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w O. Introduction 

That non-empty, connected, non-orientable compact surfaces Y, with non- 
empty boundary 0 Y, can bear a structure, a dianalytic structure, which allows one 
to define the notion of analytic "functions" on them has been known essentially since: 
Klein's 1882 monograph [6]. However, only recently have the standard algebra 
A(Y) of all continuous "functions" on Y tha t  arc analytic on Y'NOY ~ yo, and 
the algebra H ~ (Y~ of all bounded analytic "functions" on Y~ been studied by 
Alling, Campbell, and Greenleaf [2, 3, 4, 5]. In  these papers it has been shown t h a t  
A(Y) is a real Banach algebra which does not admit a complex scalar multiplication, 
whose maximal ideal space is Y, and whose Silov boundary is OY. Fur ther  i t  
has been shown tha t  A(Y) is a hypo-Dirichlet algebra whose deficiency is c -- 1, 
c being the first Betti  number of Y, and tha t  A-l(Y)/exp A(Y), the factor group 
of units modulo exponentials, is isomorphic to Z~ | Z c-1. 

The purpose of this paper is the s tudy of the closed ideals of A(Y). Y admits  
an unramified double covering morphism p of a compact bordered Riemann surface 
X such tha t  p-l(OY)= OX, and X admits an antianalytie involution ~ t h a t  
commutes with p. This orienting double (X, p, ~) of Y is unique up to an analyt ic  
isomorphism. Let A(X) be the standard algebra on X and for f in A(X), let 
a(f) ~ u o f o r, n being complex conjugation. Then ~ is an R-automorphism 
of A(X) of period 2 tha t  is an isometry. A(Y) is naturally R-isomorphic and 
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isometric to {f in A(X) : a(f) = f}: i.e., to the set of all symmetric elements of 
A(X). Let A(Y) then be identified with this set. I f  X is any compact bordered 
t~iemann surface, the ideal theory of  A(X) has been extensively studied. I f  b is 
the first Bett i  number of X, the classical case b = 0 where X is the closed 
unit disk, was done b y  Beurling [unpublished] and b y  ~ud in  [10]. The case b > 0 
was handled in [7, 11, 12] b y  Limaye, Stanton, and Voiehick. While in [12], Voichick 
used so-called multiple-valued "functions",  the results of Stanton [11] are not as 
strong as those of  the classical case. We have, therefore, included in w 2 the in- 
trinsic characterization given in the second author 's thesis [7], writ ten under the 
direction of the first author, which proves to be particularly useful in pushing the 
results down to Y from its orienting double X. 

Since the above characterization is in terms of inner functions, we felt it necessary 
r give in w 1 the foundations of the theory of generalized inner functions, functions 
which are independent of the choice of a basis of A-I(X) modulo exp A(X). In 
order to get sharp technical results, though, we do use inner functions relative to a 
f ixed basis. A particularly suitable basis had to be found to be able to define 
symmetric inner functions in a satisfactory fashion. This we achieve in w 3 and w 4. 
I t  also enables us to carry the factorization of functions in H+(X~ Limaye [8, 9], 
to those in H~(Y~ and to show that  each "function" in H~(Y~ is in some sense 
a a-square root of a function in H +(X~ This we do in w 5. In w 6 the notion of 
symmetric closed ideals of A(X) is introduced and is shown to reflect exactly the 
theory of the closed ideals pulled up from A(Y). We illustrate this by  considering 
the standard algebra on the M6bius strip. While Theorem 4.2 is the crucial technical 
result, the main theorem of the paper is Theorem 6.2. 

w 1. Inner and outer functions 

Let z 0 be a point in the interior X ~ of a compact bordered l~iemann surface X, 
and consider the harmonic measure m=~ ~ m on 0X with respect to z o. I t  is well 
known that  the space L~(OX, din) does not  depend on the choice of the point z 0 
in X ~ Let  H~(dm) denote the weak-star closure of {f[ox : f  in A(X)} in .L+(dm). 
I t  is isometrically isomorphic to the space H~(X ~ of all bounded analytic functions 

on X ~ where a function f in H+(dm) corresponds to the function f in H~(X ~ 
whose non-tangential boundary  values are equal to f. 

Let  (log [A-I(X)I> denote the real span of (log Ifl : f  in A-I(X)}, considered 
as imbedded in Ll(dm). I f  f is a non-zero element of H~(dm), then log If[ belongs 
to Zl(dm), by  the Jensen inequality. 

Definition 1.1. A function f in H+(dm) is called a generalized inner function 
(g.i.f.) if log If1 belongs to <log IA-l(X)i>. It  is called an outer function if 

log [)(z0) ] = fox log Ifldm. 
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Remark 1.2. The  def ini t ion of the  general ized inner  funct ions is intr insic for the  
algebra A(X). I t  is also easy to see t h a t  the  def in i t ion of  the  outer  funct ions  does 
no t  depend on the  choice of  the  poin t  z 0 in X ~ I t  is na tu ra l  to  inves t iga te  the  
over lap be tween  the  g i . f . s  and  the  ou te r  functions.  F o r  this  we need  to  know the  
s t ruc ture  of  A-I(X) .  The  basic result ,  p roved  b y  Wermer  [14, L e m m a  1] s tates  t h a t  
i f  {yl . . . .  , yb} is a basis of  the  f irs t  homology  group of  X wi th  integral  coefficients 
t hen  there  exist  Z ~ , . . .  , Zb in A-I(X) ,  which are ana ly t ic  across 0X, such t h a t  

f 
~ 

(~/2~) d(log IZ~I) = ~j,~, ~ _<j, k < b.  

U 

I t  shows t h a t  {log ]Zll . . . . .  log [Zb]} is a basis of  the  real vec to r  space V of  all 
real -valued harmonic  funct ions  on X ~ modulo  the  subspace of  the  real  par t s  of  
all analyt ic  funct ions  on X ~ and  t h a t  {Z~ . . . .  , Za} is a basis of  the  mul t ip l ica t ive  
group A-i(X) modulo the  exponent ia ls  in A(X). This, in tu rn ,  implies t h a t  
i f  {Wx . . . . .  Wb} is a n y  o ther  basis of  A-i(X) modulo e x p A ( X ) ,  t h en  
{log IWll . . . .  , l og  [Wbl} is a basis of  V. 

l)~oPosiTiOhr 1.3. A function f in H~(dm) is a g.i.f, as well as an outer function 
if and only if  f belongs to A-I(X). 

Pro@ A funcbion f in A-I (X)  is a g.i.f, b y  defini t ion.  T h a t  it  is an ou te r  funct ion  
follows b y  using the  Jensen  inequa l i ty  bo th  ways.  Conversely,  let  f be an outer  
funct ion and  let  log ]fl = ~ = 1  c~ i log ]fj[,  where cr i are real  numbers  and  f/ 
are in A-I (X) .  Then  

] = 1  
0X 

rt 

-- ~ a i log ]fi(z)] , 
j = I  

for  each z in X ~ since the  def in i t ion of  the  ou te r  funct ions  does no t  depend  on 
t h e p o i n t  z 0 in X ~ L e t n o w  {Z~ . . . .  , Z~} be abas i s  of  A- I (X)  modulo  exp A(X), 
as in R e m a r k  1.2. Then,  fj = Z ~ 1 , 1 . . . . . - Z ; ' b J .  exp gj, where  nk,i is an  in teger  
and  gj is in A(X), for  1 < k < b. ]-[enee there  exist  real numbers  aj and  a g 
in A(X) such t h a t  

b 

log If(z)[ = Z a~ log lZk(z) l § 1% g(z). 

Now if  we in tegra te  the  conjugate  differentials  over  the  homology  cycle ~i, 1 < j  < b, 
i t  becomes clear t h a t  each a~ is an integer ,  and  t h a t  f = Z l l . . .  Z~ b �9 exp g. 

The  above proposi t ion indicates t h a t  i f  we use the  g.i.f.s in the  descr ipt ion of  
the  closed ideals o f  A(X), t he  charac te r iza t ion  could be unique  only  up  to  a fac to r  
of  a funct ion in A-I(X). Since we know the  s t ruc ture  of  A- I (X)  modulo  exp A(X), 



280 N. L. ILLLING AND B. V. LIMAYE 

we shall  get  more  precise in format ion  i f  we define and  use inner  funct ions re la t ive  
r a f ixed  basis of  A - I ( X )  modulo  exp A ( X ) .  

Definition 1.4. Le t  {Z 1 . . . .  , Z b }  be a basis of  A - I ( X )  modulo  exp A ( X ) .  
T h e n  a funct ion  f in H~176 is called an inner function relative to {Z1, �9 . �9 , Zb} 
i f  log Ill belongs to  <log IZI[, . ,  log ]Zb]}. I f  log If[ b �9 " = ~i=1 a1 log [Zil, t h en  
t h e  real  numbers  ~i are un ique ly  de te rmined  b y  f .  

A func t ion  f in H~ would be an  inner  funct ion  re la t ive  to  {Z1, �9 �9 �9 , Zb} 
aS well as an  outer  funct ion  i f  and  only  i f  f = cZ~ 1 " . . . "  Z~ b , where  c is a complex  
c o n s t a n t  of  absolute  va lue  1, and  m~ . . . . .  mb are integers.  Such a funct ion  will 
be  called a trivial inner function relative to { Z 1 , . . . ,  Zb}. 

Remark 1.5. I t  is clear t h a t  an  inner  funct ion  re la t ive  to {Z~ . . . . .  Zb} is a 
g.i.f., and  conversely  i f  f is a g.i.f., t h en  there  exists a g in A ( X )  such t h a t  f .  exp g 
is an  inner  funct ion re la t ive  to  {Z1 . . . . .  Zb}. 

Remark 1.6. A fae tor iza t ion  of  a funct ion in H~176 into an inner  funct ion 
re la t ive  to  {Z1, �9 �9 �9 Zb} and  an  ou te r  funct ion,  unique  up  to  a fac tor  of  a t r ivial  
inner  funct ion,  was given b y  L imaye  in [9]. In  developing the  ideal t heo ry  of  A(X),  
we shall use the  following two facts  f rom this  funct ion  theory .  

(i) Given a po in t  z in X ~ there  exists an  inner  funct ion f in A ( X )  such t h a t  
t h e  on ly  zero of  f on X is a simple zero at  z. 

(ii) Given a closed subset  E of  OX, of  m-measure  zero, there  exists an ou te r  
func t ion  g in A ( X )  such t h a t  E is precisely the  zero set of  g on X.  

w 2. Closed ideals of A(X) 

The  charac ter iza t ion  of  the  non-zero closed ideals of  A ( X )  which we give 
h e r e  is based  on two celebrated funct ion algebraic results,  we now quote.  

TRE F. AND M. I~IESZ T~EO~EM. Let # be a f ini te  complex Baire measure on 
OX and let tea q- Its be its Lebesgue decomposition w.r.t, the harmonic measure m. 
Then # is orthogonal to an ideal I of A ( X )  i f  and only i f  Ita and tz~ are orthogonal 
to I .  I f ,  in particular, tt is orthogonal to A ( X ) ,  then Its = O. (Cf., Theo rem 3.1 
o f  Ahern ' s  and  Sarason's  [1], and  L e m m a  3 of  Wermer ' s  [14].) 

THE INVARIANT SUBSPACE TttEOI~EM. Let M be a simply invariant subspace of 
tt~176 that is, let M be a weak-star closed subspace of H~ such that 
A ( X ) M  c M,  and the closure of AoM is strictly contained in M,  where 
A o = ( f i n A ( X ) : f ( Z o ) =  0}; then there exists an inner function w (relative to 
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{ Z 1  . . . .  , Zb}) such that M = wH~176 (Cf., Lemma 14.3 of Ahern's and Sarason's 
[1].) 

We now prove a lemma which shows tha t  a closed ideal 1 of A(X)  is determined 
by its weak-star closure in L~(dm) and its hull on 0X. 

LEMMA 2.1. Let I be a closed ideal of A(X), and let [1]. denote its weak-star 
closure in L~176 Let E =-= {x in X : f(x) = 0 ,  for every f in I}, and 
l (E)  ~- {g in A (X)  : g = O on E}. Then 

1 = [ I ] ,  n I(E). 

Proof. Let C(aX)* denote the continuous dual of C(aX): tha t  is, the space 
of all finite complex BaDe measures on aX. We shall write f 3_ ~u, for f in C(aX) 
and /~ in C(OX)*, if f is orthogonal to # ;/~1 <</~2, i f / 4  is absolutely continuous 
w.r.t. /~2; and /h 3_/~2, if /~1 and /~9. are mutually singular. Define 

I x ---- {/z in C(OX)* : F 3- I}, 
• {# in I J" m} and = : # Ia = : # << I ,  ~ { #  in  I • 3- m } .  

By the F. and M. Riesz theorem, I z = I x. + I~. Thus, 

I = { f in  C(OX) : f  3- I • 

= { f in  C(OX) : f  2 I~} N {f in  C(OX) : f  3_ I~} .  

But I c [I] ,  N C(OX) c { f i n  C(OX) : f 3_ • I~}, and the second part  of the F. 
and ~ .  Riesz theorem shows tha t  1 c I(E) c {f in  C(OX) : f  • I~} .  Thus, I -~ 
[ i] .  o I(E). 

T~EO~nM 2.2. Let I be a non-zero closed ideal of A(X) .  Then there exists an 
inner function w (relative to {Z1, �9 �9 �9 , Zb}) and a unique closed subset E of OX, 
of harmonic measure zero, such that I ~- wI(E). The inner function w is determined 
up to a trivial inner function relative to {Z1 . . . .  , Zb}. 

Proof. Lemma 2.1 gives I ~ [I] ,  N I(E). Now suppose tha t  there exists a 
function f in I such tha t  f(z0) ve 0. Then [I].  is a simply invariant subspace of 
H~(dm) and by the Invariant  Subspace Theorem, there exists an inner function 
w relative to {Z1 . . . .  , Zb} such tha t  [I] .  = wH% If, on the contrary, every 
function in I vanishes at  z0, then let k be the smallest positive integer such 
tha t  each f in I has a zero of order at  least k at  zo. I f  f is an inner function 
in A(X)  relative to {Z1 . . . .  , Zb} having its only zero on X a simple zero at  
%, [ f -k / ] .  is again a simply invariant subspaee of H~ Thus, in any ease, 
there exists an inner function w relative to {Z1, . . . ,  Zb} such tha t  [I] ,  = wH ~ 
and hence I -~ wH ~176 N I(E). 
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We now note tha t  if w is an inner function relative to {Z1, �9 �9 �9 Zb}, and x 
a point in 0X, then ~v can be extended continuously to a neighbourhood of x 
in OX if and only if ~v is bounded away from zero in a neighbourhood of x in X 
(cf. w 3 of Limaye's [8]). This, in particular, shows tha t  if w is invertible in L~176 
then w is invertible in A(X),  and hence is a trivial inner function. Also, it shows 
tha t  i f f - - - -wg,  where f is in A(X)  and g is in H ~, then g is, in fact, in A(X)  
and g vanishes on 0X wherever f does. These considerations enable us to con- 
clude tha t  wH ~ f3 I(E) = wI(E). 

Finally, let us consider the question of uniqueness. Assume tha t  I is also 
given by wlI(El). Let g be an outer function in A(X)  tha t  vanishes precisely on 
E. Then wg = wxg x, where gl is in I(E1). Since g is outer, the uniqueness of 
the inner-outer factorization shows tha t  w 1 divides w in L~176 and since g 
vanishes precisely on E, E I C  E. Similarly, w divides w I in L+(dm) and 
E c El. Thus, w/w 1, being invertible in L ~(dm), is a trivial inner function, and 
E ~ El. 

COROLLARY 2.3. Every closed ideal of A(X)  is the principal closed ideal generated 
by a function in A(X) .  

_Proof. Let I be a non-zero closed ideal of A(X)  and I = wI(E) as in Theorem 
2.2. Let  g be an outer function in A(X)  which vanishes precisely on E. Then 
I is the closure in A(X)  of the ideal generated by wg. 

w 3. Symmetric and antisymmetric harmonic functions 

In this section we shall give an account of symmetric and antisymmetric real- 
valued harmonic functions and solve the obstruction problem occasioned by asking 
when such functions are real parts of global analytic functions. These results will 
then be applied in w 4 to questions involving the groups A-l (X) /exp  A(X)  and 
A- l (y) /exp  A(Y). 

Let c be the first Betti  number of Y; then 2c -- 1 ---- b, the first Betti  number 
of the orienting double X (Cf., Alling [4], (2.b) and (2.c)). 

Let  .LR(X~ A(X~ and A ( X  ~ denote the spaces of all real-valued harmonic 
functions on X ~ of all analytic differentials on X ~ and of all analytic functions on 
X ~ respectively. For h in LR(X~ let z*(h) --  h o 3; for w in A(X~ represented 
by @j)ieJ, where (U i, zi)se J is the maximal analytic structure on X ~ let a@) 
be represented by (a@j))ieJ; and for f in A ( X  ~ let ~(f)=---z o f  o 3, where x 
is the complex conjugation. 3" and a are R-linear involutions of LR(X~ A(X~ 
and A(X~ 

Definition 3.1. A function h in LR(X ~ will be called symmetric (resp. anti- 
symmetric) if v*(h) = h (resp. v*(h) = -- h). 
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Let  LR(X~ ~ (resp. LR(XO) ~) be the  subspace of all symmetr ic  (resp. anti-  
symmetric)  elements of LR(X~ Since h = (h -4- ~*(h))/2 4- (h -- ~*(h))/2, 
LR(X ~ = LR(X~ ~ | LR(X~ Of course, each of  the  direct  summands  is invar iant ,  
as a set, under  ~*: i.e., each is a submodule over the group algebra R(1, ~*) _~ R(Z2). 
LR(X~ ~ and  LR(Y ~ are na tura l ly  isomorphic, since Y ~  X~ T}. We can 
similarly define A(X~ ~, A(XO)";A(X~ ~ and A(X*) a. For  h in Ln(X~ let  
6(h) = dh 4- i*dh; thus  d is an R-linear map of LR(X ~ into A(X*). The kernel 
of  ~ is easily seen to be R. For  f = u 4 - i v ,  u and v being real-valued, let 

:R,e (f) = u. 

LV, MMA 3.2. The following diagram is commutative: 

ICe 
A ( X  o) - - , .  L R ( X  o ) -,. 3 ( 5  ~ ) 

f f  T *  f f  
I "t "r 

A ( X ~  Ice ~ LR(X~ ~ A ( X ~  " 

Thus Ice and ~ are R(Z2)-linear; and l~e (A(X~ ~) c LR(X~ i and ~(LR(X~ i) c 
A(X~ i, for j = s  or a. 

Proof. Tha t  the f irst  ha l f  of  the  diagram commutes  is clear. As for the  second 
half, let h be in LR(X ~ and  ~o = 5(h). I f  z is a point  in X ~ then  co is locally 
of  the  form dg for some locally def ined analyt ic  funct ion g a t  z, of the  form 
h 4- ik. I f  T(z) = z', a(g) is an  analyt ic  f tmet ion locally def ined at  z', of the  form 
T * ( h ) -  iV(k) .  Now, a t  z', the  real par t  of  a @ ) =  a ( d g ) =  d((r(g)) is d(z*(h)), 
which is also the  real par t  a t  z' of  d(v*(h)). Since ~bis is t rue  for all z in X ~ 
the  real par ts  of  a(~(h)) and  6(T*(h)) agree globally. Since an analyt ic  differential  
is uniquely  de termined by  its real par t ,  a(6(h)) = d(~*(h)). 

Consider now the  spaces LR(X~176 j, for j = D, s and  a. 

T~EOI~E~ 3.3. LR(X~ A ( X  ~ ~ (LR(X~ A(X~ ~) �9 (LR(X)"/ge A(X~ ~ �9 

dim R LR(X~ 2t(X~ i = 
b, if j = D  
c - - 1 ,  if j = s  
c, i f j = a .  

Proof. Case j -= O is classical. (cf. l~emark 1.2.) In  case j = s, the  question 
was sett led by  Alling in [4, (4.7)]. Since b = 2c --  1, case j = a follows f rom 
the  above two. 

Le t  F1 . . . . .  /~o be oriented Jo rdan  curves in yo t h a t  form a basis for the  f i rs t  
homology group of  Y~ with  integral  coefficients such t h a t  F 1 , . . . ,  Fc_l lie in 
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tubular annular neighbourhoods and 1", lies in a M6bius strip neighbourhood. 
For 1 < j < c, the preimage of F/, under the canonical map p of X ~ onto 
XO/{1, z} = yo, has two components, Fj' and 1"j', which inherit an orientation from 
F/. 1", has a connected oriented preimage 1" under p. {1";, F'~ . . . . .  1":-1, 1"~'-1, 1"~'} 
then forms a basis for the first homology group HI(X ~ Z), of X ~ with integral 
coefficients. 

LEM~A 3.4. Let I" be an oriented Jordan arc or curve in X~ then so is z(F). 

!f  belongs to A(x~ then , o  = 

Proof. This follows by a simple modification of Lemma 3.1. of Alling [4]. 
Let  A~ ---- (F; -- F;')/2 . . . .  , A~_I - -  (F;_~ -- F~'_l)/2, A, -~ (F; + F ; ' ) / 2 , . . . ,  

1"' A2~_2 ~ ( ~-1 + 1":-1)/2 and A2~_l = 1":; and for h in LR(X ~ let 

2k(h) = I m f  8(h), 1 < k < 2 c - -  1 g 

Ak 

Each 24 is an R-linear functional on LR(X~ Since 8(h) has an exact real part,  
namely dh, it is only the imaginary periods of 8(h) tha t  concern us. 

L]~I~CII~/IA 3 . 5 ,  For  h in  LII (X~ s, ~c(h) . . . . .  ~ 2 e _ l ( h )  = 0 .  For h in LII(X~ a, 
. . . . .  = o .  

Proof. I f  h is symmetric (resp. antisymmetric),  so is ~(h), by  Lemma 3.2. 
Hence for h in La(X~ i, by Lemma 3.4, 

-- f ~(h), if j = s  

f (h) = r 
J 

F 
] ~(h), if j = a .  T{I l) 
~r 
1' 

Since each 2k is trivial on Re A(X~ each induces an R-linear fanetiona 1 
~ on LIt(X~ A(X~ Given h in LIt(X ~ such tha t  ~ l ( h ) = . . . ~  ~2~_l(h)= 0, 
we f ind tha t  *dh is exact and h, in fact, belongs to Re A(X~ thus we have the 
following main result of this section. 

THEOREM 3.6. {)q . . . . .  ~tb} is a basis of I-Iota R (LR(X~ A(X~ R). 
L l l ( X ~  I~e A ( X ~  s ~-- {~c . . . . .  ~b} • a n d  L l l ( X ~  A ( X ~  a ~-  {~D . . . , ~c-1} • 

Proof. Since 21(h) . . . . .  2~(h) ---- 0 implies h ---= 0, as 

{]1 . . . . .  ~b} spans. By Theorem 3.3, dim R LR(X~ A ( X  ~ = b; 
basis. Using Lemma 3.5 and Theorem 3.3, the rest follows. 

noted above, 

thus it is a 
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w 4. Relations between A-l( X) /exp A( X) and A-'(Y)/expA(Y) 

Since there  exists a na tura l  R-isomorphism of  A(Y)  into A(X), and  since 
under  this  isomorphism uni ts  go to uni ts  and  exponentials  go to exponentials,  there 
exists a homomorphism c~ of  A- I (Y ) / expA(Y)=-G(Y)  into A - I ( X ) / e x p A ( X ) =  
G(X). Since - - I  belongs to e x p A ( X )  bu t  no t  to  expA(Y) ,  its image in G(Y) 
is a non-tr ivial  element of the kernel of c~. I t  is well known (of. l%emark 1.2) t h a t  
G(X) ___ Z ~, and (Alling [4, 5]) t h a t  G(Y) _~ Z 2 | Z c-1. In  this section we shall 
analyse the kernel of ~, the image of ~, and the action of ~ on G(X). While 

doing so we shall find a basis of G(X) that will serve us well in w 5. 

Given f in ~ 4 - 1 ( X ) ,  let dl(f)=--df/2zf on X~ then  dl is a homomorphism 
of A-I(X) into A(X~ I t  is easy to see t ha t  dl(f) is an exact  differential  i f  and  
only i f  f is an exponential .  Thus dl induces a monomorphism of G(X) into 
A(X~176 For  each f in A-I(X), dl(f) has only imaginary  periods. 

L ~ A  4.1. Given f in A-I(X), then dl(a(f))= cf(dl(f)). 

Proof. I f  ~o in A(X ~ has a representat ion gdh locally, t hen  a(o)) has a re- 
presentat ion (~(g)d(~(h) locally. Now, a(dl(f)) = (~(df/2zf) ----- da(f)/2za(f) = dl(a(f)). 

In  order to invest igate  the action of  a on A-I(X),  let us proceed, following 
Wermer  [14], as was done in Alling [4, w 5], by  imbedding X in a sl ightly larger 
non-compact  R iemann  surface X '  in such a way  t h a t  / '~,/ '~ '  . . . .  , F:_~, F :_ l ,  F~' 
(see w 3) is a basis of  HI(X', Z). Choose u~ . . . . .  uc_ 1 in LIt(X' )" and u~ . . . . .  ub 
in L~(X')  ~_ such t h a t  the i r  images { ~  . . . . .  ~b} in LR(X')/Re A(X') form a basis 

dual  to  {21 . . . . .  ~}. (See Theorem 3.6 for details.) 

T ~ 0 R E ~  4.2. There exists a basis {Z 1 . . . . .  Z2~_1} of A-I(X) modulo exp A(X) 
such that 

= {_ 
z~, l < _ j < _ c - 1 ,  
Zj_(c_I)Z;  t, c ~ j ~ 2~ - -  2 ,  
Z'f -1, j = 2 v - - 1 .  

.Moreover, each Zj is analytic across aX. 

Proof. Let  vl - -  ul . . . . .  vc_l ~ uc_l ,  

v~ =-- (u~ - -  u~)/2 . . . .  , v ~ o _ ~  - - - -  (ur - -  u2~_2)/2, and  

V2c--1 ~ ~//2c--1 �9 

I t  can be verif ied t h a t  {Vl . . . .  , v=c-1} is a basis of LR(X')/Re A(X') dual to 
{~1 . . . .  ,~2c-1}, where, for h in La(X'), 
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~j(h) ~ Im f I 

#j+(~_l)(h) - -  Im  f I 
-(0'+~") J 

/~2o_~(h) - -  Im  f 
rJ  

Moreover,  we have  

1 < _ j < c - -  1, and  

I 
vj, l <_j < _ c - - 1 ,  

T * ( V j )  = Vj__(c_l) -- vj, c << j <_ 2c -- 2 ,  

- - v j ,  j = 2 c - - 1 .  

L e t  now e)J = ~5(vi) for  1 < j ~__ 2c --  1. Then,  b y  L e m m a  3.2, a(e)j) = d(z*(vi) ), 
which gives 

l 
e)~, l < j  < c - 1 ,  

,~(e)j) = % - ( c - 1 )  - e)j, c < .  j < 2c - 2 ,  

--o)j ,  j = 2 c - - 1 .  

L e t  x 0 be a poin t  in T~' and  let  F be a posi t ively  or ien ted  J o r d a n  are in F'~ 
f rom x o to  T(Xo); thus  F + T ( F ) = F ' .  

Let P'~~ f f" f ~. ,  o ~  re )  and  .(*0/e)~- 4r) e), for  e) in A(X'). F o r  l _ < j <  
2 c - - 1 ,  and  for x in X,  let  

f 
X,o Xo 

(Of. Alling [4], w 5.) Since all the  real  periods of  e)j are zero and  since the  imaginary  
�9 /t t tt 

periods o f  it, via {F1, F~ . . . . .  Fc_l,  Fo_I, F~'} - -  a basis for  HI(X', Z) - -  are 
all integral ,  Zj is a well def ined  analy t ic  func t ion  on X' .  Now, for all x in X,  

~(~) ~O,o) 

a(Zj)(x) = z o exp (2~ f % -- :~ f %) 
xo xo 

4,0 ~(,~o) 

-- exp (2~ o f e)j + ~o  f @ .  

B y  L e m m a  3.4 and  the  relat ions be tween  a(e)j) and  e)i, 
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x 

f o j ,  i f  l < j ~ c - - 1 ,  
x~ 

q ~  q ~  

~(,,d Xo 
X 

- -  [ o ) j ,  i f  j = 2 c - -  1. 

x0 

Also, for 1 < j < 2 c - - 2 ,  o=fFe,~j=f~o~+f~(noj=f~oj+~of,,~(o~). 
= f+") ~ = -- f;~~ oj; while for  Hence,  for  1 _< j _< c - -  1, l~e fr oj 0, and  x o a,o j 

r~(~.) P(~) 0 i. F r o m  these c < i < 2 c - 2 ,  ~ o f ~ j =  = - f r . % ) = - j ~ .  oj_,0_,)+.~.  

calculations i t  follows t h a t  a(Zj) = Zi, i f  1 < j  < c - -  1; an d  = Zi_(~_x)Z) -~, 

i f  c < j  ~ 2c - -  2. Final ly ,  consider the  case j = 2c - -  1. Now, 1 = I m  frdo2~_l 

- -  2 I m  f~,w:o_~. Let f*') -- a~, 02~_ l = s + i t ,  s and  t reals; t h en  t =  1/2. I tence ,  
2 x = x ~(z:0_~) exp ( -  ~ f~. o~o_1 + ~ - ~i/2) e~p ( - -  2~ f : .  o ~ _ ,  + ~(~ + i/2) - -  i~) 

: - -  Z ~ I _ _ I  . 

Since each Zj is ana ly t ic  on X '  D X,  each is ana ly t ic  on aX; thus  it  on ly  
remains  to show t h a t  {Z~, . . . , Z~} is a basis of  A- I (X)  modulo  exp A(X).  Let  

the  following homomorph isms  be def ined  for f in A-I(X):  a~(f) :~ I m  f •  dl(f), 

�9 . . ,  a~_l(f) --= I m  f r : _ ~  dl ( f ) ,  a~(f) :~- I m  f - ( r ~ + r [ )  d l ( f ) , . . . ,  a2e-2(f) ~--- 

I m  f_(r~_l+r:_Ddl(f) ,  and  a2~_~(f) ~ I m  f~; d~(f). Note t h a t  each a~ is 

a homomorph i sm of  A-I(X)  into Z, having  e x p A ( X )  in its kernel .  Le t  
a(f) ::_ ( a l ( f ) , . . .  ,ab(f)) ;  t h e n  a is a homomorph i sm of  A-I(X)  in to  Z b, 
having  e x p A ( X )  as its kernel .  Thus  a induces a homomorph i sm o, of  
A - I ( X ) / e x p A ( X )  ( : G ( X ) )  in to  Z b. Since dl ( Z i ) = o  j, and  w j : d ( v / ) ,  
{~1 . . . .  ,v~} being a basis dual  to the  basis {~1 . . . . .  ~b}, i t  follows t h a t  
ak(Zj)= d~,k, 1 < j , k < b .  Thus  the  map  g of  G(X) into Z ~ is surject ive.  
Since G(X) is known  to be a free abcl ian group of  r an k  b, a is an  isomorphism,  
and  the  images of  Z 1 . . . . .  Zb genera te  G(X). 

_Remark 4.3. I t  should be not iced  t h a t  the  above  theo rem has a r a the r  easy 
p roo f  as follows. Le t  {Wx, W1, W' . . . . . .  x, W:_I, W;} be a basis of  A- I (X)  

M t 
modulo exp A(X)  corresponding to  the  basis {F~, - -  _P~ . . . .  ,/~s - -  -Pc-l, F ;}  of  
HI(X',  Z). (Cf., l~emark 1.2.) T h e n  we can assume wi thou t  loss of  genera l i ty  
t h a t  W~' : (~(W[), , W . . . . .  " ' "  e - - 1  ~--- 0 ~ ( W e - 1 )  �9 L e t  n 0 w  Z 1 : W 1 �9 0 * ( W 1 ) ,  . . . , 

Z 0 _ l  ' W '  ' ' ]~r~__ 1 t ! �9 - -  = : = ~ ~  Z e  ~ -  W I ,  o .  , Z 2 e  2 e - l ,  a n d  Zb W~. Clearly 
Z 1 . . . .  , Z~_~ are symmetr ic .  Also, a(Zi) = a(W~_(,_~)) = Zi_(~_~)Z7 ~, for  
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p tr 
c ~ j _~ 2c --  2. Final ly ,  since { W1, W~, . . . ,  W'r W",_~, W'b} is a basis of A-I(X)  
modulo exp A(X) ,  a(Z'b) = a(W'b) ~ "[/V'mll/V"nl W i m c - I W  "% l I~7 'mb ,,1 ,,1 . . .  ,-1 ~_~ ,,~ expg ,  where 
m's and  n 's  are integers, and  g belongs to A(X).  I f  we consider the  differential  
dl (a(W'~)) and  its periods on the  above basis of HI(X',  Z), i t  is apparent  t h a t  

m l = n l  . . . . .  m,_l  ---- n~_l ---- 0, and mb--~--  1. Thus,  a(Z'b)----Z'~ - l e x p g .  
Since expg----Z'dr(Z'~) , exp g is symmetr ic ,  and  a(g)----g + 2k~i, where k is 
an  integer.  Le t  Zb =- Z'~exp (-- g/2), then  a(Zb) ---- • Z~ -1. I t  only  needs to 
consider the  winding number  of Zb around /~" to discard the  positive sign and  
obta in  a(Z~) ---- --  Z~ -~. 

Even  though  the  proof  of  Theorem 4.2 which we have given earlier is much  
longer, i t  is more instruct ive in the  sense t h a t  i t  ac tual ly  gives the  construct ion of  
the  required basis s tar t ing wi th  the  symmetr ic  and  an t i symmetr ic  harmonic 
functions.  

THEOREM 4.4. Let or be the natural homomorphism of G(Y) into G(X). Then 
the kernel of o~ is isomorphic to Z 2 and the image of ~ is a free abelian group which is 
a direct summand of G(X) of rank e -  1. a induces an action a on Z b which takes 
(ml . . . .  , m~_l, m~, . . . ,  m 2 c _ 2 ,  r o b )  t o  (ml . . . .  , m ~ _ l ,  m I - -  m . . . . . .  m e - 1  - -  m 2 c - 2 ,  - -  rob)"  

Proof. Let  ] be in the  kernel of a; then  f = a(f)  and  f = exp g for some g 
in A(X) .  Hence exp g = exp a(g) which implies t h a t  g --  a(g) = 2kzd, for some 
integer k. Thus f ---- exp (g --  a(g))/2 �9 exp (g ~- a(g))/2 = =L exp (g -{- a(g))/2, 

depending on k being even or odd. Since (g -~ a(g))/2 is symmetr ic ,  ] =  1 or 

--  1, and  ker a ~_ Z2. Le t  now { Z , , . . . ,  s  be a basis of  G(X), as in Theorem 

4.2. Since Z 1 . . . . .  Z~_ 1 are symmetr ic ,  Z 1 , . - .  ,Zc-1 belong to imcr Now let 

f be in im a; t hen  f = a(f), and ] = Z ~ -  . . . -  ~gb for some integers m ,  . . . ,  rob. 

Bu t  ~(f) Z71+~ ~c-1+~2~-2~-~ ~,-":~-2-Zb~b. Thus,  m~==. = 
= " " �9 �9 " ~ c - - 1  ~ c  c �9 �9 �9 �9 �9 ~ 2 c - - 2  " " 

m b ----- 0 .  This shows t h a t  im cr is generated by  Z1 . . . .  , Z~_~. Since we know the  
action of  a on Z/, we know the  action of  a on Z b, which is wr i t ten  out  above. 

w 5. Symmetric inner functions 

The algebra H|176 of  all bounded  analyt ic  funct ions on Y~ is isometrically 
R-isomorphic to { f in  H~176 ~ : a(f) = f}, and  we will ident i fy  i t  wi th  this  algebra. 

Definition 5.1. A funct ion f in H~ such t h a t  a(f)  ---- f is called a symmetric 
generalized inner function (s.g.i.f.) ff  log Ift belongs to  (log lA-l(Y)l}. I f  
{W1 . . . .  , We_l} is a basis of the  free par t  of A-I (Y)  modulo exp A(Y) ,  a funct ion 
f in H~(dm) such t h a t  a ( f )  ----f is called a symmetric inner function relative to 
{W1 . . . .  , We_l} i f  log ]fi belongs to (log [Wll,...,log IWo_ll). 
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I t  should be not iced t h a t  i f  { Z 1 , . . . ,  Z~_~} is a n y  basis of  the  free pa r t  of  A- I (Y)  
modulo  e x p A ( Y ) ,  the re  exist  Z ~ , . . . ,  Z b in A - I ( X )  such t h a t  {Z 1 . . . . .  Zb} is 
a basis of  A- I (X)  modulo exp A ( X )  sat isfying the  condit ions o f  Theorem 4.2. I f  
f is an inner  func t ion  re la t ive  to  such a basis, t h e n  so is a(f) .  We choose such a 
basis and  in this  sect ion by  an  inner  funct ion  we shall mean  an inner  func t ion  
relat ive to  this  basis. 

PROrOSITm~r 5.2. Let f be in H~(dm)  such that a ( f )  = f .  I f  f is a g.i.f., then, 
in fact, f is a s.g.i.f.; and i f  f is an inner function then f is a symmetric inner 
function. 

b 

Proof. L e t  log Ifl = ~ ~j log [Zil, where  ~1 . . . .  , % are real numbers ;  t h e n  
c--I j=l b 

log ](~(f)[ = ~ (~  + ~j+r log [Zjl - -  ~. (xj log IZj.I. Since f = ~(f) ,  and  since 
j=l j=c 

~i is un ique ly  de te rmined  b y  f ,  ~ ~ = . . . .  ~b = 0; thus  f is a symmet r i c  inner  
funct ion.  I f  f were a g.i.f., i t  s imilar ly follows tha t ,  in fact ,  f is a s.g.i.f. 

We now prove  a l emma which would prove  to  be crucial in the  descr ipt ion o f  
the  closed ideals o f  A ( Y ) .  

L~MMA 5.3. I f  w is an inner funct ion such that a(w) differs f rom w by a factor 
of a trivial inner function, then there exists a symmetric inner function u which differs 
f rom w by a factor of a trivial inner function. 

Proof. L e t  w = cZ'~ 1 �9 . . . �9 Z'~ b �9 a(w); t h e n  

( r ( W )  -~- ( - -  1 )  mb " 6 Z ~  n l + ' c  " �9 �9 - "  ~c--19:mc--l+m2c--2 " Z ~  - r %  " �9 �9 �9 " ~2c--2~--m2e--2 " Z b  rnb " W .  

P u t t i n g  this  value  in the  express ion for w, we obta in  m c = - -  2ml . . . . .  m2c_2 = 
- -2mc_1 and  ( - - 1 )  ~b = 1, so t h a t  m b = 2 % ,  for  some in teger  %. I f  we now 

let  u =-~ dZ~ 1 " �9 �9 �9 " zm~--12c--2 " Zb -nb " W, where  d is t h e  complex  n u m b e r  o f  absolute  
va lue  1 sat isfying d = ( - -  1) nb. 6 .  d; t h e n  i t  is easi ly seen t h a t  a(u) = u. 

Here  we leave the  main  line of  a t t ack  on the  ideal  t h e o r y  of  A (Y) for a while 
and  indulge ourselves in examining  some of  the  s t r iking consequences of  the  above  
lemma.  

An essential ly un ique  fae tor iza t ion  o f  a func t ion  in H ~ ( X  ~ into a Blaschke 
produc t ,  a s ingular  func t ion  and  an  ou te r  func t ion  was given in L i m a y e  [9, w 2]. 
We now give a fac tor iza t ion  of  a " f u n c t i o n "  in H|176 Note  f i rs t  t h a t  i f  f is a 
Blaschke produc t ,  a s ingular  funct ion,  or an  ou te r  funct ion,  t h e n  so is a( f ) ,  
respect ively.  

THEOREM 5.4. Let  f be a function in H| such that a ( f )  = f .  Then there 
exists a symmetric inner funct ion u and an outer funct ion g satisfying a(g) ---g 
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such that f = ug. Further, the symmetric inner function u factors into a symmetric 
Blasch]ce product and a symmetric singular function. 

Proof. Le t  f ~- w F  where  w is inner  and  2' is outer ,  t h en  a ( f )  = a(w)(~(F). 
Since a( f )  = f ,  a(w) is inner  and  a(F) is outer ,  and  since the  fac tor iza t ion  is unique  
up to a fac tor  of  a t r iv ia l  inner  funct ion,  w and  a(w) differ  b y  such a factor.  
L e m m a  5.3 t he n  gives a symmet r i c  inner  funct ion  u such t h a t  w = uw', where  
w' is a t r ivial  inner  funct ion.  I t  t h e n  also follows t h a t  w'F  is a symmet r ic  outer  
funct ion.  I f  u = BS,  where  B is a Blaschke p roduc t  and  S is a s ingular  funct ion,  

A X ~ t h en  u = a(u) = (~(B)(~(S). Now, since the  zeros of  J~ and  a(B) on are the  
same, B and  a(B) differ  b y  a fac tor  of  a t r ivial  inner  funct ion  (cf. L im ay e  [8], 
Propos i t ion  3.1). The  requi red  resul t  now follows. 

There  are two i m p o r t a n t  maps  f rom H ~(X  ~ to  H~(Y~ namely  the  t race  

map  T(f) = f + ~(f), and  the  no rm map N ( f )  =-- f .  ~(f). Since, for  f in t I~(Y~ 
T(f /2)  = f ,  the  t race  map  is surject ive.  We now prove  t h a t  the  n o rm  map  is also 
surjeet ive,  which shows t h a t  each f in H+(Y~ has a sor t  of  a-square root  in 
H~(X~ 

THEORE~ 5.5. The norm map N from H ~ ( X  ~ to H ~ ( Y  ~ is 8urjective. 

Proof. Let  f i rs t  f be a t r iv ia l  inner  func t ion  in H~(Y~ then  b y  Propos i t ion  

5.2, f = rZT ~ " - . .  " ~c-172c-1, where  r = -V 1, and  m 1, . . . ,  me_ 1 are integers.  Since 
--  1 = Zba(Zb), and  Zj = Zj+(e_~) �9 a(Zj+(c_,)), for  1 ~ j  ~ c - -  1, f is c lear ly  
in the  range  of  the  no rm opera tor .  ~ow,  let  B be a symmet r i c  Blaschke product ;  

t h e n a p o i n t  a in X ~ i s a z e r o o f  J~ of  order  m if  and only  i f  T(a) i s a z e r o o f  

of  order  m. Thus,  the  sequence (an) n of  the  zeros of  /~ on X ~ can be d iv ided 

as follows: (an) n = (an, 1)n U (an, 2)n, where  Z(an, 1) = an, :, and  (an, 1)n N (an, 2)n = O. 

L e t  J~ be a Blaschke p roduc t  wi th  respect  to (an, 1)n" Th en  /~ and  BI"  a(B~) 
are bo th  symmet r ic  and  have  the  same zeros on X ~ and  hence differ  b y  a f ac to r  
of  a t r ivial  inner  func t ion  in H'~(Y~ Thus,  B is in the  range  of  N.  

Now, i f  f is in H~(Y~ f =  B e x p g ,  where  B is a symmet r i c  Blaschke 
p roduc t  and  g is an  ana ly t ic  func t ion  on  X ~ such t h a t  a(exp g) ---- exp a(g), b y  
T he o r e m 5.4. Since, g - -  a(g) = 2kai, for  some integer  k, 

exp g = ( - -  1) ~ exp (g -~ a(g))/2 = Z~ exp [(g + a(g))/4] �9 g(Z~. exp (g ~- a(g))/4).  

This  proves  the  theorem.  

w 6. Closed ideals of A(Y) 

Consider the  R-linear t race  map  T(f) = f + a(f), for  each f in A ( X ) .  Since 
T(i f)  = i f  -- ia( f)  = i ( f  - a(f)) ,  f = 1/2 T ( f )  --  i/2 T(i f )  = u -~ iv, where  u a n d  
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v are in A(Y) .  Clearly t h e y  are unique.  Thus  A ( X ) =  A(Y)[i], i being quadra t ic  

ove r  A(Y) .  
L e t  9 a n d  ~ be the  sets of  all closed ideals of  A(X)  and  A(Y)  respect ive ly .  

There  is a m a p  t h a t  sends I in 9 to  I N A(Y)~--- I  ~ in ~ called contraction. 
There  is also a na t u r a l  m a p  t h a t  sends J in ~ to J .  A(X)  ~ J~, which is an  
ideal in A(X),  called extension. Clearly J~ = J[i] = J �9 i J, the  s u ~  be ing  direct  
as a vec to r  space sum over  R. Thus,  J~ is closed and  belongs to  9. 

An ideal I in 9 will be  called symmetric i f  I = ~(I). 

PROFOSlTION 6.1. The set ~ of extended ideals is exactly the set 9 of symmetric 
ideals of 9. Given I in 9 ,  I ~ =  1, and given J in ~, je* j .  

Proof. Le t  J be in ~ and  no te  t h a t  J ~ = J O i J .  Thus  ( r ( J ' ) = J - - i J =  
J - k i J = J ~ ;  showing t h a t  ~ c ~ , .  Now let I be  in 9o, and  let  J ~ F ;  
t h e n  Je C I .  On the  o the r  hand ,  for  f in I ,  f = 1/2 T ( f )  -- i/2 T(if), and  bo th  
T( f )  and  T(if) are in J ,  thus  I C J~- This  p roves  t h a t  ~ e  ~ and  t h a t  
I = I  '~, for  I in 9~ Given  J in ~, J ' = J |  as a real  vec to r  space.  The  
set  of  s y m m e t r i c  e lements  of  J" is t h e n  J, hence jec = j ;  p rov ing  the  proposi t ion.  

TttEOt~EM 6.2. Let J be a non-zero closed ideal of A(Y) .  Then there exists a sym- 
metric inner function u relative to a basis ( W1 . . . .  , W,_I} of the free part of A - l ( Y )  
modulo exp  A ( Y )  and a unique closed subset F of aY  such that J = uJ(F), where 
J(F) = { f i n  A ( Y )  : f = 0 on F}. The symmetric inner function u is determined 
up to a factor of a trivial symmetric inner function. 

Proof. Le t  { W 1 , . . . ,  We-l} be ex t ended  to  a basis  {WI . . . . .  Wb} of  A-I(X)  
modulo  e x p A ( X )  such t h a t  

wj, l < j < _ c - 1  
ff(Wj) = ~Wj_(e_ I )W;  1, c ~ j ~ 2 c -  2 

W _ I  �9 I - -  j , 3 = 2 c - - 1 = b .  

Since J is in ~, J = J '~ where  the  ideal j e  = I belongs to 9 ,  b y  Proposi-  
t ion 6.1. T h e o r e m  2.2 gives the  following decomposi t ion:  I = wI(E), where  w is 
an  inner  func t ion  re la t ive  to  (W1, . . .  , Wb} a n d  E is a closed subset  of  0X of  
ha rmonic  measure  zero. Since I = a ( I ) =  a(w)I(z(E)), the  uniqueness  p a r t  of  
T h e o r e m  2.2 shows t h a t  E = T(E) a n d  w = c W T 1 . . . .  �9 W"~b b. a(w), where  c is 
a complex  cons t an t  o f  absolu te  va lue  1 and  ml, . . . , m~ are  integers.  Hence  b y  
L e m m a  5.3, the re  exis ts  a s y m m e t r i c  inner  func t ion  u re la t ive  to  (W1, �9 �9 �9 , We-l} 
such t h a t  w = dW~1" . . .  �9 W ~ ' u ,  where  d is a complex  cons tan t  of  absolute  
va lue  1 and  n l , . . .  , n  b are integers.  Thus  1 =  j e =  uI(E), where  E = ~(E). 
Since, now, u = a(u) a n d  J = J ' N  A(Y) ,  we ob ta in  J = uJ(F), where  F = 



292 N. L. ALLING AND B. V. LIMAYE 

p ( E )  a n d  J ( F ) = { f i n A ( Y ) : f - - - - 0  o n  F } ,  p b e i n g  t h e  m a p  f r o m  X t o  Y. 

T h e  u n i q u e n e s s  p a r t  is  s i m i l a r  to  t h a t  o f  T h e o r e m  2.2. 

E x a m p l e  6.3. L e t  Y b e  a l ~ 5 b i u s  s t r i p  a n d  l e t  i t s  o r i e n t i n g  d o u b l e  b e  t h e  a n n u l u s  

X ~- {z : 1/r ~ Iz] ~_ r}, t o g e t h e r  w i t h  t h e  a n t i a n a l y t i e  i n v o l u t i o n  ~(z) = - -  1/5. 

S ince  in  t h i s  case  c ---- 1 , A - I ( Y )  ~ Z2 a n d  t h e  f ree  p a r t  o f  A - I ( Y )  m o d u l o  e x p A ( Y )  

is t r i v i a l ;  a n d  s ince  b ---- 1, t h e  f u n c t i o n  Wl(z  ) ~ z c o n s t i t u t e s  a r e q u i r e d  b a s i s  o f  

A - I ( X )  m o d u l o  e x p A ( X ) .  H e r e ,  a f u n c t i o n  u in  H~~ ~ is  a s y m m e t r i c  i n n e r  

f u n c t i o n  i f  a n d  o n l y  i f  lu] ~- 1 a .e .  on  ~ Y. T h u s  w e  see t h a t  t h e  n o n - z e r o  c lo sed  

i d e a l s  o f  t h e  s t a n d a r d  a l g e b r a  on  t h e  M S b i u s  s t r i p  Y a r e  o f  t h e  f o r m  u J ( F )  w h e r e  

u is  in  H~ ~ w i t h  Iu] = 1 o n  ~ Y  a n d  F a c lo sed  s u b s e t  o f  OY. T h i s  g i v e s  

a p r e c i s e  a n a l o g  o f  t h e  c l a s s i ca l  i d e a l  t h e o r y  o f  t h e  s t a n d a r d  a l g e b r ~  on  t h e  u n i t  d i s k .  
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