. Now let I be in 9, and let J=1I
then J°c I. On the other hand, for f in [, f=1/2 T(f) — /2 T(:f), and both
T(f) and T(if) are in J, thus I cJ°. This proves that 9= 9 and that
I=1I for I in 9. Given J in 2, J*=J @ iJ, as a real vector space. The
set of symmetric elements of J° isthen J, hence J* = J; proving the proposition.

THEOREM 6.2. Let J be a non-zero closed ideal of A(Y). Then there exists a sym-
metric inner function w relative to a basis {W, ..., W,_;} of the free part of A7X(Y)
modulo exp A(Y) and a unique closed subset F of 0Y such that J = wJ(F), where
JF)={fin A(Y):f=0 on F}. The symmetric inner function w is determined
up to a factor of a trivial symmetric inner function.

Proof. Let {W,, ..., W,_;} beextended to a basis {W,,..., W;} of A}(X)
modulo exp 4(X) such that

W, 1<j<c—1

o(W;) = Wj—(c—l)Wj—l> c<j <2 —2
_‘Wj_la j:20—1:b,

Since J is in 9, J = J*, where the ideal J°=1I belongs to 9., by Proposi-
tion 6.1. Theorem 2.2 gives the following decomposition: I = wI(E), where w is
an inner function relative to {Wy, ..., W,} and E is a closed subset of 8X of
harmonic measure zero. Since I = o¢(I) = o(w)l(7(E)), the uniqueness part of
Theorem 2.2 shows that F = 7(E) and w = cWit-... - W o(w), where ¢ is
a complex constant of absolute value 1 and m,, ..., m, are integers. Hence by
Lemma 5.3, there exists a symmetric inner function % relative to {Wy, ..., W,_;}
such that w=dWil-... - Wit -u, where d is a complex constant of absolute
value 1 and #,,...,%n, are integers. Thus [ = J° = ul(¥), where E = 7(E).
Since, now, w = g(u) and J = J°N A(Y), we obtain J = uJ(F), where F =
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p(E) and J(F)={fin A(Y):f=0 on F}, p being the map from X to Y.
The uniqueness part is similar to that of Theorem 2.2.

Example 6.3. Let Y be a Mobius strip and let its orienting double be the annulus
X ={z:1/r < |z] <7}, together with the antianalytic involution 7z(z) = — 1/2.
Since in this case ¢ =1, 4"4Y) ~ Z, and the free part of 4-1(Y) modulo exp A(Y)
is trivial; and since b = 1, the function W;(z) = 2z constitutes a required basis of
A-Y(X) modulo exp A(X). Here, a function # in H®(Y°) is a symmetric inner
function if and only if |u| = 1 a.e. on @Y. Thus we see that the non-zero closed
ideals of the standard algebra on the Mobius strip Y are of the form «J(F) where
% is in H®(Y®) with ju| =1 on 90Y and F a closed subset of 9Y. This gives
a precise analog of the classical ideal theory of the standard algebra on the unit disk.
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