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1. Introduection

We are going to consider a differential operator a(x, D) = > a (*)D* in
and open connected subset S of R, where D is the differentiation symbol
(2me)~1(0/0xy, . . ., 9/0x,) and the summation is made over a finite number of
multi-orders « = (xy,...,x,). We assume that the operator a(z, D) is formally
hypoelliptic (FHE) of type P in §, i.e. that the (complex-valued) coefficients a,
are in C®(8) and that for every z €8 the polynomial (in & € B")|a(z, &) =
> a,(x)* is equally strong as the hypoelliptic polynomial P in the sense of
Hormander [4]. We also require that the type polynomial P is not a constant.
Moreover, we suppose that a(z, D) is formally self-adjoint in 8, i.e. that we have

> ay(x)D* = D"‘m there. Then with no loss of generality we may assume
that Rea(x, &) - 4 o as |£] - o, £ € R", for every z € 8 (Lemma 3).

Suppose now that A is a self-adjoint realization of a(x, D) in the Hilbert
space L2(S) (note that 4 need not be bounded from below), and let 4 = f 2 AME,
be its spectral resolution, the &, being orthogonal projections in L3(S), increasing
with 1. We shall then prove (Theorem 1) that for every real number A4 the pro-
jection E, is given by a kernel e, in C®(SxS) (e, is called the spectral function
of A) and that, when A— — oo, e, tends exponentially to zero together with its
derivatives (with respect to the variables in S x.S), uniformly on compact subsets
of §x8.

Further, for an arbitrary n-order « we shall investigate the behaviour as
A—+ o of the derivative ¢z, y) = D¥— D, )*,(z,y) when 2 =y€S8. We
shall then compare &¥(x, x) to the function

egt,la)(x, y) = f & exp (2mikx — y, £E))E .

Re afx, 5) <2
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It will be shown (Theorem 2) that &% (x, z) = (1 -+ o(1))e£‘j‘;l°‘)(x, x) as A— 4 oo,
for every z €8.

The proof of these results will rely on the construction and estimation of a local
fundamental solution of the operator a(z, D) — 2 when 1 is large and negative.
This is made in a series of lemmas, concluded with Lemma 10. Further we shall use
a Tauberian theorem for the Stieltjes transformation due to Ganelius.

Results for elliptic operators similar to those of this paper (sometimes sharper)
have been given by a great number of authors, and for hypoelliptic operators with
constant coefficients by Goréakov [3] and by the author of the present paper ([8]).

2. Formally hypeelliptic differential operators

In this section we shall, for later reference, state a few properties of FHE dif-
ferential operators (and, particularly, of hypoelliptic operators with constant
coefficients), which are well-known from the works of Hormander [4], [5], Malgrange
[6], and Peetre [10], or follow easily from them.

Assume that the differential operator P(D) with constant coefficients is hypo-
elliptic, i.e. that (D*P(&))/P(£)—0 as |&|— o, § €R", x# 0. Then one has
also the stronger relation

|E]*(DPP(£))/P(5) = O(1) ([§] > 0, EE€R", a#0) (1)
with some positive constant ¢. In particular, if P is not a constant,
(& P(E) = o(1) (|§] > o0, EERT. (2)
Further there is a largest positive number b such that with some constant C
\D*P(&)] < C(IP(§)] 4 1)'~* (£ € R7) (3)
for all multi-orders « (writing |x| = &; + ...+ &,). This largest number is nob

changed if in (3) we restrict ourselves to those « for which [x|= 1. If P has
degree m we have b < 1/m, and if r is a positive integer, and if b’ is the cor-
responding number given by (3) for P7, then & =b/r. If @ is a polynomial
weaker than P, ie. we have >, [D*Q(£)| <C 2, |D*P(¢)| (& € R") with some
constant C, then for any multi-order «

IDQ(§)] < O(1PE)] + V' (£ e R, (4)

where C is some constant and b the same as in (3). (This follows easily from
Hormander [5], Remark 2, p. 209.)

If a(z, D) = a,(x)D* is a differential operator in the open subset S of R”
and P a hypoelliptic polynomial (in » variables), then a(x, D) is said to be
formally hypoelliptic (FHE) of type P in 8, if all the coefficients a, arein C®(S)
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and if for every x € § the polynomial (in &) a(x, &) is equally strong as P. Then
a(x, D) can be written in the form

a(z, D) = 3 b(x)@(D), (8)

where the coefficients b; are in C*(S) while the polynomials @); are all weaker
than P. Of course the @; can all be chosen real.

If a,(x, D) and ay(x, D) are FHE of the types P; and P,, respectively, then
the composed operator a,(x, D)ay(x, D) is FHE of type P,P,.

If a(x, D) is FHE of some type P of degree > 1 andif p is any non-negative
integer, then there is another positive integer s such that if # is a distribution in
S with a(z, D)’u € L*(S), then u € CP(8). We have then for all such % an in-
equality ~

2

Y
sup [Du()| 50( f (la(z, Dyu(z)]* + lu(x)l2)dx) , (6)

€K

for any multi-order & with [x] <p, and for any compact subset K of 8, C
being a number which does not depend on % (but e.g. on K).

3. Some lemmas

To prepare our construction and estimation of a fundamental solution of the
operator (a(x, D) — A), we shall give some lemmas.

Lemma 1. Let P and @ be complex polynomials in n wvariables such that P
is hypoelliptic and Q weaker than P, and let & € R*. Then we have

ID*Q(§ + w2£') — DPQE)| < Olelr™¥([§] + 1)~H(PE)] + o) (7)

for all & € R™ and real numbers v > 1, and for all complex numbers z with |2] < 1.
Here « is an arbitrary multi-order, b the number given by (3), while ¢ and C are
positive and independent of &, z, and T.

Proof. Suppose first « # 0. By Taylor’s formula
m—|a

| .
DUQIE + 728") — DFQUE) = 2 (1)'Qy(8)
j=1

where m is the degree of P (of course deg (Q) < deg (P), @ being weaker than
P). Further @; is a linear combination of derivatives of @ of order |x] - .
By (4) we have

[7721Q4(&)| < O [2/(|1P(§)] + 1) ¥+ (8)
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with some constant €. From the elementary inequality 2%'~® <z + y, valid

for ,5 >0 and 0 <a <1, we get from (8), putting = = 7%, y = |P(§)| + 1

and jb <@ <1 (possible, since b < 1/m and j << m), and inequality
[7727Q;(8)| < Clz[x¥~R(|P)] + 1 4 ') (IP(§)] -+ 1)**I=% .

So, taking a4 — jb sufficiently small, the lemma follows from (2) when o = 0.
The case « = 0 is clearly simpler.

By use of (4) and the inequality 2%°~' < x + y we readily get also the following
lemma.

LeEMMA 2. With P and Q as in Lemma 1 we have

ID°Q(E)] < Ov~®I(I&] + 1)~M(IP&)] + 7)) (£ € R")

for all multi-orders x, and all © > 1, where C and ¢ are positive constants and
b the same as in Lemma 1.

We also have

LemMA 3. Let a(z, D) be FHE of type P and formally self-adjoint in an open
subset 8 of R". Then Re (a(z, D)) (obtained by taking real parts of the coefficients)
is also FHE of type P, and Im (a(x, D)) is strictly weaker than P, i.e.,

£1°(D¢ Im (a(z, £)))/P(§) >0 (|§] > o, §E€RT

Sfor any multi-order «, where ¢ is some positive constant and the convergence is uniform
for = in compact subsets of 8.

Proof. We use the representation (5). Then the formal adjoint a(z, D)* of

a(z, D) is given by > Q,(D)b;(x). By Leibniz’s formula

a(@, D)* = 3 b@)Q(D) + 3. eul)RuD),
where every R, isof the form D¥@;), with « s 0. Hence, by (4) and (2) it follows
that with some positive constant ¢ we have

EF D BE)IPE) >0 (] > o, & ER)
for every %k and every multi-order B. Since by assumption a(z, D)* = a(z, D),
we get

2i Im a(z, D) = > ¢, (x)Ry(D) ,

from which the lemma immediately follows.

It follows from Lemma 3 that if a(z, D) is FHE and formally self-adjoint,
then the type polynomial P can be chosen real. If S is in addition connected and
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deg (P) > 0, then either Rea(x, &) > + oo as [§|—> oo, EER", forall z €S
or this is true with — co instead of - oco. This follows easily from Lemma 3,
(4), and a simple continuity argument. '

From Nilsson [8], Theorem 1, we take the following result.

LemwmA 4. Let P be a real polynomial on R" such that P(£) — + oo as |&] —oo0.
Let « be an arbitrary multi-order. When 1€ R, put

6(206)(;{) — f §2ad§ .

PE <A

Then there are non-negative real numbers C, o, and &, where C > 0 and t is an
integer, such that
C'A*(og AY < (1) < O2°(log AY (9)

when 1 ts large enough. Further the function e is differentiable when A is large
enough, and we have

de®(2)/dA = 0(1)2*Y(log A} (A— + o).
Remark. Lemma 4 can be sharpened in various directions. E.g. it is possible
to replace (9) by the estimate
e®(2) = C'(1 + o(1))A*(log A) (A— 4 ),
with some constant €’ > 0. Also, it is not necessary that the exponent of & in
the integral be even (if not, one must of course allow that ¢’ = 0 and that a << 0).
We shall also need
Lemma 5. Let P be as in Lemma 4 and in addition hypoelliptic, and put
= [ e,
PE <1

when o is a mulli-order. Then, if § <o (ie if B <o for all j), if a# B,
and if o has only even coordinates, we have

eP(2) = O(1)A~€9() (A— + ),

where ¢ is some positive constant.

Proof. When y is a multi-order, put » = (1 + 1, 99 ...,7,). It is clearly
sufficient to show that for any ¢ we have

() = 0)A~%P(4d) (A— + o), (10)
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with some positive constant ¢. For in (10) we can, of course, as well add 1 to any
other of the component orders than y,, and so we get by repeated use of (10)

E(ﬁ)(l) — 0(1)/1“”?3("‘)(01) — 0(1)1—02@)(/1) (A= 1+ o),

where ¢ and C are positive constants, and where in the last step we have used
Lemma 4 for ¢ = ®,
When 7' is a positive real number, put

My(2) ={E€R"|P(E) < 4 [&] <T} and Ng(d) ={§ €R"P(¢) <4, [&]> T},

and let us prove that there is a positive number % such that

/ £7]ds < f 1675 (11)

M) N (44)

when 7T = 7* and A is large enough. For then we should get

€M) = f |&"|dE + / 1&7|dE < 2 f |&7|dg < 2T / ]5”]d§<22"‘e(’”(4l)

My () N7() Np(42) Nr(44)

for large A, proving (10).
Put £— (&, &), with & = (&, ...,&) € B Then Q&)= P(0,&) is a
hypoelliptic polynomial on R"~!, and

IE'17°QE) — + o ([§']— ) (12)
with some positive constant ¢. Let e’ correspond to @ (on R*') as ¢ to
P. Put 9 = (¥5,...,9,) and

feon= [ ey
P(z,3) <4

We contend that there is a positive number ¢ such that when 1 is sufficiently
large we have

f(2712) < f(&, ) < of(22) (13)
for all & with |&| < 2*. Indeed, we have the Taylor expansion
P&, &) = Q&) + 2 (2m)E(§) DV OP(0, &),
j=1
and since with some positive number ¢ we have
&' "DUOP(0, &)]Q(€) -0 (|&'] — )
for every j > 1, it follows that with some positive number ¢ we have

27Q(E) < P&, &) < 2Q(8))
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when |&| < |&|° and |&| is sufficiently large. From this inequality and (12)
we conclude (13}).
Now we get by (13)

T
f |&7]d < T f f(&, A)dE < 2T 1ef)(27) and
Mp(2) -T
lZc
f 81 > f FlE 405 = (0% — TYE(22)
N (43) T

when T is any real number such that 1 <7T < 3* and 2 is large enough. Thus

we immediately get (11) (with e.g. % equal to ¢/(y; + 1) with the ¢ of the above
inequality). The lemma is proved.

Let P be as in Lemma 4 and assume that for the multi-order &« we

have €®(1) = O(1)A* as A—> -+ oo, where » is a constant < 1. Then the
integral

e ) = f |E4(P(E) — A)de

is convergent when A is sufficiently large and negative. For, with some real number
c,

=]

o) = [ = 70 = [ w0 — 2 E (14)

c

the last step follows by an integration by parts, where the boundary term at
oo vanishes because of our growth condition on e®.
From (14) and Lemma 5 we easily get

Levma 6. If 8 <«, f 5 «, and all the componenis of o are even, then there
18 a positive constant ¢ such that

SO)(2) = O(1)[A]8®(A) (A— — ).
When % is a measurable function on R® and « a multi-order, let us put

LY u) = f [E*u(&)|dE, with |£* =3 |€F].
<o
We then have

LeMMA 7. There is a constant C (which may depend on the multi-order «) such
that (with = = convolution)
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Ly % v) < OL®(w) L v)

for oll measurable functions w and v on R" such that L®(u) and L™ are
finite.

Proof. By the Fubini theorem we have

f £1 ] 5 0) (&) 1dE < f P (€ — )| o) dedn = f 1) lo(n)ldn
where
I(n) = f £ u(E — 7)|dE = f 1€+ gl () |dé .

Hence the lemma follows from the obvious inequality |& + #|* < C|&[*|5|%, where
C is some constant.

4, Construction and estimation of a certain fundamental solution

Throughout this section a(z, D) will be a differential operator on the whole
of R*, and we shall suppose that it is FHE of type P and formally self-adjoint
there. The type operator P is chosen real (which is always possible, as remarked
after Lemma 3) and such that P(£¢) > 1 for all & € B". Moreover, we suppose that

P() = ClEf (£€RY) (15)

where C and s are positive constants and where we shall suppose s to be as
large as we need in our estimates. Further it will be assumed that a(z, D) = P(D)
for all x outside some compact subset of R". In particular, this means that we
have assumed that Re a(z, &) — + o« (|&] — o, & € R") for every = € B* which
is no essential restriction (see Lemma 3).

We are going to construct and estimate a fundamental solution g,(z, y) of the
operator a(y, D,) — A when A is large and negative (saying fundamental solution
we mean that

(aly, Dy) — A)g;(x, y) = 6.(y)

for every x € R, where 6, is the Dirac measure at the point x). The construction
will be carried out by the Levi parametrix method. As the parametric k,(z, ) we
take the tempered fundamental solution with pole  of the operator a(z, D,) — 4
(having constant coefficients), i.e.,

by, ) = f (ale, &) — A exp (2midy — @, D),
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where the integrand is in L}R") for all # € R* when 1 is large and negative.
For from Lemma 3, the representation (5) for a(x, D) and a simple continuity
argument it easily follows that for large negative 2

la(@, &) — 4] = C(P(§) — 1) (v, & €R") (16)

with a positive constant C' (remember also that we may take the number s of
(15) as large as we need).
The fundamental solution g, will be constructed by the formula

0@, y) = hy(@, y) + f w3, 2y (2, )i (17)

where wu, satisfies the integral equation

u,{x, 2) — f u,(z, w)d,(w, 2)dw = A,(z, 2), (18)

with A,(x, 2) = (a(z, D,) — a{z, D ))h,(x, 2).
To give the formulas (17) and (18) a sense and to estimate g, we shall now
introduce convenient norms. For any multi-order «, put

M () = L (Fu) = f &P Fu(E)|de |

where we have again written |£|* = >,__ |&/| and where ¥ denotes the Fourier
transformation (taken in the distribution sense of Schwartz [10]), and where further
% is a tempered distribution on R™ such that [£[*Fu(&) is a function in LA(R").
The set of all such distributions obviously form a Banach space B, (with the
norm M,). It is also clear that B, is a set of continuous functions and a simple
approximation argument shows that CF(R") is dense in B,. Further let N,
be the uniform norm of linear mappings L from B, to By

Na,ﬁ(L) = sup (M,S(Lu’)/Ma(u)) ’

where the supremum is taken over all non-zero functions » € B,. If K is a distri-

bution on R"XRE", it defines a linear mapping K from CP(R™) to the space of
distributions on R™

Rufz) = f K, y)uly)dy .

We shall then write N, ;(K) or even N, 4(K(z,y)) instead of N, ,(K). Now let
us estimate the distribution

Ay(x, 2} = (a(z, D,) — alz, D))k, z)
appearing in (18).
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Lemwma 8. There are positive numbers ¢ and x, such that

Ny ol4,(, 2) exp (x| 2]'(z; — 7)) = O(1)|A|™* (4 — — o0)

a,

for every j, 1 <j <mn, every multi-order x, and every real x» such that |x| < »,.
Here b is the number corresponding to P by (3).

Proof. First let us prove the lemma in the case x» = 0. By (5) we can write

Ay, 2) = 2, (b(@) — b2)@Q(D)hy(x, 2) ,

where, for every j, b, belongs to C”(R") and is constant outside some compact
subset of R, while the polynomial ; is weaker than P. By expansion in Taylor
series, any term in the above sum may, for any positive integer k, be written on
the form

Fia,2) = > (B)72m) (D)@ — 2/ QD )hy(w, 2) + Ryfw,2),  (19)

0|8l <<k
where b is one of the functions b, and @ one of the polynomials €);, and where

1
%

Ry, 2) = ((k — 1>!>—1( [ G b+ o z»dt) QD (w,2) -

Now the mapping having as kernel the term with index § in the sum in the right

member of (19) is the composition of the two mappings L, :u > (Db)u and

L, : v > const. f (x — 2Y’Q(D)h,(x, 2)v(2)dz. Here Db €CF(R"), and so it

follows by Lemma 7 that N, (L) < co. Hence, to prove our lemma (in the case

» = 0) it suffices to show that with some positive constant ¢

(i) Ny o —2PQD)hy(x, 2)) = O(1)|]A]™* (A— — ), for any B0 and
any @ weaker than P, and that

(ii) N, (B) =O0Q1)A]™° (A— — o) if &k is large enough.

Let us start by proving (¢). Put A, = H, -+ f}x, where

H,(x,2) = / (P(&) — M) lexp (2niz — x, £)dE
and thus
Hy(w,2) = f ((afz, &) — A7 — (P(§) — A1) exp (2miz — =, £))dE .

First let us prove (i) with H, instead of h,. If ¢ € CF(R"), we have that the Fourier
transform y of the funetion f (x — 2)/(Q(D)H,(x, 2))p(z)dz is defined by
21— &) = (Fo)(— &) - DPQE)(P(E) — 7)) -

Hence we get
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Ny ol(z — 2PQD)H, (@, 2)) < sup [DHQ(E)/(P(E) — ) -

ZER™

Now D¥Q(&)/(P(£) — A)) is a finite linear combination of terms of the form

PAUGHPEE) ... POOPE) — N,
where we have written e.g. @Y = i"'D’Q when y is a multi-order, and where

Dio1f = B 5 0. Thus, by Lemma 2 (taking v = |1]}), we get
sup |DH(Q(E)/(P(E) — )| = OW)]A]™" (A—— ),

teR®
where ¢ is a positive constant, giving the desired result for H,. Now let
us prove (i) with ﬁl instead of k,. Again take ¢ in COf(R"). If p(x) =
| @ — @D)H (=, 2)p()dz, then

Ty)n) = f T EW,(E & + n)dé |
where
J(E ) = (— WPT(DE(QE) (e, & — &) — @QE)/PE) — 1)) .

Here the function after the ¥, sign is a finite linear combination of terms of the
form

Ky, &) = f@TNE) . .. TEOE) a(x, & — ) (PE) — 7)™,

where f € CF(R"), the T, are certain of the polynomials @; (and hence weaker
than P), and where p +v=r and g =27 ol

Further, if p is any multi-order, then DK, (z, &) is a finite sum of terms
of the same form as for K,(z, &) itself (though with » etc. different). From the
inequality (16) and Lemma 2 we then conclude that for any multi-order y

sup [DIK;(x, §)] = O(1)[|A]™" (A— — o),

%, §ER™

where ¢ is a positive constant. Since for every 4 and £ the support of K,(-, &)
is contained in a fixed compact seubset of R", we have for large negative 1

W& O < ClAI(Ig) + 1)~ iHd g, e R,

where C and c¢ are positive and independent of &, ¢, and A. From Lemma 7
it then follows that when 1 is large and negative

M (p) < ClA] "M (9) (¢ € CF(R")

with positive constants € and ¢, which concludes the proof of (i).
Now let us turn to (ii). Clearly R,(x,2) is a finite sum of terms of the form

Sl(x’ Z) = F(xr Z)(.’L‘ “ z)ﬁQ(Dz)h/l(xr z)
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with |8] = & and with
P, 2) = C, / (1 — 11 DPh(z + te — 2))d¢ , (20)
0

where C; is a constant. Further we find that if ¥ (and |[A]) is large enough, then
for all =z, z€R"

1D((x — 2/’ QD (@, 2)| < C|A|™*(jw — 2) + 1)72C+) (21)

for any multi-order y with |y| <n 4+ 1+ |x|, where C and c¢ are positive
constants. For we can estimate the IL!'-norm of the Fourier transform with respect
to z of

(% — 2)"" " ID((x — 2)"Q(D )y (%, 2)

with C|i[7°, as in the proof of (i) considering the terms that occur in the dif-
ferentiation, and taking & > (2n | 2 4- |x|)/e, where ¢ is the constant from
Lemma 2 (which is clearly independent of the particular choice of ¢ there). Now,
by (20), F € C*(R"xX R") and F and all the derivatives of F are bounded on
R*x R". Further R,(x,z) =0 when both || and |z| are large (for then (b{x) —
b(z)) as well as all the Taylor terms with 1 < |f] << k are equal to zero). Thus
we get by (21)

\DLR,(x, 2)| < ClAI~(lz| 4+ )" (] 4 1)7CY (2,2 € B7) (22)

when [y| <n 4+ 1 4 |x|, and with positive constants C and ¢. It follows from
(22) that

\DUP Ry) (@, )| < ClAI~* (2] + 1)~ (2,9 € RY), (23)
if ly]<n4+14lal. Let ¢ €CP(R" and put w(@) = [ R,(x, 2)p()dz. Then,
by (23)

|Drp(a)| < ClA1 (o] + 1)~DM(g) (v € B7)
if yl<n+4+1+4 ||, and so
Mo (y) < ClAIT°M,(g) (¢ €CT(R™)

when 4 is large and negative, proving (ii).
It remains to treat the case » £ 0 of the present lemma. Formally, multiplica-
tion of a function f(z — x) by exp (%MI"(zj — %;)) corresponds to translation of

(#f) by the vector - (Zn)—lle"@'ej in the independent variable, where e¢; is
the jth unit vector in R". In our case we have to take f such that (Ff)(§) =
const. - DY(Q(&)/(a(x, &) — A)), and we can easily see that if # is sufficiently small,

then the above correspondence is not only formal. For by Lemma 1 and (16) it
follows that there are positive constants C and x, such that for large negative 1
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la(z, £ — #(2m) (A %e) — 4| > C(P(&) — 1) (v, EER") (24)

for all complex numbers » with |%]| < %, Hence, as the above-mentioned formal
correspondence is trivially also actual when » is real, it extends by analytic con-
tinuation to an actual correspondence for all complex » with |x| < %, More-
over, it follows from Lemma 1 that the estimate of Lemma 2, which we have used
to majorize the nominators of our Fourier transforms, is not destroyed if we replace
£ by &4 x(2n)“1|l|"ej, with x sufficiently small. From these observations we
easily conclude the lemma also in the general case.

We shall also have to estimate the function %, of (17).

LeMMA 9. There is a positive constant x, such that, when 1 <j <mn, and x is
any multi-order, we have for all real numbers » with |x]| < x,

M fexp (|21°(y; — a)ha(o. ) = OSEI(A) (2> — ),

where the norm M is taken with respect to the variable =, and where the estimate is
uniform with respect to y € R*. Further, as before, b is the positive number cor-
responding to P by (3). When B <« we also have, uniformly in y € R",

M (Dihy(-, ) = O(1)8®(2) (A — o), where
sean) = [ e - pae.

Proof. As with Lemma 8 we first consider the case x = 0. Write again &, =
H, + H,, with

Hy(w,y) = [ (P(6) — A exp (2idy — x, )5
Then

(DS, (-, 9)(§)] = |E€(P(— & — )™ (£, y €R"),
and so (with g < «)

M (DLH (-, y)) = O(1) f [EP*(P €] — )~ dE = 0(1)8E9(2)
as A— — oo, where the last estimate follows from Lemma 6. Further we have
DYy = [ EPE) — DLE, £ -+ 1) exp (2idy, )36

where

L€, 1) = 7 ((P(&) — alx, §)/(a(z, &) — 7)) .
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Arguing as in the proof of (i) in Lemma 8 it follows that for large negative 2
\Ly(& O < 012 + 17+ (¢, L e Y,

where C is a constant. Hence, by the Fubini theorem, the. inequality
lp — &|* < const - {£]%|]*, and Lemma 6,

<0 f I£7](P (&) ~z>—1( il -+ & + 1)“"“*""“0177) de <
< f E[R(PE) — 1)) ( f E[* (| - 1)“<"+1+‘°‘an) ds <

<0 [ 1PE) - D7 = 0SB (1> — o),

where O’ and C” are also constants. This ends the proof in the case » = 0. The
extension to the general case is made exactly as in the proof of Lemma 8.

Remark. From the proof of Lemma 9 it is seen that we even have a majoration

(ZDSh,( )| < V() (y,m €R", B <),

where V,(n) is independent of y and where

f ¥V )y = O(1)SED(2) (A — — o) .

We can now conclude this section by the desired construction and estimation of
a fundamental solution of a(y, Dy) — 2 (where a(y, D,) still satisfies the con-
ditions at the beginning of this section). (Notation: When F(z,y) is a function
of x,y€R* and «,8 are multi-orders, we shall write F&Pg ) =
(D)D) F (2, y).)

Lemma 10. Let N be any positive integer. Then (provided that the number s
in (15)is > n -+ N) there is for all sufficiently large negative values of A a function
g, on R*XR™ with the following properties:

(i) for every x € R™ the function g,(z,-) is a fundamental solution with pole x
of the operator a(y, D)) — 4,

(ii) g, belongs to CY(R"X R™), and for every multi-order « with |26] < N we have
with some posttive constant ¢

gga,a)(x, x) = (1 + 0(1)|M*6)G§§’f‘)(x’ x)y (A— — o)

for every x € R", where
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G, y) = f E%(Re ae, &) — )~ exp (2mis — y, E)E,

(iii) we have g,(x,y) = O(1)|A|° (A — — o) wuniformly on R"XR", with some
posttive constant c,

(iv) when o, § are multi-orders such that |x| < N (then D%g,(x, ) isin C*(R"\{z})
for every « € R", since by (i) we have (a(y, D)) — 2)D7g,(z, y) = 0 in B"\{=z}
and since the operator a(y, D,) — 4 is FHE) we have

9= (x, y) = O(1) exp (— %|AP) (A — — o),

uniformly on compact subsets of the region x # y in R*XR", where » is a
positive constant that may depend on the compact subset, and where b is the
positive number corresponding to P by (3).

Proof. As already mentioned, g, will be constructed by the formula

g, 9) = by ) + f w2, 22, )z (17)

where
u,(x, 2) — \[u,,(x, w)A,(w, 2)dw = A4,(x, z), (18)

where %, and A; are the same functions as those estimated in the Lemmas 8 and 9.
Let <(B,) be the Banach space of all bounded linear mappings from (the whole
of) B, to B,. Then we shall interpret the integral in (18) as the kernel of the
mapping, e.g. in £(B,), composed by those defined by A, and u, (in that order),
where u, is so far unknown. And in (17) we take, for every y € R", the integral
as the (continuous representative of the) function in B, which is the image of
the function Ah,(-,2) by the mapping u,: B, B,. When o is any multi-order
we have by Lemma 8 that N, (4;) < 1 if 1 is negative and large enough. Thus the
equation (18) has then a unique solution %, in <£(B,), given by the geometric
series

A,(x, 2) + f A (x, w)A,(w, 2)dw + . . . (25)

(with integrals interpreted as compositions of mappings in “4(B,)). Clearly the
kernel u; does not depend on the choice of «, this being a simple consequence
of the fact that My(f) < M (f) for any « and any f. Further, there are by Lemma
8 positive constants ¢ and x, such that when |x| <, and 1 <j <n we have

N, o(exp (¢|21°; — ), 2)) = O1)|A]™ (A— — o).

If in (25) we replace A,(z,z) by exp (%M]"(z’j—zj))AA(x, z), with |x| <3,
and A sufficiently large, then the sum of the series will be changed to
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exp (zM[”(xj — 2,))u,(x, 2), by pairwise cancellation of exponential factors. To see
that such cancellation actually takes place, with the sense that we have given to the
integrals, we can apply the kernel A4, , = 4,(x, 2) exp (x|l]"(xj — 2;)) to afunction
f such that f€ B, and f, = exp (— %|1]’)f(z) € B,. Then, if F is the image
of f by 4,, and F, of f, by A, ,;, we have Fy(¥) = exp (x|A|%;)F(x). For this
is clearly true when f € C{(R"), and so it follows for an f as above approximating
f with functions in Cy(R") simultaneously in the norms M, and M, ,, where
M, , is defined by M, o(¢) = My(exp (— %llisz)q)(z)). (This can be done, first
taking the product and then the convolution of f with suitable functionsin CF(R").)
It follows that both M(F) << oo and M, ((F) < co. Thus, if we apply A4, resp.
A, , any given finite number of times to a function f as above, letting F resp.
F, be the images, we get F,(r) = exp (x[l]"xj)F(x), implying the desired can-
cellation.
Thus it follows that

N, (exp (121 — 2w, 2)) = O(IA™ (A — — o) ,  (26)

when (x| <%, and 1 <j <m.
Let us show (ii) by proving that, with a positive constant c,

Bz, 2) = (1 4 O(1)|A] )Gz, 2) (X — — o) (27)

%,

and
DiDg ( f u, (@, 2)hy(2, x)dz) = O()|A|7°G&x, 2) (A —> — ) (28)

for any z € R*, together with the order N differentiability of the two terms on the
right in (17).

If x, p are multi-orders, then A{®P(x,*) is the inverse Fourier transform (with
respect to £) of a finite sum of terms of the form

fil@, &) = p@)E&Ry (&) . . . R(&)(alx, &) — )~V exp (— 2aidz, £))
and of the term
Fi(x, &) = it (q(a, £) — )L exp (— 2mida, £)) ,

where ¢ € C°(R") and the polynomials R; are all weaker than P, while y <« + B,
y#a-+p, and |y| +t= |« -+ f|. For in the defining formula

by, y) = f (ale, & — 2L exp (2midy — @, E))E

we get such terms, differentiating under the integral sign, and by Lemma 2 the
integrands are in L'(R") if the number s in (15)is > n - |x + B|, which proves
the desired differentiability of the term &, (x,y). Now let &« = . By Lemma 3
and (16) applied to the operator Re a(x, D), it follows that for large negative 1
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file, &) < Cl&|(Re a(w, &) — )7 (§€R"),
where C is a constant, and y < 2x, y # 2«. So it follows by Lemma 6 that
(Zfilz, Ne) = O 2] GL N x, ) (A — — ), (29)
uniformly on R", with a positive constant c¢. Further

(7F (@, (@) =

— G, @) — f E3Im a(z, &)(ale, &) — 2)-YRe e, £) — )ide. 0

Now from Lemma 3, Lemma 2, and (16) it follows that
Im a(x, &) - (a(x, &) — )7 < 02|~ (& €R7)

for large negative values of i, where C and ¢ are positive constants. Hence we
get from (30)

(FF(, ))(2) = G5, @) + OGN, 2) (A~ — )

for any « € B*. Form this and (29) we immediately get (27).
When «, § are multi-orders with |x - 8] << N, let us see that

DDt (/ u, (2, 2)hy (2, y)dz) = D* (f u,(x, 2)Dih (2, y)dz) (31)

in the distributional sense, where the functions ¥V, (z,y) = f u, (%, 2)Df Ph. (2, y)dz
and D%V, (x,y) are continuous on R"XR"
For *his, let us first observe that for any ¢’ € R® we have

M (s ) — B, 9°)) =0 (y —3") (32)

(still assuming that the number s in (15) is large enough). For with the Fourier
transform of the function after the M, sign we have trivially pointwise convergence,
and further by the Remark after Lemma 9 we can majorize it with a function in
7B,, and so the Lebesgue theorem on majorized convergence will give (32).

From (26) (with » = 0) and Lemma 9 it follows that, for every y € R”,
DYV, (-, y) is defined as a distribution in B, and hence is a continuous function.
By (26) and (32) we get that My(D*V,(-,y) — D*V,(-,4")) =0 as y—y° for
any g’ € R", and so the set of all the functions D V,(x, -) (with z varying in R")
is equicontinuous. But continuity in x and equicontinuity in y give continuity
in the pair (x,y). Thus D¢V, (and V,) is continuous on R"XR".

To see that (31) holds in distribution sense it is sufficient to show that we can
change the order of integration:

f ( f w (@, Db, y)dz) o)y = f (e, 2) ( f Doy (e, m(y)dy) dz, (33)



268 NILS NILSSON

when ¢ € CP(R"). But this is easily done, for trivially
(34)

Pt Z (f wy(x, 2) Dk, (2, j/p) dz) @(jlp) zp‘lful z, 2 Z Dihy(z, jlp)e(jlp))dz

j=Tw J=—w
when p is a positive integer, and further p=* > Dﬁh (x, j/P)p(j/p) tends to
f D‘Sh, 2, Yply)dy in the norm M, when p— o, Whlch follows easily by the
Remark after Lemma 9 and the Lebesgue theorem on majorized convergence. Hence
by Lemma 8 we get (33), letting p tend to oo in (34), and also using the continuity
of the integral f u, (%, 2) D0k, (2, y)dz, which we have proved above.

Since for any given positive integer N the right hand side of (31) is continuous
when |x + B] < N, if the number s in (15)is > n +. N, it also follows by well-
known theorems that the integral f u,(x, 2)h, (2, y)dz is in OY(R"X R™) and hence
that (31) holds also in the classical sense.

Further by Lemma 8 and 9 we immediately get, for any x € R",

D%fmmﬂWM%WQ=ﬂMMWWWM:mmWWx@(#+—w)

where ¢ is a positive constant and where the last relation follows from the fact
that the operator Re a(z, D)) is equally strong as P(D) (by Lemma 3). This
concludes the proof of (ii).

To show (iii), we observe that from the inequality (16) it easily follows that
with some constant ¢ > 0

hy(@, y) = O)|A]™* (2 — — o) (35)

uniformly on R" X R". Further Lemma 9 and (26) (with e.g. « =0 and % = 0)
give the estimate

[t A, iz = 004 (2= — o) (36)

uniformly on R"X R", with a positive constant ¢. Now (iii) follows from (35) and
(36).

As for (iv), we argue as for (iil), only now considering exp (x]l]"(zj — y)hi(2, ¥)
and exp (%[ll"(xj — 2,))u,(x, 2) instead of Iy(z, y) and wu,(x, 2), respectively, where
% is a sufficiently small real number. Further, we now let &« be an arbitrary multi-
order with |¢] < N. By Lemma 9 and (26) (and the fact that cancellation of
exponential factors takes place, as we have seen above) we get

exp (#|2/°(x; — y)Digy(x, y) = O(1) (A—> — ), (37)

uniformly on R"X R", when x is a sufficiently small real number. Since j and the
sign of % are arbitrary, it follows from (37) that

Digi(x, y) = O(1) exp (— #|A[") (A — o) (38)
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uniformly on compact subsets of the region z % y in R"XR", with a positive
constant  depending on the compact subset. For the moment accepting (i), which
will be proved below, and using the a priori inequality (6) for the function D%g,(z, *),
we at once get (iv) from (38).

It only remains to prove (i), i.e., that g¢,(, ¥) actually is a fundamental solution
of a(y, D,) — 1. Let us see that the usual calculation can be carried out, also with
the sense of convergence that we have used. We have to show that

f g.(@, y)aly, D,) — Ney)dy = ¢(x) (p € CP(R")) . (39)

On one hand, we have then

f ha(@, y) (g, Dy) — Aplg)dy —

= f by(x, y)a(x, D)) — Ne(y)dy + f by, y)(aly, D)) — a(x, D))p(y)dy =  (40)

— @) — f Ay, v)@)dy

where we have used that 2,(x, ) is, for every = € B,, a fundamental solution of
a(x, D,) — 4 with pole x, and, moreover, that a(y, D,) is formally self-adjoint.
On the other hand, we have, also using (33),

/ ( f uy(z, 2)hy (2, y)dZ) (aly, D)) — Ne(y)dy =

— f w,(z, 2) ( f Iz, 9)aty, D) — z>¢<y>dy) dz = (41)

= ful(x, z):p@dz — f w0, (2, 2) ( A, (z, y)?(?)dy) dz .

Adding (40) and (41) we get (39), in view of the integral equation (18) for %, (and
the way of defining the integral there). This concludes the proof of Lemma 10.

5. Estimates for the speetral funection

Let S be an open connected subset of R*, andlet a(zx, D) be a FHE differential
operator in S of type P, with deg (P) > 0. Further suppose that a(z, D) is
formally self-adjoint in §. We choose the sign of a(x, D) in such a way (see Section
3) that Reoa(x,&) — + o as [£|— w0, £E€R", for every €8 and the type
polynomial P such that P(£) > 1 for all & € R".

Now assume that 4 is a self-adjoint realization of a(x, D) in the Hilbert space

I2(8) (in which we have the ordinary inner product (u,v) = f s u(x)@dx and
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the norm [jul| = (u, »)'*), ie., 4 is a self-adjoint operator in L%(S) such that
Agp is defined and equal to a(z, D)p for all ¢ € C5(S). When f isin the domain
of A, then clearly Af isequal to a(x, D)f with the latter expression taken in the
distribution sense. Let {£(4)},cx be an orthogonal spectral resolution of 4. Thus
E(2) is for every real 7 an orthogonal projection in L2(S) such that E(1) < E(u)
when A <pu. Further E(3) -0 as A—— oo and E(A)—1 as 1— 4+
(where I is the identical mapping on L*S)), both in the strong sense, and we

have 4 = f * o AdE(2), with strong convergence. The spectral resolution {E(A)}
is uniquely determined by A insofar that the functions K—(4) = lim, ., E(u)
and E*(A) =lim,; E(u) (which are both also spectral resolutions of A) are
uniquely determined by 4.

We now have the following theorem.

THEOREM 1. For every real number A there is a function e, in C°(SX8) such
that e*9x, ) is in LXS) for any multiorder « and any % €S (using again
the notation (2, y) = (iD,)*(iD \e,(, y)), and such that

Bliu) = [ ooy € IXS), w€8),
S

where E(A)u is a function in O®(S). (The function e,(z,y) is called the spectral
function of A; clearly e, is Hermitian.) Moreover, for any multiorders «, and
any compact subset K of S there is a real number » > O such that

o P, y) = O(1) exp (— #|Al) and e+, )]l = O1) exp (— #|A) (2> — @)

uniformly on KX K and K, resp., where b is the positive number corresponding
o the type operator P by (3).

Proof. For the proof we shall in great part refer to the author’s paper [7] (the
Theorems 3 and 4 there). In that paper the results of our present Theorem 1 are
proved for an elliptic operator. However, except the existence of an a priori estimate
of the type (6) (which we thus have at our disposal also now), to copy the proofs of
[5] we only need a convenient estimate for a local fundamental solution of
a(y, D;) — 2 when A-— — . More precisely, to any point 2 in 8§ we need
a function g¢,(x,y) defined when =,y belong to some neighbourhood o of 2°
(independent of 1) and when A < some 1,, such that for any x € w the distribu-
tion (a(y, D,) — A)g;(», *) in o is equal to the Dirac measure at z, and such that
for any multi-order « we have an estimate

gz, y) = 01) exp (— #|2") (2 — — o) (42)
uniformly on compact subsets of the region « = y of wXw, where #x is a positive

constant that may depend on the compact subset, and where b is the same as in
the above formulation of the theorem.
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Further we need an estimate for g,(z, y) over the whole of w Xw, the following
being sufficient:

g, y) = 0(1) (A — — o0) (43)

uniformly on o Xw.

If a(z, D) and the type operator P satisfy the conditions at the beginning of
Section 4 (in particular, a(z, D) is then defined on the whole of E"), then Lemma
10 immediately gives a fundamental solution of the desired kind, (42) following
from (iv) and (43) from (iii), and we can even take w = R". Let us see that we
can remove the assumption that a(x, D) is defined on the whole of R an is equal
to  P(D) when [z] is large. If this is not so, let 2° be an arbitrary point in S
and o c 8 a relatively compact open neighbourhood of 2% Take a function
w € OF(R") with its support contained in § and such that 0 < p(z) <1 for all
z and that p(r) =1 when 2z € w. Putting

@' (x, D) = y()a(x, Dyyp(x) + (1 — p(@)P(D)(1 — y(x))

{(interpreting the first term on the right as 0 when « is outside S) we get that
a'(x, D) is FHE of type P (as a consequence of the choice of sign of a(z, D) and
P) and formally self-adjoint on the whole of R". Since a(x, D) and ao'(x, D)
coincide in o, it is clear that the fundamental solution ¢, for a'(z, D) obtained
from Lemma 10 will do also for a(z, D) in o Xw. Thus, copying the proofs of [5],
the theorem follows in the case that the number s in (15) is large enough (i.e.
$ > n in this case, making 1/P(&) belong to LY(R"). If this condition is not satis-
fied, we only consider A" instead of 4, wheve 7 is an odd integer. Then A’ is
a self-adjoint realization of the differential operator a(x, D)", which is obviously
FHE of type Pr. It then follows from the inequality (2) that Pr satisfies (15) with
s> n if r is large enough. Thus the theorem is valid for the spectral function
e, of A7. But obviously we have (with convenient choice of e, ;) the relation
¢, = e, ;» for all real numbers 4, and from this the theorem follows also in the
general case (also using the observation after the inequality (3) about the number
b corresponding to P7).

Now we shall investigate the behaviour of e*%(z, ) when A— 4 oo. We
shall compare it to the function

Nz, z) = EXE
Re a{w, &) <1

We have the following theorem.

THEOREM 2. For any multi-order o and any x € S we hove

>N, z) = (1 + O(1)(log )™M, z) (1— + o).
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Proof. First let us suppose that 4 > I and that Rea(x,&) >1 forall z €8
and all £ € B*. (Thus E(1) =0 when A < 1.) We shall then use the standard
method of first comparing the Stieltjes transforms of e®*%(z, z) and ef,‘:‘;l"‘)(x, x).
That is, we shall have to study the Green’s function of A.

From the a priori estimate (5) we get the following inequality (e.g. as a con-
sequence of the argument in Hormander [4], Section 3.7) on an arbitrary compact
subset K of § and for any multi-orders «, g

sup [e* Mz, y)] < O(A 4 1¢ (2>0), (44)

x,yEK

where ¢ and ¢ are real constants, depending on « and g, while ¢ but not ¢
depends on K.

Copying the proofs of the Theorems 1.2.1 and 1.2.2 in Bergendal [1] we find
that € #(z, y) is locally of bounded variation as a function of A, forany z, y € 8
and any multi-orders «, 8, and also that e®*%(x, x) is an increasing function of
A for any z €S8 and any «. Let us form the function

0

Gl ) = [ = ey (2 <0ayes).

0

It follows by a partial integration that if the constant ¢ in (44) is << 1, then
G, is continuous in Sx 8. It is easily verified that @, is the kernel of the resolvent
of A:

(4= )y = [ Gy (e uwe3s).
S

If N is an integer > 0, and if the constant ¢ in (44) is < 1 for all «, B with
lx + B| < N, then G, isin CY(Sx8) and

[ce]

G, y) = f (4 — )P, y) (- Bl <N), (45)

0

as ig seen again using a partial integration.
If further we assume that the number s of (15) is < n + [2x], then clearly
6059w, 2) = [ (u = )i x) (46)
0

where

G, ) = f £%(Re a(w, &) — A)7d§ .
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To estimate the difference G (x, ) — Gz, z) we shall use the fundamental
solution ¢;(»,y) of a(y, D)) — 2 which we have constructed and estimated in
Lemma 10. This we can do when a(z, D) satisfies the conditions at the beginning
of Section 4. Since we shall only use a local fundamental solution, we can argue as
in the proof of Theorem 1 to get rid of the global condition on a(x, D). Thus the
only remaining extra assumption is that (15) holds for the type operator P with
s <n 4 [2«].

Then let 2° be an arbitrary point in § and « an open neighbourhood of z?,
which is relatively compact in S§. Let g, be the fundamental solution of
a(y, D)) — 4 in oXo, obtained from Lemma 10 when 1 is large and negative.
Let y € OP(S) have its support in o and be equal to 1 in some neighbourhood
o' of 2% Then we have for any x €’ the following identity between L2(S)-
elements:

Dgal(x’ ) - wagl(% ) + (A - ZI)EI(Dzkl(x; )) s (47)
where
ki, y) = (y)4, — 4 py))g,(@, v)

(compare e.g. Odhnoff [7], Prop. 3.5). The identity (47) is proved by differentiation
and a simple transcription of the identity

uw(x) = / 9:(@, y)(aly, D,) — D(py)uy))dy (x €’ and eg. u € C”(S));
we omit the details. We now have to estimate the last term of the right member of
(47). From (iv) of Lemma 10 it follows that
4D k(2 )| = O(1) exp (— x|4|") (A— — o) (48)

for any integer » > 0, with a positive constant », while b is the positive number
of (3). Now, when A <0 we have ||[(4 — AD™Y| <1, and so it follows from (48)
that

(4 — ADTA Dk (a0, - = O(1) exp (— %]2]") (2> — o).
Using the a priori inequality (5) (and the corresponding regularity statement) it
then follows that (4 — AI)tD¥k,(«° -) is in O%®(S) and that (also using the
identity (47) and the fact that G®(2° 2% is real)

G2, 2% — gl (® 2% = O(1) exp (— #]|A]?) (A— — ). (49)
From (49) and (i) in Lemma 10 we now get, for any z €S,
G w, x) — GV, v) = O A7 GENx, 2) (A— — o), (50)

where ¢ is a positive constant.
To conclude the theorem (in the present special case) from (45), (46), and (50)
by the Tauberian theorem (Theorem 2, together with Remark 2) of Ganelius [2]
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for the Stieltjes transformation, we must also verify that the following Tauberian
condition is fulfilled:

"

sup f A5, 2) — e, ) < O (log A~ (51)
A< < A+4/(c log 2) ;

as A— 4 oo, where ¢ is the positive number of (50). Further ¢ and ¢ are the
numbers corresponding to the polynomial Re a(z, ) and to & by Lemma 4, ie.,
we have

C-V#(log A)f < f £24g < 0(log AY
Re (s, £ < 7

when A is large, with a positive constant C. (Clearly the same numbers a,t
correspond to the type polynomial P and «.)

But now we can easily prove (51), by the estimate of Lemma 4 for the derivative
with respect to 4 of €*%(z,z) and by the fact that e (z,z) increases with
A. So we can apply the Tauberian theorem mentioned and thus prove the theorem
under the extra restrictions that we have imposed.

To see that these restrictions can be removed, we consider the operator
B = A" + kI, where r is an even integer > 0 and %k a real number > 0. B is
then a self-adjoint realization in IL2(S) of the differential operator b(x, D) =
a(xz, Dy 4 k, and clearly b(x, D) satisfies the said restrictionsin any given relatively
compact open subset of S, if » and k are large enough. Thus the theorem is then
valid for the spectral function e, of B. But from the relation

e, —e_,=¢er,, (A>0)

{choosing the pointwise definition of e¢; conveniently when 1 < 0) we get by
application of Theorem 1 to the term e_,:

69w, 2) = (1 4 O(1)/(log De 7 ulw, 2) (1~ + =) (52)
for any x € §. From Lemma 3, (4) and (5) we easily get the estimate
(Re afz, £)) — Re bz, &) + k = O(1)(Re b(z, &) (&} — o, EERY

with some real number p << 1. This gives

~(at, @) ~(a, @)
€., it k—u(aiPr (T ) < ef";l"‘)(x, €) < ey ihtuupr(@s %)

when A is large, with some positive number wu(x). Applying the estimate for the
derivative of €% (x, z), obtained from Lemma 4, we get

@@, 2) = (1 + 02, (@, 2) (h— + ).

Inserting this in (52) we get the theorem in the general case.
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