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1. Introduction 

We are going to consider a differential operator a(x, D ) =  ~ a~(x)D ~ in 
and open connected subset S of R n, where D is the differentiation symbol 
(2:~i)-1(0/0xl . . . .  , a/ax,,) and the summation is made over a finite number of 
multi-orders ~ = (~1 . . . .  , ~n). We assume tha t  the operator a(x, D) is formally 
hypoelliptic (FHE) of type P in N, i.e. tha t  the (complex-valued) coefficients a~ 
are in C~176 and tha t  for every x E S the polynomial (in 2 e _R~)[a(x, 2)---- 

ao,(x)2 ~ is equally strong as the hypoelliptic polynomial P in the sense of 
HSrmander [4]. We also require tha t  the type polynomial P is not a constant. 
Moreover, we suppose tha t  a(x, D) is formally self-adjoint in S, i.e. tha t  we have 

~. a~(x)D ~ = ~ D~%(x) there. Then with no loss of generality we may  assume 
tha t  Rea(x,  2)--~--k oo as ]21-~oo, 2 e R  n, for every x E S ( L e m m a  3). 

Suppose now tha t  A is a self-adjoint realization of a(x, D) in the ~Iilbert 

space L~(S) (note tha t  A need not be bounded from below), and let A = f:+ZdEz 
be its spectral resolution, the E z being orthogonal projections in L2(S), increasing 
with 2. We shall then prove (Theorem 1) tha t  for every real number ~ the pro- 
jection E z is given by a kernel ez in C~(S• (e z is called the spectral function 
of  A) and that ,  when 2 --> -- oo, e z tends exponentially to zero together with its 
derivatives (with respect to the variables in S • S), uniformly on compact subsets 
of S X S .  

Further,  for an arbitrary n-order ~ we shall investigate the behaviour as 
2 --> -b r of the derivative e~'~)(x, y) = D~(-- Dx)~ez(x, y) when x ---- y E S. We 
shall then compare e~'~}(x, x) to the function 

(~,~) f 2 2~ % ~ (x, y) -- exp (2~i(x -- y, 2>)d2 o 
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I t  will be shown (Theorem 2) tha t  e~'~)(x, x) -= (1 + o(1))e(~.'~)(x, x) as 2 -+ + ao, 
for every x E S .  

The proof of these results will rely on the construction and estimation of a local 
fundamental  solution of the operator a(x, D) -- 2 when ~ is large and negative. 
This is made in a series of lemmas, concluded with Lemma 10. Further  we shall use 
a Tauberian theorem for the Stieltjes transformation due to Ganelius. 

Results for elliptic operators similar to those of this paper (sometimes sharper) 
have been given by a great number of authors, and for hypoelliptic operators with 
constant coefficients by GorSakov [3] and by the author of the present paper ([8]). 

2. Formally hypoelliptic differential operators 

In this section we shall, for later reference, state a few properties of F H E  dif- 
ferential operators (and, particularly, of hypoelliptic operators with constant 
coefficients), which are well-known from the works of HSrmander [4], [5], 1Vfalgrange 
[6], and l~eetre [10], or follow easily from them. 

Assume that  the differential operator P(D) with constant coefficients is hypo- 
elliptic, i.e. tha t  (D~P(~))/P(2) --> 0 as [2] --> ~ ,  2 E R n, ~ # 0. Then one has 
also the stronger relation 

12]c(D~t'(2))/P(2) = 0(1) (I2l --> ~ ,  2 E/~", cr # 0) (1) 

with some positive constant c. In  particular, if P is not a constant, 

IC~IP(2) = o(s) (l~l -+  oo, 2 e R " ) .  (2) 

Further  there is a largest positive number b such tha t  with some constant C 

ID~P(2)I _ C(IP(2)I + 1) 1-blal (2 E R') (3) 

for all multi-orders ~ (writing [er l = ~1 -4- �9 �9 �9 + ~.). This largest number is not 
changed if in (3) we restrict ourselves to those ~ for which I~l : 1. I f  P has 
degree m we have b < I/m, and if r is a positive integer, and if b' is the cor- 
responding number given by (3) for P' ,  then b'-= bit. I f  Q is a polynomial 
weaker than  P,  i.e. we have ~ ID~Q(2) I G C ~ ID~P(2)[ (2 E R") with some 
constant C, then for any multi-order 

]D~Q(2)] G C(]P(2)I § 1) ~-bl<~l (2 E R " ) ,  (4) 

where C is some constant and b the same as in (3). (This follows easily from 
I-[6rmander [5], l~emark 2, p. 209.) 

I f  a(x, D) = ~. a~(x)D ~ is a differential operator in the open subset S of / ~  
and P a hypoelliptic polynomial (in n variables), then a(x, D) is said to be 
formally hypoelliptic (FI-IE)of type P in S, if all the coefficients a a are in C~(S) 
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and if for every x C S the polynomial (in ~) a(x, ~) is equally strong as P.  Then 
a(x, D) can be writ ten in the form 

a(x, D) = ~ bi(x)Qj(D) , (5) 

where the coefficients bj are in C~(S) while the polynomials Qy are all weaker 
than P.  Of course the Qy can all be chosen real. 

I f  al(x, D) and a~(x, D) are F H E  of the types  P1 and P~, respectively, then 
the composed operator al(x, D)a~(x, D) is FI-IE of type  P1P~. 

I f  a(x, D) is F H E  of some type  P of degree ~ 1 and if p is any non-negative 
integer, then there is another positive integer s such that  if u is a distribution in 
S with a(x, D)'u E L2(S), then u e CP(S). We have then for all such u an in- 
equality 

sup [D%(x)[ ~ C (]a(x, D)~u(x)l 2 + lu(x)le)dx , (6) 

S 

for any multi-order cr with [al ~ P ,  and for any compact subset K of S, C 
being a number which does not depend on n (but e.g. on K). 

3. Some lemmas 

To prepare our construction and estimation of a fundamental solution of the 
operator (a(x, D) -- ~), we shall give some lemmas. 

LEM~iA 1. Let P and Q be complex polynomials in n variables such that P 
is hypoelliptic and Q weaker than P, and let ~o C R". Then we have 

]D~Q(~ + ~z~O) _ D~Q(~)[ < Clz[ _cl~](i~] + 1)_c]~]([p(~)[ + ~l/b) (7) 

for all ~ E R n and real numbers ~ ~ 1, and for all complex numbers z with ]z] <_ 1. 
Here or is an arbitrary multi-order, b the number given by (3), while c and C are 
positive and independent of ~, z, and v. 

Proof. Suppose first ~ ~ 0. By  Taylor's formula 

~-Ia] 
D~Q(,~ + ~z~ ~ -- D~'Q(~) : ~ (vz)JQj(~), 

i=1 

where m is the degree of P (of course deg (Q) < deg (P), Q being weaker than 
P). :Further Qy is a linear combination of derivatives of Q of order Is] + j .  
:By (4) we have 

]TJziQj(,~)] ~ CTJ[zlS(IP(~)[ + 1) 1-b(l~l+/) (8) 
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with some constant C. From the elementary inequality xay 1-a < x -~ y, valid 
for x , y ~ 0  and 0 < a ~ l ,  we get from (8), putt ing x=~ l /b ,  y =  tp (~) t~_ l  
and jb < a < 1 (possible, since b ~ 1Ira and j < m), and inequality 

]~JzJQj(~)l < ClzlJ~(sJ-~ -4- 1 § ~x/a) (]P(~)I § 1) a-bluE-hi �9 

So, taking a - - j b  sufficiently small, the lemma follows from (2) when ~ # 0. 
The case ~ = 0 is clearly simpler. 

By rise of (4) and the inequality xay a-1 < x ~ y we readily get also the following 
lemma. 

L]~MMA 2. With P and Q as in Lemma 1 we have 

I/~Q(~)I _< c~-o'~l([~ I + 1)-cl~l(]P(})[ q- T l/b) (~ e d~n) 

for all multi-orders ~, and all T > 1, where C and c are positive constants and 
b the same as in Lemma 1. 

We also have 

L~,~MA 3. Let a(x, D) be FHE of type P and formally self-adjoint in an open 
subset S of R n. Then I~e (a(x, D)) (obtained by taking real parts of the coefficients) 
is also F H E  of type P, and Im (a(x, D)) is strictly weaker than P, i.e., 

I~[~(D~Im (a(x, ~)))/Y($)-->0 (l$I--> ~ ,  ~ E /~ )  

for any multi-order o~, where c is some positive constant and the convergence is uniform 
for x in compact subsets of S. 

Proof. We use the representation (5). Then the formal adjoint a(x, D)* of 

a(x, D) is given by  ~ Qj(D)bi(x ). By Leibniz's formula 

a(x, D)* = ~ bi(x)Qj(D ) -4- ~ ck(x)Rk(D) , 

where every /~  is of the form D~(Qi), with ~ # 0. Hence, by (4) and (2) it follows 
that  with some positive constant c we have 

[~[~(D~tlk(~))/P(~) ~ 0 (]~l -+ o% ~ e _R ~) 

for every k and every multi-order ft. Since by assumption a(x, D)* -~ a(x, D), 
we get 

2i Im a(x, D) ---- ~ ck(x)R1,(D) , 

from which the lemma immediately follows. 
I t  follows from Lemma 3 tha t  if a(x, D) is F H E  and formally self-adjoint, 

then the type polynomial P can be chosen real. I f  S is in addition connected and 
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d e g ( P ) > 0 ,  then  either R e  a(x, ~) --> -4- ~ as t#1-->~ ~E12", for all x E S  
or this is t rue  wi th  - -  ~ ins tead  of  -4- c~. This follows easily f rom L e m m a  3, 
(4), and  a simple cont inui ty  argument .  

F rom Nilsson [8], Theorem 1, we take  the  following result.  

LEMMA 4. Let P be a realpolynomialon 12" such that P(~)--+ + ~ as I~[-->~. 
Let o~ be an arbitrary multi-order. When 4 E J~, pu t  

e(2a)().) ~_. f ~2ad~ �9 

P(O < 

Then there are non-negative real numbers C, a, and t, where C > 0 and t is an 
integer, such that 

C-14"(10g 4)' < e(2a)()~) < c4a(1og j~)t (9) 

when 4 is large enough. Further the function e (2~) is differentiable when 4 is large 
anough, and we have 

de(2~)(4)/d4 = O(1)2a-l(log 4)' (4---> -]- ~ ) .  

Remark. L e m m a  4 can be sharpened in various directions. E.g. i t  is possible 
to replace (9) b y  the  es t imate  

e(:~)(2) ~ C'(1 q- o(1))4"(log 2)' (2--> + ~ ) ,  

wi th  some constant  C' > O. Also, it is not  necessary  t ha t  the  exponent  of  ~ in 
the  integral  be even (if no~, one mus t  of  course allow tha t  C' = 0 and  t ha t  a < 0). 

We shall also need 

Lv, MMA 5. Let P be as in Lemma 4 and in addition hypoelliptic, and put  

v(~) ~_ z 

when o~ is a multi-order. Then, i f  fl < ~ (i.e. i f  flj ~ i  for all j ) ,  i f  or # fl, 
and i f  ~ has only even coordinates, we have 

~(~)(4) = o(1)4-c~(~)(4) (4 - ~  + ~), 

where c is some positive constant. 

Proof. W h e n  7 is a mult i-order,  p u t  ~ = (~1 ~- 1, 72 . . . .  ,7 , ) .  
sufficient  to  show tha t  for an y  7 we have  

~(r)(2) = 0(1)2-c~)(42)  (4 ~ -~ ~ ) ,  

I t  is clearly 

( lo)  



256 ~Ls NILSSO~" 

with some positive constant c. For in (10) we can, of course, as well add 1 to any 
other of the component orders than Yl, and so we get by  repeated use of (10) 

~(~)(4) = o(1)4-q(~)(~4) = o(1)4-c~(~)(4) (4 -+  + ~ ) ,  

where c and C are positive constants, and where in the last step we have used 
Lemma 4 for ~(a)~ e (~). 

When T is a positive real number, put  

Mr(2 ) = {~ C Rn[P(~) < 4, t~lI -~< T} and NT(~ ) = {~ E Rn]P($) < 4, [$~I > T},  

and let us prove that  there is a positive number k such that  

f [~']d~ ~ f [$~Jd~ (11) 
M T (2) N T (44) 

when T = 4 k and ~ is large enough. For then we should get 

= f + f _<z f _< 2T -x f I~ld~ ~ 24-ke(~)(4~) 
, ]  . /  

M T  0") .N T(.~) N T (4),) N T (4).) 

for large 4, proving (10). 
Pu t  ~ =  ($~,~'), with ~ ' =  ($2 . . . .  , ~ ) C R  n-~. Then Q(~')=P(O,~') is a 

hypoel]iptic polynomial on R~-~, and 

I~'[-~Q(~ ') --~ + ~ (1~'[--~ ~ )  (12) 

with some positive constant c. Let ~[~) correspond to Q (on /~'-~) as ~(r) to 
P.  Pu t  y ' =  (7~ . . . . .  y.) and 

f(~x, 4) = f I(E'Y'Id~'. 
P(i,, ~,) < 

We contend that  there is a positive number c such that  when 4 is sufficiently 
large we have 

e~r')(2-14) _<f(~x, 4) < e~V')(2~) (13) 

for all ~1 with ]~] <__ 4 :~. Indeed, we have the Taylor expansion 

P (~ ,  E') ---- Q(~') + ~ (2~i)iE~(j!)-~DU'~ E'), 

and since with some positive number c we have 

IE'I~D(Y'~ E')/Q(~')  -+  o (l~'l -+  ~ )  

for every j > 1, it follows that  with some positive number v we have 

2-~Q(~ ') _< P(~x, ~') < 2Q(~') 
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when ]~1[ ~< [~']* and l~'] is sufficiently large. From this inequality and (12) 
we conclude (13). 

Now we get by  (13) 
T 

M T  0-) - -  T 

~2c 

f I~rl d~ --> f f(~l' 4~)d~1 ~ (/~2c __ T)~r',(2~ ) 
4 1  

N T (4,~) T 

when T is any real number such tha t  1 < T _< ~2~ and 2 is large enough. Thus 
we immediately get (11) (with e.g. k equal to c/(71 @ 1) with the c of the above 
inequality). The lemma is proved. 

Let  P be as in Lemma 4 and assume that  for the multi-order c~ we 
have ~(~)(2) = O(1)X ~ as X--> + ~ ,  where ~ is a constant < 1. Then the  
integral 

~(a)(~) = f i~-a[(p(~) __ 2)-ld~ 

is convergent when 2 is sufficiently large and negative. For, with some real number  
C, 

cO r 

r r 

the last step follows by  an integration b y  parts, where the boundary term at  
co vanishes because of our growth condition on e(~). 

From (14) and Lemma 5 we easily get 

L ~ I ~ A  6. I f  fl ~ ~, fl # ~, and all the components of or are even, then there 
is a positive constant c such that 

S@(2) = 0(1)f21-c~(~)(2) (2 -+  -- ~ ) .  

When u is a measurable function on /~" and ~ a multi-order, let us put  

L(~)(u) = f I~[~lu(~)Id~, with 1~t~= ~ F~[- 

We then have 

L E ~ x  7. There is a constant U (which may  depend on the multi-order ~) such 
that (with , = convolution) 
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L(~)(u , v) < CL(~)(u)L(~)(v) 

for all measurable functions u and v on t~ ~ such that L(~)(u) and L(~)(v) are 
finite. 

Proof. By the Fubini theorem we have 

f [~l~l(u*v)(f)Idf ~ f [ f ]~ lu ( f -  , ) ] l v ( , ) I d f d , -  f l(~7)Iv(,)ld,, 

where 

Hence the lemma follows from the obvious inequality If + vl a ~ Clf]a]~] a, where 
C is some constant. 

4. Construction and estimation of a certain fundamental solution 

Throughout this section a(x, D) will be a differentiM operator on the whole 
of /~n, and we shall suppose tha t  it is F t I E  of type P and formally self-adjoint 
there. The type operator P is chosen real (which is always possible, as remarked 
after Lemma 3) and such tha t  P(f) ~__ 1 for all f E R n. Moreover, we suppose tha t  

P(~) >_ ol~r (~ e n n) (]5) 

where C and 8 are positive constants and where we shall suppose 8 to be as 
large as we need in our estimates. :Further it will be assumed tha t  a(x, D) = P(D) 
for all x outside some compact subset of R ~. In  particular, this means tha t  we 
have assumed that  Re a(x, ~) --> + ~9 ([~I --> ~ ,  ~ E B n) for every x E R ~ which 
is no essential restriction (see Lemma 3). 

We are going to construct and estimate a fundamental  solution gz(x, y) of the 
operator a(y, Dy) -- 2 when 2 is large and negative (saying fundamental solution 
we mean that 

(a(y, Dy) ~ 2)g~(x, y) = ~(y) 

for every x E R n, where ~ is the I)irac measure at the point x). The construction 
will be carried out by the Levi parametrix method. As the parametric hx(x, .) we 
take the tempered fundamental  solution with pole x of the operator a(x, Dy) ~ 2 
(having constant coefficients), i.e., 

hx(x, y) = f (a(x, ~) -- 2) -1 exp (2ui(y -- x, ~))d~ , 
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where the in tegrand  is in LI(R n) for all x C R ~ when 2 is large and  negat ive.  
Fo r  f rom L e m m a  3, the  represen ta t ion  (5) for  a(x, D) and  a simple con t inu i ty  
a rgumen t  it  easily follows t ha t  for  large negat ive 2 

la(x, ~) - ~l >- o (P(~)  - ;0 (x, ~ e R n) (16) 

with  a posit ive cons tan t  C ( remember  also t h a t  we m a y  take  the n u m b e r  s of  
(15) as large as we need). 

The  fundamenta l  solut ion gx will be cons t ruc ted  b y  the  formula  

(17) 

where  ux satisfies the  integral  equa t ion  

.+ ,  z) - f .(x, w)A~(w, z)dw = Ax(x, z) (18) 

with  A~(x, z) = (a(x, D,) - a(z, D=))hz(x, z). 
To give the formulas  (17) and  (18) a sense and  to  es t imate  gz we shall now 

in t roduce  convenient  norms.  Fo r  a n y  mul t i -order  ~, pu t  

M,~(u) = L(~)(Ju) = f l~l~lTu($)ld~, 

where  we have  again wr i t t en  l~l ~ = ~_<~  I~al and  where 7 denotes  the  Four ie r  
~ransformat ion ( taken in the  d is t r ibut ion  sense of  Schwartz  [10]), and  where fu r the r  
u is a t empered  d is t r ibut ion  on R ~ such t h a t  [~I~3u(~) is a funct ion  in LI(R~). 
The  set of  all such dis t r ibut ions  obviously  form a Banach  space Ba (with the  
no rm Ms). I t  is also clear t ha t  Ba is a set of  cont inuous funct ions  and  a simple 
approx ima t ion  a rgumen t  shows t h a t  C~(R '~) is dense in B~. F u r t h e r  let  N~,~ 
be the  un i form norm of  l inear mappings  L f rom B~ to B~: 

N,~,~(L) ---- sup (Mr , 

where  the  sup remum is t aken  over  all non-zero funct ions  u E B~. I f  K is a distri- 

bu t ion  on _R'• n, it  defines a l inear mapping  ~: f rom C~(R") to the  space of  
d is t r ibut ions  on R~: 

Ku(x) = f K(x, y)u(y)dy . 

W e  shall t hen  wri te  N~,~(K) or even Na, z(K(x, y)) ins tead of  Na,~(K), Now let 
us  es t imate  the  dis t r ibut ion 

A~(x, z) = (a(x, D )  --  a(z, D,))h~(x, z) 

appear ing  in (18). 
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LEMMA 8. There are positive numbers c and ~o such that 

N~MA~(x, z) e x p  ( ~ l ~ l b ( z j  - -  xj))) = 0(1)1 ;~1  - ~  (~  - +  - -  ~ )  

for every j ,  1 <_j < n, every multi-order ~, and every real z such that [z] _< z 0. 
Here b is the number corresponding to P by (3). 

Proof. First  let us prove the  lemma in the  case x = 0. By  (5) we can write 

A~(x, z) = ~. (bi(x) --  bj(z))Qd(Dz)h;~(x, z) , 

where, for every j ,  b/ belongs to C~(R n) and is cons tant  outside some compact  
subset of R n, while the  polynomial  Q1 is weaker  t h a n  P.  By  expansion in Taylor  
series, any  te rm in the  above sum may,  for any  positive integer  k, be wr i t ten  on 
the form 

F;.(x, z) = ~ (fi!)-l(2ui)l~[(D~b(z))(x --  z)~Q(D,)h~(x, z) -4- R;.(x, z) ,  (19) 
0<l~l<k 

where b is one of the funct ions bj and  Q one of the polynomials Q~, and  where 

1 (/ + ) R x ( X  , Z) : ( ( k  - -  1) t )  - 1  (1 - -  t)/~-1 ~ b(z 4- t(x --  z))dt Q(Dz)hx(x, z) . 

o 

Now the mapping having as kernel the  t e rm wi th  index fl in the  sum in the  r ight  
member  of  (19) is the  composition of  the  two mappings  L l : u  ~ (D~b)u and  

L 2 : v ~+ const, f (x - -  z)'Q(Dz)hx(x, z)v(z)dz. Here D~b E C~(Rn), and so i t  
follows by  L e m m a  7 t h a t  N~.~(L1) < ~ .  Hence,  to prove our lemma (in the  case 

= 0) it  suffices to show tha t  wi th  some positive constant  c 
(i) N, .~ ( ( x - - z )~Q(DJhx (x , z ) )  : 0(1)]~] -~ ( Z - + - -  co), for a n y  f i #  0 and  

any  Q weaker t h a n  P,  and  tha t  
(ii) N~,a(R~)= 0(1)[~] -~ ( A - + - -  oe) if  k is large enough. 

Le t  us s tar t  by  proving (i). Pu t  h;. = H;. ~- H~., where 

= f (P+ exp (2~i<z --  x, ~>)d~ 

and thus  

iVx, z) = f ( + ( x ,  ~)--1 __ ( p ( ~ )  _ X ) - i )  e x p  (221:i<z - -  z ,  ~ > ) d ~  . 

Firs t  let us prove (i) wi th  H x instead of hx. I f  ~v C C~~ we have t h a t  the Four ier  

t ransform g of the funct ion f (x - z))W(z)dz is def ined by  

X(-- ~) : ( J~) ( - -  ~)" D~(Q(~)/(P(~) --  2)). 

Hence we get 
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G ,  A x  - z)eQ(D~)/ / , (x,  z)) < s u p  IDe(Q(~)/( / ' (~)  - a))l �9 
~ E R  n 

Now D~(Q(~)/(P(~) - -  ~)) is a f ini te  l inear combinat ion  of  t e rms  of  the  fo rm 

Q(~)(~)p(~2)(~) . . .  p(~,)(~)(p(~) _ A)_,, 

where we have  wr i t t en  e.g. Q ( r ) :  il~IDrQ when y is a mult i -order ,  and  where  
~j=~a1 = fl ~ 0. Thus,  b y  L e m m a  2 (taking ~ = I~l~), we get 

sup ID~(Q(})/(P(~) - -  '~))I = 0(1))~I -~ (~ - - -> -  ~ ) ,  
~ E R  n 

where s is a posit ive constant ,  giving the desired resul t  for Hx. Now let  

us prove  ( i ) w i t h  /I~ ins tead of  hx. Again take  ~o in C~(R"). I f  ~0(x)---- 

f (x - -  z)~(Q(D,)Hx(x, z))rf(z)dz, t h en  

(~v)( , ] )  = f (~-l~0)(~:)J,(~, ~ § ~ ) d ~ ,  
J 

where 

J(~, .) ---- ( - -  1)IaBT,,(D~((Q(~)/(a(x, ~) - -  2) --  (Q(~)/(P(~) - 2))) .  

}[ere the  funct ion af ter  the ~ sign is a f ini te  l inear combinat ion  of  t e rms  of  the  
form 

K;~(x, ~) = f(x)T~'l)(~) . . . T!~'r)(~)(a(x, ~) - -  2)-~(P(~) - -  2) -" , 

where f E C~(R"),  the  T i are cer ta in  of  the  polynomials  Qj (and hence weaker  
r j t h a n  P) ,  and  where # §  and  f l = ~ , j = l ~ .  

Fur the r ,  i f  y is any  mult i -order ,  t hen  D~K~(x, ~) is a f ini te  sum of  t e rms  
of  the  same form as for  Kz(x,  ~) i tself  ( though wi th  r etc. different) .  F r o m  the  
inequal i ty  (16) and  L e m m a  2 we t h e n  conclude t h a t  for an y  mul t i -o rder  y 

? sup IDxK2(x , ~)1 = O(1)[/t[ -~ ( ~ t - - + -  co),  
x,  ~ E R n 

where c is a posi t ive constant .  Since for eve ry  2 and ~ the  suppor t  of  K~(', ~) 
is con ta ined  in a f ixed  compac t  se~bset of  I t ' ,  we have  for  large nega t ive  

lJa(~, r Cl~i=~(]r § 1V (~ (~, ~ e R ~ ) ,  

where C and  c are posi t ive and  independen t  of  ~, ~, and  ~. F r o m  L e m m a  7 
it t h e n  follows t h a t  when ~ is large and  negat ive  

M~(W) < Clal-~ (~ e C~(R")) 

wi th  posit ive constants  C and  c, which concludes the proof  of  (i). 
Now let us t u r n  to  (ii). Clearly _R,(x, z) is a f in i te  sum of te rms of the  fo rm 

S;.(x, z) • F(x ,  z)(x --  z)eQ(D,)h,(x, z) 
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with  1fl[----/c and with  

1 

F(x, z) ---- Cz f (1 --  t)k-lD~b(z q- t(x - -  z))dt ,  (20) 

0 

where Cz is a constant .  Fu r the r  we f ind  t h a t  i f  k (and ]~[) is large enough, then  
for all x, z E R  n 

[D~((x --  z)~Q(D~)hx(x, z)] ~_ C],~l-C(]x - -  z) ~- 1) -:(n+l) (21) 

for a n y  mult i -order  Y wi th  ]Yl ~ n  ~-1  ~-[~],  where C and  c are positive 
constants.  For  we can es t imate  the Ll-norm of the Fourier  t ransform with  respect 
to z of 

(x k - -  zk)~(n+l)D~((x - -  z)~Q(Dz)h~(x, z) 

with  C]2[ -c, as in the proof  of (i) considering the terms t h a t  occur in the  dif- 
ferentiat ion,  and  taking k ~ (2n q- 2 q- tool)/c, where c is the constant  from 
L e m m a  2 (which is clearly independent  of  the  par t icular  choice of Q there). Now, 
by (20), F E C + ( R n •  n) and F and  all the  derivatives of F are bounded on 
/ ~ ' •  n. Fu r the r  R~(x, z) ---- 0 when both  Ix[ and ]z] are large (for then  (b(x) - -  
b(z)) as well as all the Taylor  terms wi th  1 ~ ]fl] ~ k are equal to zero). Thus 
we get by  (21) 

]D~R~(x, z)[ ~ C[2]-~(]x] ~- 1)-O+l)(Iz]-~ 1) -(n+l) (x, z E R ~) (22) 

when lyI ~- n -~ 1 ~- [~], and  with  positive constants  C and  c. I t  follows from 
(22) t h a t  

D ~  p ~/x (23) ~, ~ . ~  ,~)[ _< c[~l-~(]x[ + 1) -(~+') (x,~ e ~ ~  

i f  [y] ~ n ~- 1 -{- ]al. Le t  ~ E C ~ ( R  n) and put  yJ(x) = f t~ (x ,  z)cp(z)dz. Then, 
by  (23) 

In'~(x)I _< Cl~]-~ § U-(~+X)M~(~) (x e R ~) 

i f  ] y [ _ ~ n +  1 ~- [aI, and so 

;gA~) -< cI~I=~ (~ e c7(~~ 

when 2 is large and negative,  proving (ii). 
I t  remains to t rea t  the case u ~ 0 of the  present  lemma. Formal ly ,  multiplica- 

t ion of a funct ion f ( z  - -  x) by  exp (z]2]~(zi --  xi) ) corresponds to t rans la t ion  of  
(~f) by  the  vector  --(27e)-izi2]~iei in the  independent  variable, where ej is 
the j : t h  uni t  vector  in R". In  our case we have to take  f such tha t  (~f)(~) = 
const. �9 D~(Q(~)/(a(x, ~) - -  2)), and  we can easily see t ha t  i f  z is sufficiently small, 
t hen  the  above correspondence is not  only  formal.  For  by  L e m m a  1 and  (16) i t  
follows t h a t  there are positive constants  C and  ~0 such t h a t  for large negat ive 2 
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la(x, ~ - ~(2~)-1121~ie~) - 4[ ~ c(P(~) - 4) (x, ~ e ~") (24) 

for all complex numbers  z wi th  [z] ~ z 0. Hence, as the  above-mentioned formal 
correspondence is t r ivial ly also actual  when ~ is real, i t  extends by  analyt ic  con- 
t inua t ion  to an  actual  correspondence for all complex u wi th  ful < u 0. ~VIore- 
over, it  follows from L e m m a  1 tha t  the es t imate  of L e m m a  2, which we have used 
to majorize the  nominators  of our Fourier  t ransforms,  is no t  des t royed if  we replace 

by  ~ + z(2z)-l]2l~e/, wi th  z sufficiently small. F rom these observations we 
easily conclude the  lemma also in the general case. 

We shall also have to est imate the funct ion h~. of (17). 

LEMMA 9. There is a positive constant ~o such that, when 1 <_ j ~_ n, and ~ is 
any multi-order, we have for all real numbers ,~ with I~I ~ ~o 

M~(exp (ui),lb(yj --  xi))hx(x , y)) = 0(1)S(2~)(2) (Z-~  --  ~ ) ,  

where the norm M~ is taken with respect to the variable x, and where the estimate is 
uniform with respect to y E R' .  Further, as before, b is the positive number cor- 
responding to P by (3). When fl ~ ~ we also have, uniformly in y E R ~, 

M~(D~h~(., y)) = 0(1)S(~)(2) (4 -+ -- m) , where 

S(2~)(Z) ---- f ~:~(P(~) -- R)-~d~. 
J 

Proof. As with  L e m m a  8 we first  consider the case u ~ 0. 

H~. + ~r ,  wi th  

Then 

Hx(x, y) = f (P+ _ exp (2z i (y  --  

I(~D~HA ", Y))(#)I = I#~I(P(  - ~) - -  2 ) - 1  

and so (with fi < a )  

a s  

Write again h;~ = 

x,  ~ } ) d ~ .  

(~, y e R-), 

M~(D~H~(., y)) --  0(1) f I~I2~(P]$I - 2)-1d~ = 0(1)S(2~)(~) 

- ~ -  ~ ,  where the  last es t imate  follows from L e m m a  6. Fu r the r  we have 

(~D~/t~(-, Y))(V) = f ~(P(~)  -- i)-lLz(~, ~ + ~) exp (2ni(y,  ~})d~, 

where 

L~(~, .) = % ( ( P ( ~ )  - -  a ( x ,  ~ ) ) / ( a ( x ,  ~) - -  4 ) ) .  
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Arguing as in the proof  of (i) in L e m m a  8 i t  follows tha t  for large negat ive t 

ILA$, 01 _< C(] l + 1) r 

where C is a constant .  Hence,  by  the  Fubini  theorem, the~ inequal i ty  
]~ - -  ~I" --< const �9 I~I"[~I a, and Lemma 6, 

f I~[~](WD~Hx( ", y))(~)ldv ~< 

<c'f x)-I (7  1~1~4~1~(1~, + < 

< C "  f I~]2~(P(~) - -  J 0 - 1 d $  = O(1)S(2a) ( / t )  (1  ---> - -  oo) 

where C' and  C" are also constants .  This ends the proof in the case z = 0. The 
extension to the  general case is made exact ly  as in the proof  of L e m m a  8. 

Remark.  From the  proof  of L e m m a  9 i t  is seen t h a t  we even have a majora t ion  

1(~2D~hx( ., y))(~]) ] < Vx(~) (y, V E R n, fl < ~) ,  

where Vz(~) is independent  of y and where 

f [~l~V~,(~l)d~ = O(1)S(2~)(A) (A-+ -- ~ ) .  

We can now conclude this section by  the desired construction and  estimation of  
a fundamenta l  solution of a(y, Dy) --  1 (where a(y, JOy) still satisfies the con- 
dit ions at  the  beginning of this section). (Notation: When  F(x,  y) is a funct ion 
of  x, y E R ~ and  c~, fi are multi-orders,  we shall write F(~'a)(x, y) = 
( iD~)~(iD,/F(x,  y).) 

LEMMA 10. Let N be any positive integer. Then (provided t h a t  the  number  s 
in (15) is > n + N)  there is for all sufficiently large negative values of 1 a funct ion 
g~ on R " x R  ~ with the fol lowingpropert ies:  

(i) for every x 6 R" the funct ion g~(x, .) is a fundamental  solution with pole x 
of the operator a(y, Dx) --  )., 

(ii) g~ belongs to CN(R~• and for every multi-order ~ with ]2~ I <_ IV we have 
with some positive constant c 

g~'~)(x, x) = (1 § O(1)lil-~)G(~,k~)(x, x) (A-+ --  or) 

for  eve~w x 6 R n, where 
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/ .  

G(a, a)[~. J ~,~ ~+, y) ---- ~2~(l~e a(x, .~) -- 2) -1 exp (2zd<x -- y, ~>)d~ , 

(iii) we have g x ( x , y ) ~  0(1)[2] -* ( ~ - + - -  oo) uniformly on R " •  ~, with some 
positive constant c, 

(iv) when ~, fi are multi-orders such that l~] <_ N (then D~g~(x, .) is in C ~ ( R ~ { x } )  
for every x E R", since by  (i) we have (a(y, Dy) -- 2)D~g~(x, y) = 0 in /~"~{x} 
and since the operator a(y, Dy) -- 2 is FHE)  we have 

g~'~)(x, y) ~-- 0(1) exp (-- z]2I ~) (2 -~ -- ~ ) ,  

uniformly on compact subsets of the region x ~= y in R"•  R", where ~ is a 
positive constant that may depend on the compact subset, and where b is the 
positive number corresponding to P b y  (3). 

Proof. As already mentioned, 

where 

g;. will be constructed by  the formula 

g~(x, y) = h~.(x, y) ~- f u~(x, z)h~(z, y)dz , 
J 

(17) 

f 
u~(x, z) - j u~(x, w)A~(w, z)dw : A~.(x, z) , (18) 

where hx and Ax are the same functions as those estimated in the Lemmas 8 and 9. 
Let  ~(B~)  be the Banach space of all bounded linear mappings from (the whole 
of) B a to B~. Then we shall interpret the integral in (18) as the kernel of the 
mapping, e.g. in ~(B0),  composed b y  those defined by  A+. and u~ (in that  order), 
where ux is so far unknown. And in (17) we take, for every y E R n, the integral 
as the (continuous representative of the) function in B0 which is the image of 
the function h~.(., z) by  the mapping u~ : B o --> B 0. When ~ is any multi-order 
we have by  Lemma 8 that N~(Ax) < 1 if 2 is negative and large enough. Thus the 
equation (18) has then a unique solution u~ in ~(B~),  given by  the geometric 
series 

Ax(x, z) -4- f A <x w)Ax(w, z)dw + . . . (25) 

(with integrals interpreted as compositions of mappings in -~(B~)). Clearly the 
kernel u~ does not depend on the choice of ~, this being a simple consequence 
of the fact that  Mo(f)  << M~,(f) for any cr and any f. Further, there are by  Lemma 
8 positive constants c and z0 such that  when ]z] _< z 0 and 1 < j  < n we have 

N ~ , ~ ( e x p  (~12lb(xi  - -  zj))Ax(x, z))  = O ( 1 ) l ~ l  - ~  (2 - - - -  - ~ ) .  

I f  in (25) we replace Am(x,z) by  exp (~[2]b(xj-- zi))Ax(x,z), with [uI --< ~o 
and 2 sufficiently large, then the sum of the series will be changed to 
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exp (~t2[b(xi --  zi))ux(x, z), by  pairwise cancellation of exponential factors. To see 
that  such cancellation actually takes place, with the sense that  we have given to the 
integrals, we can apply the kernel A1. ~ =- A~(x, z) exp (~[~]b(xi -- zi) ) to a function 
f such that  f eBo and fl----exp (--n[2I~zj)f(z)eBo. Then, if 2' is the image 
of f by  A x, and F 1 of f l  by  A1,;~, we have Fl(X ) -= exp (~]2[~xi)F(x). For this 
is clearly true when f e C~(.Rn), and so it follows for an f as above approximating 
f with functions in C~(/~ ~) simultaneously in the norms M 0 and M~.0, where 
M~, 0 is defined by  M~,0(~)----M0(ex p (--~[2l~z~)9(z)). (This can be done, first 
taking the product and then the convolution of f with suitable functions in C~(Rn).) 
I t  follows that  both Mo(F ) < ~ and M~. 0(F) < ~ .  Thus, if we apply Ai resp. 
Al.x any given finite number of times to a function f as above, letting F resp. 
F 1 be the images, we get Fl(X ) = exp (~[2]~xj)F(x), implying the desired can- 
cellation. 

Thus it follows that  

;V (exp ( l I (xj - z)) = 0(1)1 1 (26) 

when i z[ ---< ~0 and 1 < j < n. 
Let us show (ii) by  proving that,  with a positive constant c, 

x) = (1 + z )  - 

and 
/ r. \ 

D~D~ ( J  u~(x, z)h~(z, x)dz) = O(1)I~l-cG(~,,~)(x, x) (~ --~ --  ~ )  (28) 

for any x C R ~, together with the order N differentiability of the two terms on the 
right in (17). 

I f  ~, fl are multi-orders, then h~'~)(x, .) is the inverse Fourier transform (with 
respect, to ~) of a finite sum of terms of  the form 

f~ (x ,  ~) ~- Q g ( X ) ~ Y ~ I ( ~ )  . �9 �9 .R t (~) (a(x  , ~) - -  ~ ) - ( , + 1 )  e x p  ( - -  22 l i ( x ,  ~})  

and of the term 

Fx(x, ~) =- i[~+~l~+~(a(x, ~) --  ~)-1 exp (-- 2zd(x, ~}) , 

where ~v E C~ (R n) and the polynomials /~i are all weaker than P,  while y _< a ~- fi, 
y r  and IY[ ~ t = [ ~ + f i I .  For in the defining formula 

h~(x, y) ~-- f (a(x, ~) --  A) -1 exp (2Jri(y --  x, ~})d~ 

we get such terms, differentiating under the integral sign, and by  Lemma 2 the  
integrands are in LI(R ") if the number s in (15) is > n ~ ]c~ ~ ill, which proves 
the desired differentiability of the term hx(x, y). Now let ~ ~-- ft. By  Lemma 3 
and (16) applied to the operator I~e a(x, D), it follows that  for large negative 
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lA(x, })l <- cl}~l( ~ e  a(x, ~) - 4) -1 (} e R ~ , 

where C is a constant ,  and  7 --< 2cr y # 2~. So it follows by  L e m m a  6 t h a t  

(2~f~(x, .))(z) = 0(1)1% -c~(a'~)/~ x) (4--> -- ~ )  (29) 

uni formly  on /~", with a positive constant  c. Fu r the r  

(%F~(x, -))(x) = 

---- ~,~.~(~' ~)r x) -- i f ~2~(Im a ( x ,  ~ ) (a (x ,  ~) - -  ,~)-l(l~,e a(x,, ~) _ ,~)_Xd ~ . (30) 

:Now from L e m m a  3, L e m m a  2, and (16) it  follows tha t  

[ I m a ( x , ~ ) . ( a ( x , ~ ) - - 4 )  -1 ] _<C]2] -~ ( ~ E R  ~) 

for large negat ive values of  ),, where C and  c are positive constants .  Hence we 
get from (30) 

(~ '~(x,  .))(x) = ~(~,~)~ x) § O(1)l~I-cG($'~)(x, x) ( 4 - ~ -  ~ )  

for any  x E _R ~. Form this and  (29) we immedia te ly  get (27). 
When ~, fl are multi-orders wi th  [a § fi] < N, let us see t ha t  

in the  distributional sense, where the functions Vx(x, y) = f u~.(x, z)D~h~(z, y)dz 
and  D~ Vx(x, y) are continuous on R" • R ~. 

For  +his, let us f irst  observe t h a t  for any  y0 E R = we have 

M~(h,.(., y) - -  h,(., yO)) __> 0 (y --~ yO) (32) 

(still assuming t h a t  the number  s in (15) is large enough). For  wi th  the  Fourier  
t ransform of the funct ion af ter  the M~ sign we have t r ivial ly pointwise convergence, 
and  fur ther  by  the  l%emark after  L e m m a  9 we can majorize it  wi th  a funct ion in 
~B~, and  so the  Lebesgue theorem on majorized convergence will give (32). 

F rom (26) (with u = 0) and  L e m m a  9 it follows tha t ,  for every y E R ' ,  
D~ Vx(, y) is def ined as a dis t r ibut ion in B 0 and  hence is a continuous function.  
By  (26) and (32) we get t h a t  Mo(D ~ Vx(., y) - -  D~ V~.(., yO)) _+ 0 as y --)- yO, for 
a n y  y0 E R ~, and  so the set of all the functions D~ Vx(x, .) (with x vary ing  in R =) 
is equicontinuous.  Bu t  cont inui ty  in x and  equicont inui ty  in y give cont inu i ty  
in the  pair (x, y). Thus D~V~. (and V~.) is continuous on R " X R  =. 

To see t h a t  (31) holds in dis t r ibut ion sense i t  is sufficient to show t h a t  we can 
change the order  of integrat ion:  
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when ~s E C~(Rn). But  this  is easily done, for t r ivial ly 
(34) 

when p is a positive integer, and  fur ther  p-1 E > - +  D~h,(x,j/p)~(j/p) tends  to 

f D~hz(z , y)cf(y)dy in the norm M 0 when p--> o% which follows easily by  the 
l~emark af ter  L e m m a  9 and  the  Lebesgue theorem on majorized convergence. Hence 
by  L e m m a  8 we get (33), let t ing p t end  to oo in (34), and also using the  cont inui ty  

of  the integral  f u,(x, z)D~h~(z, y)dz, which we have proved above. 
Since for a n y  given positive integer h r the r ight  hand  side of  (31) is continuous 

when [~ q- fi[ _< N, if  the number  s in (15) is > n q-.N, i t  also follows by  well- 

known theorems t h a t  the  integral  f ua(x, z)ha(z, y)dz is in C:v(R'~• ") and hence 
tha t  (31) holds also in the  classical sense. 

Fu r the r  by  L e m m a  8 and  9 we immedia te ly  get, for any  x e R n, 

o : ( f . , x  = o + , ,  = < ,+  

where c is a positive constant  and  where the  last relation follows from the  fact  
t h a t  the operator  Re a(x, Dx) is equal ly s t r o n g  as P(D) (by L e m m a  3). This 
concludes the  proof of (ii). 

To show (iii), we observe t h a t  from the inequal i ty  (16) it  easily follows t h a t  
wi th  some constant  c > 0 

h~.(x,y) = 0(1)]~1 -c ( a - + -  m) (35) 

uni formly  on R n •  n. Fur the r  L e m m a  9 and  (26) (with e.g. ~ = 0  and  a =  O) 
give the est imate 

f u,( . ,  z)h,(z, y)dz = O(1)/at -c -- o0) (36) 

uniformly  on Rn• ~, wi th  a positive constant  c. Now (iii) follows from (35) and  
(36). 

As for (iv), we argue as for (iii), only now considering exp (zl~]b(zj --  yy))h~(z, y) 
and exp (~[,~lb(xi -- zy))%,(x , z) ins tead of h~(z, y) and uz(x, z), respectively, where 

is a sufficiently small real number .  Fur ther ,  we now let ~ be an a rb i t ra ry  multi-  
order wi th  [aI ~ N. By  L e m m a  9 and  (26) (and the fact  t h a t  cancellation of  
exponent ia l  factors takes place, as we have seen above) we get 

exp (ul~[b(xj -- y.i)D~gz(x, y) = 0(1) () , -~ --  oo), (37) 

uni formly  on R" • R ~, when ~ is a sufficiently small real number .  Since j and  the  
sign of  ~ are arbi t rary,  it  follows from (37) t ha t  

D~g,(x, y) = 0(1) exp (-- a]k]b) (~_> _ oo) (38) 
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mfiformly on compact subsets of the region x ~ y in Rn• R ~, with a positive 
constant ~ depending on the Compact subset. For the moment accepting (i), which 
will be proved below, and using the a priori inequality (6) for the function D~gx(x, .), 
we at once get (iv) from (38). 

I t  only remains to prove (i), i.e., tha t  g~(x, y) actually is a fundamental  solution 
of a(y, Dx) -- ~. Let us see tha t  the usual calculation can be carried out, also with 
the sense of convergence tha t  we have used. We have to show tha t  

f gx(x, y)(a(y, Dy) 2)q~(y)dy = q~(x) (of C~(Rn)) . (39) E 

On one hand, we have then 

t he(x, y)(a(y, - ,~)cf(y)dy 

g ( X ,  (40) 

= ~(x) - f &(x, y)~(y)dy , 

where we have used tha t  h~(x, .) is, for every x E R~, a fundamental  solution of 
a(x, D~,)-  ,~ with pole x, and, moreover, that  a(y, Dy) is formally self-adjoint. 

On the other hand, we have, also using (33), 

f (f u (x, z)h (z, y)dz) (a(y, D~) - 2)q~(y)dy = 

Adding (40) and (41) we get (39), in view of the integral equation (18) for u a (and 
the way of defining the integral there). This concludes the proof of Lemma 10. 

5. Estimates for the spectral function 

Let S be an open connected subset of R n, and let a(x, D) be a F H E  differential 
operator in S of type P, with deg ( P ) >  0. Further  suppose tha t  a(x, D) is 
formally self-adjoint in S. We choose the sign of a(x, D) in such a way (see Section 
3) tha t  Re a(x, ~) --> 4- ~ as I~l--> ~ ,  ~ C R  ~, for every x E S  and the type 
polynomial P such that  P(~) ~ 1 for all ~ E R  ~. 

Now assume tha t  A is a self-adjoint realization of a(x, D) in the Hilbert space 

L2(S) (in which we have the ordinary inner product (u, v ) =  f s  u(x)v(x)dx and 
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the norm [lull =- (u, u)l/2), i.e., A is a self-adjoint operator in L2(S) such tha t  
A~ is defined and equal to a(x, D)q~ for all ~ E C~(S). When f is in the domain 
of A , then clearly A f  is equal to a(x, D)f  with the latter expression taken in the 
distribution sense. Let {E(~)}~e R be an orthogonal spectral resolution of A. Thus 
E(4) is for every real 4 an orthogonal projection in L2(S) such tha t  E(4) _< E(tt ) 
when 4 _</~. Further  E(~)-->0 as 4 - ~ - - G o  and E(4)--+I as 2-->-~ 
(where I is the identical mapping on L2(S)), both in the strong sense, and we 

have A = f ~ +  4dE(~), with strong convergence. The spectral resolution {E(4)} 
is uniquely determined by A insofar that  the functions E-(~)~- l i ra , / ; .  E(/t) 
and E + ( 4 ) ~  lim,~xE(/~) (which are both also spectral resolutions of A) are 
uniquely determined by A. 

We now have the following theorem. 

T ~ o R ~  1. For every real number 4 there is a function e~ in C~(S• such 
that e(~'~ .) is in L2(S) for any multiorder o~ and any x E S (using again 
the notation e~'~)(x, y) --= (iD~)~(iDx)~e~(x , y)), and such that 

E(4)u(x) = reg.(x, y)u(y)dy (u E L2(S), x E S) , 

S 

where E(2)u is a function in C~(S). (The function ex(x, y) is called the spectral 
function of A; clearly e~. is Hermitian.) Moreover, for any multiorders a, fl and 
any compact subset K of S there is a real number ~ > 0 such that 

e~a'~)(x, y) = 0(1)exp (-- ~I41 b) and ][e~'~ ")l] : 0(1) exp (-- ~I4]") (4--> -- ~ )  

uniformly on K • K and K,  resp., where b is the positive number corresponding 
to the type operator P by (3). 

Proof. For the proof we shall in great part  refer to the author's paper [7] (the 
Theorems 3 and 4 there). In tha t  paper the results of our present Theorem 1 are 
proved for an elliptic operator. However, except the existence of an a priori estimate 
of the type (6) (which we thus have at our disposal also now), to copy the proofs of 
[5] we only need a convenient estimate for a local fundamental  solution of 
a(y, D z ) -  2 when 4 - + - - c o .  More precisely, to any point x ~ in S we need 
a function g~(x, y) defined when x, y belong to some neighbourhood o of x ~ 
(independent of 4) and when 4 _< some 4 o, such tha t  for any x E o~ the distribu- 
tion (a(y, Dz) -- 4)g~(x, .) in e~ is equal to the Dirac measure at x, and such that  
for any multi-order ~ we have an estimate 

g(?,~)(x, y) = 0(1) exp ( -  ~l~l b) (4 - ~  - ~ )  (42) 

uniformly on compact subsets of the region x # y of co • where u is a positive 
constant tha t  may depend on the compact subset, and where b is the same as in 
the above formulation of the theorem. 
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Fur the r  we need an es t imate  for g~(x, y) over the whole of ~o • the  following 
being sufficient: 

gx(x, y) : 0(1) (4 -+  -- oo) (43) 

uni formly  on ~oXco. 
I f  a(x, D) and the type  operator  P satisfy the  conditions at  the beginning of 

Section 4 (in particular,  a(x, D) is then  defined on the  whole of  Rn), then  L e m m a  
10 immedia te ly  gives a fundamenta l  solution of  the  desired kind,  (42) following 
f rom (iv) and  (43) from (iii), and  we can even take  w ~ / ~ .  Le t  us see t h a t  we 
can remove the  assumpt ion t h a t  a(x, D) is def ined on the whole of  R ~ an  is equal 
to P(D) when Ix I is large. I f  this  is no t  so, let x ~ be an  a rb i t ra ry  point  in S 
and  ~o c S a relat ively compact  open neighbourhood of x ~ Take a funct ion 
"9 E C~(R n) with  its support  contained in S and such t h a t  0 _< ~p(x) ~ 1 for all 
x and  t h a t  ~v(x)----1 when x E~o. Pu t t i ng  

a'(x, D) : ~f(x)a(x, D)yJ(x) -~ (1 -- ~f(x))P(D)(1 -- y,(x)) 

(interpreting the  first  t e rm on the r ight  as 0 when x is outside S) we get t h a t  
a'(x, D) is F H E  of type  P (as a consequence of  the  choice of  sign of  a(x, D) and 
P)  and formal ly  self-adjoint on the  whole of  R ". Since a(x, D) and a'(x, D) 
coincide in w, i t  is clear t h a t  the fundamenta l  solution gx for a'(x, D) obta ined 
f rom L e m m a  10 will do also for a(x, D) in co • Thus,  copying the proofs of [5], 
the  theorem follows in the  case t h a t  the  number  s in (15) is large enough (i.e. 
s ~ n in this case, making  1/P(~) belong to LI(Rn)). I f  this  condit ion is not  satis- 
fied, we only consider A ~ instead of  A, where r is an odd integer. Then A ~ is 
a self-adjoint realization of  the  differential  operator  a(x, D) ~, which is obviously 
FI~IE of  t ype  P ' .  I t  t hen  follows from the  inequal i ty  (2) t ha t  P" satisfies (15) wi th  
s ~ n if  r is large enough. Thus the  theorem is valid for the  spectral funct ion 
e~,~ of A ~. Bu t  obviously we have (with convenient  choice of e~,x) the relat ion 
e~. ---- e~.~ for all real numbers  4, and  from this the theorem follows also in the 
general case (also using the  observation after  the inequal i ty  (3) about  the  number  
b corresponding to P ' ) .  

Now we shall invest igate the behaviour  of  e~'~)(x, x) when 4 - +  + oo. We 
shall compare it to the funct ion 

e(~, ~)/~ x) -~ f E~d~ x ,  ~ k ' ~  " 
r  

We have the following theorem. 

Tn~on~M 2. For any multi-order ~ and any x C S we have 

e~'a)(x, x) ~- (1 ~- 0(1)(log ).)-l)e(?'za)(x , x) (~.--> ~- oo). 
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Proof. Firs t  let  us suppose t h a t  A >_ I and  that I~e a(x, ~) > 1 for all x E S 
and all ~ E R  ". (Thus E ( 2 ) = 0  when 2 <  1.) We shall t h e n  use the  s t anda rd  
me thod  of  f i rs t  compar ing  the  Stielt jes t r ans fo rms  of  e[~'~)(x, x) and  -(~'~)(~ x). ~x,  )~ ~ 

T h a t  is, we shall have  to s t udy  the  Green 's  funct ion  of  A. 
F r o m  the  a priori  es t imate  (5) we get  the  following inequa l i ty  (e.g. as a con- 

sequence of  the  a rgumen t  in H 6 r m a n d e r  [4], Section 3.7) on an a rb i t r a ry  compac t  
subset  K of  S and for any  mult i -orders  c~, fi: 

sup le[~ Y)l ~-- C(2 -~- 1) ~ (4 > 0) , (44) 
x ,  y E K  

where C and  c are real  constants ,  depending on ~ and  fl, while C b u t  not  c 
depends on K.  

Copying the  proofs of  the  Theorems  1.2.1 and  1.2.2 in Bergendal  [1] we f ind  
t ha t  e~ ~' ~)(x, y) is locally of  bounded  var ia t ion  as a func t ion  of  4, for  an y  x, y E S 
and  a n y  mult i -orders  ~,/3, and  also t ha t  e~a.~)(x, x) is an  increasing funct ion of  
2 for a ny  x E S  and any  ~. Le t  us form the  funct ion  

03 

G~(x, y) = f ( # - -  2)-ld%(x, y) (~ < O; x, y E S) $ 

0 

I t  follows b y  a par t ia l  in tegra t ion  t ha t  i f  the  cons tan t  c in (44) is < 1, t h en  
G~ is cont inuous  in S • S. I t  is easily ver i f ied  t h a t  G~. is the  kernel  of  the  resolvent  
of  A: 

(A - -  2 I ) - l u ( x )  = f G (x y)u(y)dy (e.g. u E C~(S)) $ 

o.] 
S 

I f  N is an  integer  _>0, and  i f  the  constant  v in (44) is < 1 for all a, fl wi th  
i cr -4-fil < N ,  t hen  G~. is in CN(S• and 

co 

G(~162 ~ Y) = f (. 2)-ide(~,.~)(x,, , , Y) + fit < N ) ,  (45) 
0 

as is seen again using a par t ia l  integrat ion.  
I f  fu r the r  we assume tha t  the  number  s of  (15) is 

w h e r e  

x, ). ~ 

0 

n -~ [2~1, t hen  clearly 

- x), (46) 
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To est imate the  difference ~(~,~)t~ x) - -  G~'~)(x, x) we shall use the fundamenta l  ~ x ,  A ~ 

solution g~(x, y) of a(y, D~) --  4 which we have constructed and es t imated  in 
L e m m a  10. This we can do when a(x, D) satisfies the conditions at  the  beginning 
of  Section 4. Since we shall only  use a local fundamenta l  solution, we can argue as 
in the proof of Theorem 1 to get rid of  the global condit ion on a(x, D). Thus the  
only remaining extra  assumption is t h a t  (15) holds for the t ype  operator  P wi th  
s <_n  + 12~[. 

Then let x ~ be an a rb i t ra ry  point  in S and  o~ an open neighbourhood of x ~ 
which is relat ively compact  in S. Le t  gx be the  fundamen ta l  solution of  
a(y, D )  -- A in m • ~, obta ined from L e m m a  10 when A is large and  negative.  
Le t  ~v E O~(S) have its support  in o~ and  be equal to 1 in some neighbourhood 
o~' of  x ~ Then we have for any  x E o~' the  following iden t i t y  between L2(S) - 
elements: 

where 

D~G~(x, .) = yJD~g~(x, .) + (A --  4I)-l(D~x]c;~(x, .)),  (47) 

/c~.(x, y) = (~(y)Ax -- Ay~p(y))gx(x, y) 

(compare e.g. Odhnoff  [7], Prop. 3.5). The iden t i ty  (47) is proved by differentiat ion 
and a simple t ranscr ipt ion of the  iden t i ty  

u(x) = f gz(x, y)(a(y, Dy) --  A)(y,(y)u(y))dy (x E ~o' and  e.g. u C C~~ 

we omit  the details. We now have to es t imate  the last t e rm of the  r ight  member  of  
(47). F rom (iv) of L e m m a  10 it  follows t h a t  

l]ArD~k;.(x 0, .)[[ = 0(1) exp (-- x]A[ b) (2 --> -- ~ )  (48) 

for any  integer r ~_ 0, wi th  a positive constant  ~, while b is the  positive number  
of (3). Now, when A ~ 0 we have [[(A -- 2I)-11[ < 1, and  so it follows from (48) 
t h a t  

[[(A -- 2I) - lA 'D~k~(x  ~ ")H = 0(1) exp (-- ~14I ~) (4 -~ - o0). 

Using the a priori inequal i ty  (5) (and the  corresponding regular i ty  s ta tement)  i t  
t hen  follows t h a t  ( A -  4I)-lD~lcx(x ~ .) is in C~(S)  and tha t  (also using the 
ident i ty  (47) and  the  fact  t h a t  G~a'~)(x ~ x ~ is real) 

a(a, a) ix 0 G?'~)( x~ x~ --  ~z ~ , x ~ = 0(1) exp (-- ~141 b) (4 -+ - o0) (49) 

F rom (49) and  (ii) in L e m m a  10 we now get, for any  x C S, 

e(~??)(~, x) - -  ~$?,~)(x, x) - 0 ( ~ ) t < - = ~ ( : , ~ ) ( x ,  x) (4 - +  - -  ~ ) ,  (50)  

where c is a positive constant .  
To conclude the theorem (in the present  special case) from (45), (46), and  (50) 

by  the  Tauberian theorem (Theorem 2, together  wi th  l~emark 2) of Ganelius [2] 
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for the Stieltjes transformation, we must also verify tha t  the following Tauberian 
condition is fulfilled: 

tt 

f d(e~,~ (x, x) -- e!~"~')(x, x)) <_ 0(1)2 ~ (log 4) '-1 sup (a, ~) (51) 
9. <_ # <_ ,~+~/(c log ~.) 

as 2 -+  ~ oo, where c is the positive number of (50). Further a and t are the 
numbers corresponding to the polynomial l~e a(x, ") and to ~ b y  Lemma 4, i.e., 
we have 

C-l~~ 4)' _< f ~2~d~ _< C~(log 2)' 

R e  a(x, ~) ~ ,~ 

when 2 is large, with a positive constant C. (Clearly the same numbers a, t 
correspond to the type polynomial P and a.) 

But  now we can easily prove (51), by the estimate of Lemma 4 for the derivative 
with respect to 2 of e(~J)(x, x) and by the fact tha t  e~'~)(x, x) increases with 
2. So we can apply the Tauberian theorem mentioned and thus prove the theorem 
under the extra restrictions that  we have imposed. 

To see tha t  these restrictions can be removed, we consider the operator 
B- -~A r - ~ k I ,  where r is an even integer >_0 and /c a real number ~ 0 .  B is 
then a self-adjoint realization in L2(S) of the differential operator b(x, D) 
a(x, D) ~ -~- k, and clearly b(x, D) satisfies the said restrictions in any given relatively 
compact open subset of S, if r and /~ are large enough. Thus the theorem is then 
valid for the spectral function e~ of B. But from the relation 

e~. -- e_~ ---- ez+k (4 > 0) 

(choosing the pointwise definition of ez conveniently when 2 < 0) we get by 
application of Theorem 1 to the term e~:  

~=,-)(z, ~) = (~ + o(1)/( log 2))~(~'~?+~(x, x) (2 -~  + ~ )  (52) 

for any x E S. From Lemma 3, (4) and (5) we easily get the estimate 

(~e a(x, ~))" - ~ e  b(x, ~) + k = 0(1) (Re b(x, ~))~ (1~t ~ oo, ~ e R ~ 

with some real number p < 1. This gives 

~(~' ~) ~(~' ~)~ " x )  < ~(~' ~) ' 

when 2 is large, with some positive number u(x). Applying the estimate for the 
derivative of ;(~,~)t+ x), obtained from Lemma 4, we get 

ex,~(ct, ct),(x, x)  = ( l  + O(1)2P--1)'e,(~176 , X) (4  --->'-31- 00) . 

Inserting this in (52) we get the theorem in the general case. 
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