The direct product of a hopfian group with a group with cyclic center

R. Hirshon

Polytechnic Institute of Brooklyn, Brooklyn, N.Y., U.S.A.

Abstract

In this paper we continue our study of hopficity begun in [1], [2], [3], [4] and [5]. Let A be hopfian and let B have a cyclic center of prime power order. We improve Theorem 4 of [2] by showing that if B has finitely many normal subgroups which form a chain (we say B is *n*-normal), then $A \times B$ is hopfian. We then consider the case when B is a p-group of nilpotency class 2 and show that in certain cases $A \times B$ is hopfian.

Some notations and preliminary results

We draw freely from the ideas in [1], [2] and [3]. In the sequel α will designate a surjective endormorphism of $A \times B$. In our proofs we begin by assuming that $A \times B$ is not hopfian so we may assume α is not an isomorphism on A. We use the idea of the homomorphism α_* introduced in [3]. We note that for α_* to exist as introduced in [3], we must have α an isomorphism on B and $B\alpha \cap B = 1$. The symbols $a, a_1, a_2 \ldots$ will designate elements in A.

LEMMA 1. Suppose Z(B) is cyclic of prime power order p^{j} and $B\alpha^{j} \cap B = 1$, α^{j} an isomorphism on B, j = 1, 2. Let $\langle b \rangle = Z(B) = Z$ and let $(b^{i}a)\alpha = b$, Then if α is not an isomorphism on A, $t \equiv 1 \mod p$.

Proof. Let $bx = a_1 b^q$. We claim that $q \equiv 0 \mod p$. For otherwise $AB\alpha = A \times \langle b \rangle$ so that $B\alpha = \langle b\alpha \rangle \times A \cap B\alpha$. But $B\alpha$ has a cyclic center and cannot decompose nontrivially as a direct product. Thus $B \approx B\alpha = \langle b\alpha \rangle$ which contradicts Theorem 3 of [1]. Now

$$A = (A \times Z)\alpha_* = A\alpha_* \langle a_1 \rangle . \tag{1}$$

R. HIRSHON

Let $\alpha_1 = (a_2 b^f) \alpha$. Hence $(a_2 b^{f-1}) \alpha$ is a *p*:th power and so therefore is $(a_2 b^{f-1}) \alpha_*$. This implies $f \equiv 1 \mod p$, for otherwise if $L = \langle a_2 b^{f-1} \rangle$

$$A = (A \times Z)\alpha_* = (AL)\alpha_* = A\alpha_*L\alpha_*.$$
⁽²⁾

But since $L\alpha_*$ is generated by a *p*:th power we may conclude from (1) and (2) that $A = A\alpha_*$ which is impossible. Now we show that (t, p) = 1. For if $M = \langle b^t a \rangle$ then

$$(AM)\alpha_* = A\alpha_*M\alpha_* = A\alpha\langle a_1 \rangle = A.$$
(3)

 \mathbf{But}

$$AM = A \times \langle b^{\prime} \rangle \tag{4}$$

so that if p|t, we could deduce from (3) and (4) that $A = A\alpha_*$. Since (t, p) = 1, we see $\langle b\alpha \rangle \subset A\alpha B \subset A\alpha \langle b\alpha \rangle$ so

$$A\alpha B = A\alpha \langle b\alpha \rangle = A\alpha \langle b \rangle . \tag{5}$$

Also since (p, q) = p, we see that $B \cdot A\alpha = A\alpha \langle a_1 \rangle$. Hence we may write $b = a_3 \alpha \cdot a_1^r$. But then $a_3 \alpha_* = a_1^{1-r}$ so that (p, 1-r) = p or else $A = A\alpha_*$. Now let $c = b^i a a_2^{-1} b^{-f}$. Let P be the subgroup of p:th powers in $Z(A) \times Z(B)$. Note

$$c\alpha^2 = a_3 \alpha^2 \mod P \,. \tag{6}$$

If $t \equiv f \mod P$, then from (6) we see that $A = (A \cdot \langle ca_3^{-1} \rangle)(\alpha^2)_* = A(\alpha^2)_*$. Hence $t \equiv f \equiv 1$.

Some results

THEOREM 1. If B is n-normal, $A \times B$ is hopfian.

Proof. Suppose the theorem is false. Let C be as in [3], p. 182 and let w be a generator for Z(C). Let α be an endomorphism of $A \times C$ which is not an isomorphism on A. Then, as in (5) of Lemma 1, $A\alpha C = A\alpha \langle w \rangle$. But then $C = \langle w \rangle C \cap A\alpha$. Hence $C \subset A\alpha$ or $C = \langle w \rangle$. The former is impossible by Lemma 4 of [2] and the latter is impossible by Theorem 3 of [1].

LEMMA 2. Let B be a group with generators b, $x_1, y_1, x_2, y_2, \ldots, x_n, y_n$ and defining relations of the form:

$$[x_i, y_i] = b^{p^{j_i}}, \ x_i^{p^{e_i}} = b^{n_i}, \ y_i^{p^{e_i}} = b^{m_i}, \ b^{p^k} = 1,$$
(7)

and all other generators commute. Then $Z(B) = \langle b \rangle$ and any automorphism of Z(B) may be extended to an automorphism of B.

232

THE DIRECT PRODUCT OF A HOPFIAN GROUP WITH A GROUP WITH CYCLIC CENTER 233

Proof. This is an unpublished result of F. Pickel. For the duration of this paper B will be as in the above Lemma and p will be a prime distinct from 2.

LEMMA 3. If B is finite we may assume $B \cap Bx^n = 1$ for all n sufficiently large.

Proof. Otherwise as in Lemma 5 of [1], p. 237, we can produce a normal subgroup $B_1 \neq 1$ of B with $B_1 \alpha^m = B_1$ for some m > 0. Hence α^m is an isomorphism on B. But then $A \cap B\alpha^m = 1$ for $B_1 \alpha^m$ must intersect any nontrivial normal subgroup of $B\alpha^m$ nontrivially. Hence $A \times B = A \times B\alpha^m = A\alpha^m B\alpha^m$ and hence A is isomorphic to a homomorphic image of $A\alpha^m$.

THEOREM 2. If $j_i = r$, i = 1, 2, ..., n in (7), then $A \times B$ is hopfian.

Proof. By Lemma 3 we may assume $B \cap B\alpha^i = 1$, i = 1, 2. Let $(b^i a)\alpha = b$. From Lemma 3 we see that we may assume $t \equiv 1 \mod p$, for otherwise we may replace α by $\theta \alpha$ where θ is a surjective endomorphism of $A \times B$ which is the identity on A and which acts as a suitable isomorphism on B. By Lemma 1, α is not an isomorphism on B. Let $K = (\text{kernel } \alpha) \cap B$. Then α induces a surjective endomorphism γ of A + B/K onto A + B/K in the natural way. Let $P = \{g^p | g \in B\}$. If $g \in B$, we set g' = gK in $B/K = B_*$ and claim

$$Z(B_*) = \langle b', g'_1, g'_2, \ldots, g'_k \rangle$$

for suitable g_i in P. To see this, suppose w is a word in the generators of B such that $w' \in Z(B/K)$. Let s be the exponent of y_1 in w. Then $[x_1, w] = [x_1, y_1]^s \in K$. If (p, s) = 1 then $[x_1, y_1] = b^{p^r} \in K$. Hence $[x_i, y_i] \in K$ for all i. Hence B_* is abelian contrary to Theorem 3 of [1]. Hence s is divisible by p. Similarly, the exponent of any other x or y symbol in w is divisible by p. Now let

$$b\alpha = b^q a_1 \,. \tag{8}$$

Since α is not an isomorphism on B, α is not an isomorphism on Z(B) os that (p, q) = p. Moreover, in view of (8)

$$A = (A \times \langle b' \rangle) \gamma_* = A \gamma_* \langle a_1 \rangle . \tag{9}$$

Now $(b^{t-1}a)\alpha = b^{1-q}a_1^{-1}$. But then we see, $((b')^{t-1}a)\gamma_* = a_1^{-q}$ and since $t \equiv 1 \mod p$,

$$A = (A \times \langle b' \rangle) \gamma_* = [A \langle (b')^{i-1} a \rangle] \gamma_* = A \gamma_* \langle a_1^q \rangle .$$
⁽¹⁰⁾

Since (p,q) = p, (9) and (10) imply $A = A\gamma_*$.

THEOREM 3. In (7) let $j_1 \leq j_2 \leq \ldots \leq j^{n-1} < j_n < k$ and $e_i = k - j_i$. Suppose further that $m_i \equiv n_i \equiv 0 \mod p^{j_i}$, $i = 1, 2, \ldots n$. Then $A \times B$ is hopfian.

R. HIRSHON

Proof. Our notation is as in the previous theorem. If $b^{p^{j_n}} \notin K$, as in Theorem 2, we could deduce that $Z(B_*) = \langle b', g'_1, g'_2 \dots g'_k \rangle$, $g_i \in P_j$ and we could then proceed exactly as before. We may assume $b^{p^{j_n}} \in K$. Let e be the least positive integer such that for $t = p^{j_e}$, $b^t \in K$. Let

$$F=\langle x_1,y_1,x_2,y_2,\ldots x_{e-1},y_{e-1},b
angle \ ,$$
 $A_1=\langle A,x_e,y_e,x_{e+1},y_{e+1},\ldots ,x_n,y_n
angle /\langle b^t
angle ,\ \ B_1=F/\langle b^t
angle$

Then the defining relations for B imply $(A \times B)/\langle b^i \rangle = A_1 \times B_1$. Note that A_1 is the direct product of A and a finite abelian group so that A_1 is hopfian by Theorem 3 of [1]. Now α induces an endomorphism γ of $A_1 \times B_1$ in the natural way. If K_1 is the kernel of $\gamma \cap B_1$, and $B_2 = B_1/K_1$, then γ induces a surjective endormorphism θ of $A_1 \times B_2$ in the natural way. Now let $F_1 = \text{kernel } \alpha \cap F$ and $K_1 = F_1/\langle b^i \rangle$. Then $B_2 \approx F/F_1$. With the aid of the definition of e we see that the center of F/F_1 is generated by elements $bF_1, g_1F_1 \ldots g_iF_1$ for certain $g_i \in F$ where each g_i is a p:th power in F. We may now mimick the proof of Theorem 3 and obtain $A_1\theta_* = A_1$ a contradiction of the hopficity of A_1 .

References

- 1. HIRSHON, R., Some theorems on hopficity. Trans. Amer. Math. Soc., 141 (1969), 229-244.
- 2. -»- On hopfian Groups. Pacific Journal of Math., 32, No. 3 (1970), 753-766.
- 3. ---- The center and the commutator subgroup in hopfian groups. Ark. Mat., 9, (1971), 181-192.
- 4. -»- A conjecture on hopficity and related results. Arch. Math. (Basel), 32 (1971), 429-455.
- -»- Some new groups admitting essentially unique directly indecomposable decompositions. Math. Ann., 194 (1971), 123-125.
- 6 .-»- A problem in group theory. Amer. Math. Monthly, 79 (1972), 379-381.

Received September 17, 1971.

R. Hirshon
Polytechnic Institute of Brooklyn,
333 Jay Street
Brooklyn, N.Y.,
U.S.A.

234