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§ 0. Introduction

1. Tensor algebras, or to be precise, projective tensor products of C(K)-spaces
have important relations both with Hilbert space and with ['. The relation with
Hilbert space was discovered by Grothendieck, and was called by him »the funda-
mental theorem on the metric theory of tensor products». It certainly is the deepest
result in this metric theory [see e.g. 6]. The relations with ! were discovered by
Varopoulos, and their importance lies in the fact that they relate the algebra
structure of tensor algebras to the algebra structure of group algebras [8]. These
relations are two-fold, in the first place, a group algebra can in a canonical way
be embedded as a closed subalgebra of a tensor algebra. Through this embedding,
information on tensor algebras can be obtained from information on group algebras.
In the second place a tensor algebra can be represented as a quotient of a group
algebra, so that information on tensor algebras can be transferred to group algebras.
The main result in the second connection is the following; if {K;}!_, are disjoint
compact subsets of a compact abelian group, and if |J K; is a Kronecker set (or
a Kp-set), then A(D K;) is a tensor algebra. In this paper we shall consider to
what extent the Kronecker condition in the theorem of Varopoulos can be replaced
by Helson conditions on the sets. Our main results are the following.

THEOREM A. To every natural number n > 2, there corresponds a real number
on, such that if {K;};_, are disjoint compact subsets of a compact abelian group,
and if U K is a Helson-(1 — &) set, « <o, then A(> Ki) is o tensor algebra.

TrEOREM B. To every natural number q > 2, and every natural number n > 2,

there corresponds a real number o, suchthat if {K;}'_, are disjoint compact subsets
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of the group Dy, and U K; is a Helson-(y, — x) set, where o <&, and
vq = sin (w/q)/(m/q) is the Helson comstant of an infinite Ky-set, then A(D> K;) is
a tensor algebra.

The proofs of these theorems are based on the metric theory of tensor algebras.
The main tool in the proof of Theorem A is a rather elementary measure inequality
with which we can study the dual space of a tensor algebra.

To prove Theorem B we shall combine the methods used to prove Theorem A,
with a theorem of Bohnerblust and Karlin on the geometry of Banach algebras.
However, besides this we shall also have to study various possible definitions of
Helson-constants for subsets of D,

Loosely speaking, the proof of Theorem A is based on a notion of weak approxi-
mation, while the proof of Theorem B is based on uniform approximation.

§ 1. Tensor algebras in general groups

1. We shall start by some standard definitions and notations. Let G be a
compact abelian group and let £ be a closed subset of . We shall denote by
A(E) the restriction of 4(G) to E. A(E) can also be represented as the quotient
AGY/I(E), where I(E) is the closed ideal of all functions f in A(G) with
fH0)D E. It follows from this representation that A(H) is a Banach algebra
with maximal ideal space E, and that every element f in A(F), has an expansion

fo) =TS ay@), 1€6, Sla) <|flug+e z€E. (1.1.1)

The dual space of A(E) will be denoted PM(E), and its elements will be called
pseudomeasures.

Let X be a compact space (all topological spaces considered in this paper
will be assumed to be Hausdorff spaces). We shall denote by

(i) 1x the identity element of C(X)
(it} C(X), the unit ball of C(X)

(iii) S(X) the group of all functions f€ C(X) with |[fl=1

(iv) Sg{X) the group of all functions f€ C(X) with f1= 1.

With the uniform topology, S(X) is a topological (abelian) group under point-
wise multiplication of functions, and S,(X) is a discrete subgroup of S(X), which
separates the points of X if and only if X is totally disconuected.

Let E be a closed subset of a compact abelian group G. We shall call E

a) a Kronecker set, if &1E is dense in S(E).

b) a Kgset, if G|z = Sy(E).

¢) a Helson-{o) set, if A(E) = C(E), and if for every f in C(E)

”f”C(E) = ‘x”f”A(E‘) )
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or equivalently by duality, if for every measure yu with support on Z,

sup |ﬁ(l)l = of |l ey -
+€6G
In dealing with Helson-(x) sets, « << 1, we shall in this paper often make
the technical assumption, that for every u € M(E), u # 0, we can in fact find
z € é\, such that |u(y)| > ollpallae Notationally this assumption means that we
can avoid certain e-quantities, and conceptually it means, at most, that we consider
a Helson-(x) set as a Helson-(x') set, for some o’ << .
Let {X,}}_; be compact spaces. We shall denote their cartesian product by
X and their disjoint union by X’. Let further f; € C(X;), we shall define functions
feC(X) and f'€CiX') by resp.

f(x) = £(xy, 2, . . ., @a) = fil@)fo(zs) -« - . fulcn) (1.1.2)
and
Flx, = [ (1.1.3)
We shall denote by

i) TT(X) the set of all functions f€ C(X) defined by (1.1.2), such that
fi € 0(Xy), for all .
(ii) V(X) the projective tensor product C(X;)) R C(X,) Q... C(X.) [8]
V(X) is a semi-simple Banach algebra with maximal ideal space X, and every
element F € V(X), has a representation

F(x) = gakfk(x telT(X), i law| <[ Fllyx) + €

It is well-known that convex linear combinations of S(X) are dense in C(X),,
so that in the above representation we may in fact assume f, € [ [ (X), |fu = 1.

An algebra isomorphic to 'some V(X) will be called a tensor algebra.

The dual space of V(X) will be denoted BM(X), and is canonically identified
with the space of continuous n-linear forms on | [, O(X:). An element of BM(X)
will be called a multimeasure of order #, a multimeasure of order 2 is called a bi-
measure. For A € BM(X), we have [ Agy = sup{|A(f)[|f€T(X)}, and we
should like to point out, that in contrast to the similar case for measures, we can
not turn the sup into a max by going over to Borel functions.

Let A €BM(X), and let fi€C(X;), 1 <j<m, j+#i The functional on
O(X), taking ¢ €0(X) into (fOHO .. @ fii® PO fin® ... 0 L), is
then linear and bounded and is by the Riesz representation theorem given by a
measure on X; which we shall denote by A:(fy ® ... fi i ® fi,i ® ... fa). Itis
clear that

I4(iQR ... QLis®fin Q... ® .fn)”M(Xi) < Allew - Mfilleo + + « 1falleo
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We have thus interpreted A as an (» — 1)-linear operator into M(X;). In
the same way we can consider A as a multilinear operator from the products of
any of the C(X)'s into the multimeasure space over the rest. It is clear that all

these operators have the same norm, namely |[Aligs-
Let now 4 € BM(X), let fi€C(X:),, and define f € C(X) by (1.1.2). We
shall denote

M =4H® .. @fi1i®fi1®...0F). (1.1.4)

Since we may consider each X; as a subspace of X', we may also consider the
A's as (mutually singular) measures on X', and we can therefore define
Aty € M(X') by

F(E) = 4@ + 40 + ...+ ). (1.1.5)

We also observe that since we have for each Xi |4y <I|l4lpyy we have

|Ml(f)HM(X’) <mn HAHBM(X) .

It is also obvious, but nevertheless important, that BM(X) is a module over
each C(X;) if we define the multiplication as follows: Let A € BM(X) and let
e; € C(X;), we define ¢;4, by

ENfi® ... L Q@ ...0f)=A(f,®...0afi® ... L), fi€CX,),
1<j<mn. (L1.6)

Clearly we have then |le;Allgy < lledls - | Allzar-

The simplest example of a closed subset E of a group @, for which A(E)
is a tensor algebra is the following:

Let E:cG: be Helson-(x;) sets, and let E =T[E:; then A(E)=
AT G)/I(E), is a tensor algebra, and for every f in A(E) we have

”f”V(E) > l—l-“i ‘ ”f”A(E) .

The above example works however only in product groups, and the importance of
the theorem of Varopoulos lies in the fact that it does not require the group to be
a product. On the other hand it does require a »product sets in an arbitrary group,
and such a thing is found in the following way.

Let {K;};_, be a set of closed subsets of a compact abelian group @, denoting
their cartesian product by K, we have K = TT K;c TT G = @*. Let further s
be the group addition map taking the point (g, g,, . .-, g.) € G* to the point
1+ g+ ...+ g €G. The image of the set K wunder the map s is usually
called the sum of the sets K;, and we shall denote it by > K;. The map s is a
continuous group homomorphism, and induces a map & from G into G* = G~
By restriction, the set of functions é] sk, is mapped into a subset of the set of

functions é"{K. Extending § by linearity we have a map, which we shall also
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denote by s of A(> Ki) into A(K). Identifying A4 (> K:) with its image under
s in A(K), we may consider A3 K;) as the space A (K) of all functions f in
A(K), which have an expansion

fley =3 aigilk), > las| < oo, k= (ky, ko, .. ., k), (1.1.7)

and with # €8(G). § is the diagonal imbedding of ¢ into G", and is of course
the set of all characters y in é”, for which

) = gy g+ - ), o= (g, By E).

The natural embedding of 4 (K) into A(K) is of course normdecreasing. We have
further
A(K) = AK, <Ky x. . X K,) =

=AMQéM&W?“®AMQcm&NMMQ®.“émxwzmm

and this gives a natural normdecreasing injection of A(K) into V(K). We shall
denote by T the composite of § and this natural injection. 7' is then a norm-
decreasing injective algebra homomorphism of A K;) into V(K), or
equivalently of A4 (K) into V(K).

2. To prove our main results we shall need the following two theorems from
the metric theory of tensor algebras. These theorems will be proved in the next two
sections.

TrEOREM 1.1. For every natural number n > 1, there exists a continuous real-
valued function eu(v,y), 0 <2 <1, 0 <y < 2n, such that &(0,0) =0, ez, y)
18 concave and increasing in each variable, and having also the following property:

Let {X}! , be compact spaces, and let X and X' be resp. their cartesian product
and disjoint union. Let A € BM(X), ||Al =1, let fi, ¢ € C(X:),, be such that

Re{A(D)} =1 —= (1.2.1)
1%{f¢mv%zn—y, (1.2.2)

where £, g° and A'(f) are defined by resp. (1.1.2), (1.1.3) and (1.1.5). Defining now
also g by (1.1.2), we have

[1 — A(g)] < éalz, y) . (1.2.3)

THEOREM 1.2. For every natural number n > 2, there exists o continuous real-
valued function n.(y), 0 <y, with 7,(0) = 0, and having the following property:

Let {X.}i 1 be compact spaces, let T be a locally compact space and let u be a
positive measure on T with

letllarery <1+ g . (1.2.4)
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Let further fi(xi, t) € C(XixT),, define f€ C(XXT) and f' €C(X'XT) by
resp. (1.1.2) and (1.1.3), and let

f £, () = 1y . (12.5)

Writing now

Fla) = f £(, t)du(t) (1.2.6)

T

we have F € V(X), |Flly, <1+ y, and
L — Flly < naly) -

3. Using Theorem 1.1 we shall now state and prove Theorem A in a slightly
more precise form as follows.

THEOREM 1.3. Let 6, 0 << 6 << 1, be a real number. For every natural number
n > 2, there exvists a real number B. > 0, such that if {K,}!_, are disjoint compact
subsets of a compact abelian group G, and if UK; is a Helson-(1 — f) set, B << fn,
then the map

T:AQK:) —~ V(K)
18 a topological isomorphism, and [TV < 62
Proof. We first define B, in terms of the function en(-,’), by the relation

1 — £4(0, »B3,) = 8. Since we further assume f << ., we can then choose & > 0,
such that

1 —eule, n(f + &) = 0. (1.3.1)

Let now A € BM(K), [|4|gsr = 1. To prove the theorem it suffices by well-
known duality arguments to prove that

I (Dlomaxy = 6 - (1.3.2)

and this means that we must find a character y in 2(63), such that
At = 6. (1.3.3)
Let &> 0 be the ¢ defined by (1.3.1). By the definition of norm in BM(K)

we can then find functions f; € O(K;), such that

A(f) = Re {AD)}>1—e,
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where we have defined f by (1.1.2). Let now A'(f) € M(U K:) = M(K’) be the
measure defined by (1.1.5), and let f' € C(J K;) = C(K') be defined by (1.1.3).
Since we now have by definition

ffd/l A) > n(l — &), (1.3.5)

and since [[f'll, < 1, we have [M’(f)HM(UKi) > n(l — &). By the assumption on the
set |J Ki, we can now find a character y € (¢, such that

f (i)

UK;

> =PIl =n —np + ¢ . (1.3.6)

Let ¢ be the argument of the integral in (1.3.6), and put gi = ¢”ylg, -

We have then ¢; € C(K;) and we define g and ¢’ by (1.1.2) and (1.1.3). But this
implies then that

Rz{fg’dl’(f)}:Re{ei"fydl } ffxdl (f), >n —~n(f + ). (1.3.7)

By (1.3.4), (1.3.7) and Theorem 1.1 we have then
I — A(g)] <enle,n(f+¢)) =1—90,

and therefore |A(g)| > 8. But we have also [A(g)l = [€™A(y)| = |A(y)], and
therefere |A{y)] > 6, and this proves the theorem.

§ 2. Two metric lemmas

1. To prove Theorem 1.1 we shall need two lemmas. The first lemma is the
key lemma of the proof. It is an inequality for bimeasures, which follows from
a more general inequality valid in complex Lrf-spaces, 1 <p < 2. The second
lemma is simply a convenient quantitative version of the qualitative statement,
that for every u in M(K), the function ¢ in the unit ball of L*(|u}), for which
fgdy = |lgl, is unique as an element of L%(|ul).

Lemma 2.1. Let X, and X, be compact Housdorff spaces, let A € BM(X;x X,),
and let e; € 0(X,), 1+ =1, 2, be such that sup,cx, { le(®)] -+ 162 Y << 1. Let furtker
eid € BM(X), be the bimeasure defined by (e.A)f ® ¢9) = Aleif @ ¢), fE€CX
g € C(X,).

Then

4
HAH%M = H61AH%3M + ;2 HezAH%M
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The proof of Lemma 2.1 is based on the following general inequality.

ProposrrioN 2.2. Let p be a positive measure on o locally compact Hausdorff
space X, and let f and g belong to LP(u), then the following inequalities hold.
if p=1, then

2

1 .
If 4 €®glhdf = _“f [Iflh + €°llglly |46 (2.1.1)

¢

If 1 <p<2, then

1 3 ) 2jp 4
(E{, f”f+ eqli; do ) =k + 5 gl - (2.1.2)

Note 1. In the case p =2, a stronger inequality with 4/»® replaced by 1
is true, and is of course elementary.
Note 2. For all p > 1, we have

1 = ) 1/p
oifffzn”f + €gllp = (51 f If + e*glf d@) (2.1.3)

In application we shall often need to combine (2.1.3) with the inequalities (2.1.1)
or (2.1.2) above.

Proof of the proposition. We start by observing that for arbitrary complex numbers
a, b, we always have

~f la -1~ €7b|db = »f |la] -+ ¢@bl|do (2.1.4)
and
2 7
1 ) 1 .
é?:of““[“w‘b”dezﬁof“w + e bll o (2.1.5)
>£ f isb dei_ gqi bi_( 2 ib2)1/2
=l (la} + €®lo)d0| = | la] + — bl | = {lof* + 5 |bP*) .

We now prove (2.1.1).
Usivg the definition of rerm, Fubini’s theorem and (2.1.4) we have
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25

—foJre“’glldﬂ— fflf+e’9gdﬂde~
Xf%ﬂfifwte""gldﬂduz!%ofn}lfl+e"elglld0du-

Now using Fubini’s theorem again, then the triangle inequality, and then again
the definition of norm, we have

fﬁ;fnlif|+e"ﬂignd0du= %ffllﬂﬂielglldydﬁ =

~zyzf If 'f’“‘elgldﬂjd@ P f 171k + €ligih] 26 .

This proves (2.1.1).
Before proving (2.1.2), we observe, that if p > 1, then by Holder’s inequality,
(2.1.4) and (2.1.5), we have

4 pi2
— f la + €*b(?df > ( f @ + e‘”b{d@) <[a12 + P (b]z) (2.1.6)
We now prove (2.1.2). Using the definition of norm, and Fubini’s theorem, we
have
27 27
1 2/p 1 2/p
- 18 4|1 P —_ —_— 6 —
(m f If + el do) - <2n ) Xf \f + g dude) =
]

~( Xf - f 4 el )

Applying (2.1.6) and Minkowski’s inequality (observe that p/2 < 1), we have

( Xf = fthrewglPde ) = (X[ (e 2 o) au) =
(ol 2 [l

which is by definition [f{|> -+ (4/2%)]g]2, and so (2.1.2) is proved.

(2.1.7)
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Proof of Lemma 2.1. We first observe that it follows immediately from Pro
position 2.2, that if u,» € M(X), then

4 12
max |lu + ¢ > (HMH2 + = lW) . (2.1.8)

0<e<2m

We consider A as an operator from. C(X;) into M(X,). Using our standard
notations we have then obviously

lAllpsy = sup HAz(f)HM(XZ)
lexAllpar = sup || ds(er sy ¢ f € C(Xy) (2.1.9)
llesAllpar = sup HAz(ezf)HM(Xz)

Now let & be a positive number. We can find f; € 0(X,), such that
| Ao(eifi)lux,y = lleidilpar — e By linearity, and by (2.1.8) we have now

max ([ Ay(eyf; + eieezfz)‘@w(xz) = max [ dy(ef}) + eieAz(ezfz)H?W(Xz) =

0<0< 27

4 4
= [[Aa(e fOIP + 2 [ As(exfo)lP = (lex Ao — &) -+ 22 (lesAllpp — &) -
Since ¢ is arbitrary, and since |le.f; -+ €“efoll, <1, the lemma follows.
2. In the proof of the theorem, we shall also need the following lemma.

LeMmaA 2.3. Let a,b be positive numbers, and let X be a compact Hausdorff
space. Let further p € M(X), f,g € L®(|ul|), be such that

el <1, <1 lgh <1 (2.2.1)

and Reffdu >1—aq, Re/ gdu >1-—b, (2.2.2)
then

|/ If~gld!m>2 < [ 1 ardul <20/ a4 Vo,

Proof. Write p = ¢ |ul, lp| =1 ae. (Ju}).

Replacing then f and ¢ by fp, gp, and u by |u], we see that we may assume
u to be positive.

We now write

f=h+ g=aq+t;fi, g real (2.2.3)

We have then
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/fldyzl—a, /gldMZI—b (2.2.4)
and therefore
ffzdﬂ><ffldﬂ> >0 —a)?>1—2a, fg?d,u_>_1~26 (2.2.5)
but then
[frans fu—pravst—a-2m—2 [am=n @20

Now

(f f — gld ) < [1r—orau= [ (fz+ 0P — 17— Foptu

(2.2.7)
< f (2 fG— Jpdu = 4

Writing this in terms of real and imaginary parts, we have

4= [ =2+ faip =2 [ 0=+ 10— 0) — S
Using (2.2.4) we have now
A§2<a+b—{— [ff2g2d,uf>,
and finally by Schwarz’s inequality and (2.2.6),
A<2a+b+ (20200 =2V a 4V b).
This proves the lemma.

§ 3. Two metric theorems

1. We shall now first prove Theorem 1.1. To do this we shall first prove the
special case n = 2, and we shall then prove the general case by induction on n.
Proof of special case. We shall prove that the function

e, ) = V 2y + a(2x + V 20 4+ V 2y

satisfies the conditions of the theorem, and we start by observing that it is clearly
increasing and concave.
We next observe that since [|Ai(f)llyx, <1, we clearly have both

Re {fgldz()} 1y and Re{fgzdlz( )} 1—y. (311

1 2
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By linearity we have now

Ag) = A9 @ 9) = A(fi + 0 — L) @ %) = A[i @ ) — A(fy —01) ® g0)  (3.1.2)
and therefore
1—=A4@) <1 — Afi ® g)| + AL — 1) @ )| =4 + B. (3.1.3)

By definition of norm we have now [A(f; ® ¢} <1, aud by (3.1.1) we have
Re {A(fi ® g2)} > 1 — y, and this implies that A4 < \/_25

It remains to prove that B < a(2z + V 2z + vV 2y)'?, and towards this we
first observe that

Re{ [ fldll(f)} Re {A{f)} > 1 —x. (3.1.4)
%,
By (3.1.1), (3.1.4) and Lemma 2.3 we have therefore

[ 15— i) <V 2V (3.1.5)
X,

Let us write e = |f; — ¢,1/2, and ¢ =1 — e,
We have then

1
Re {(e, D)1 ® fo)} = Re{ f(1 — 62)f1d11(f)} zl—z—73 f i — uldiA(E)] =

X,

- 3.1.6
21._95—%(\/2x+\/2y)Z[[€1A1]BM- ( )

4
By Lemma 2.1 we have further |e,A)® 4+ = lle, A2 << 1, and therefore

L ey
llesAlpar < Z {1— <1—9€— %(\/296—!—\/217» } <

3.1.7
§2x+\/2x+\/2y1/2 (8.1.7)
Fipally we have now, denoting h = sign (f; — ¢1)
B = [A((fi — 91) @ g2)| = [24(eh @ go)| = 2[(e24)(h @ ¢5)]
< e, Al < 720 + V 22 + V 22, (3.1.8)

and this proves the special case n = 2.
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2. The general case.

The proof is by induction. We define &(x, y) = y, and we take for &z, y)
the function defined above. We now assume &z, %), 1 <k <n — 1 constructed,
and we shall construct en(z, ). Let therefore A € BM(X) be a multimeasure of
order n, and let f,g € T[(X), satisfy the assumptions of the theorem. We write
=L ,60 .. Qf 1=0100R0¢6Q - -..R ¢, and we use the fact
that a multimeasure may be considered as an operator from a product of some of
the C(X) spaces into the multimeasure space over the rest, which is a multimeasure
space of lower order. This means that we may use the induction hypothesis to
replace any k, £ <n — 1, of the f's by g¢'s. Doing this we have e.g.

Re{Afi 0, 9346 ... ® g} > 1 — &, sz, y)
Re{di ® 0% %O ... 0 g)} > 1 — &1, 9) (3.2.1)
Re{Adn @, 90 R0 0@ ... g} > 1 — g, _1(, ) .

But now Al @ 9P R G R ¢ ... D¢, ¢ €CX,)), p€C(X,), is a bi-

measure in. BM(X,x X,), and we use the special case proved above to conclude
that

AG)] > 1 — efe, o, y)s 26, 2(xy)) - (3.2.2)

We define thus ez, ¥) = &le,_o(2, ¥), 2e,_1(z, y)), and this completes the proof
of Theorem 1.1. Tt is easy to verify that e.(x,y) is concave and increasing.

3. In the proof of Theorem 1.2 an essential role is played by a result of
Bohnenblust and Karlin (Proposition 3.1 below). To state this result we shall
need some notations.

Let A be a Banach algebra with unit element 1, and dual space A4’. We shall
define a convex set D, c 4', by

Dy={fed |f1)=1, |flw=1}. (8.3.1)
Let further o € A, we shall then write

Vie) ={2€C |2 =fla), fED,}, (3.3.2)

and
v(a) = sup |z|, z € V(a). (3.3.3)
V(a) is called the numerical range and v(a) the numerical radius of the element

a € 4. The result that we shall need is the following

Prorosrrion 3.1. {2] Let 4 be a Banach algebra with unit 1, and let a € A4,
then |lall; < e-via).
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Proof of Theorem 1.2. To see that F € V we first observe that for all { €T we
have trivially f€ V, |f]ly < 1. We next use the fact that the function t— f(z, t)
is a continuous funcvion from 7' to V. Therefore the integral is well-defined and
takes its value in V. Finally we have

Py < [ ittt <14y (3.3.4

For the second part of the theorem we shall prove that for any function e.(x, y)
satisfying the conditions of Theorem 1.1, the function #.(y), defined by

m(y) =€ {y + 1+ y)en(o, i—%f—y)} (3.3.5)

satisfies the conditions of Theorem 2. To do this it suffices by proposition 3.1 to
prove that

ol — F) < {y 1+ y)en<o, . y>} : (3.3.6)

where »(1 — F) denotes the numerical radius.
Towards this, let A € D, and let the (probability) measures 4 = 4(1) and
A be defined by (1.1.4) and (1.1.5). We have now

Al — F)| = 1 — AF)| = |—y + (1 +y — AF))] (3.3.7)

|
= i“ Y+ f (t — A(f(, t))du(t)' =y + f (L — A(f(=, 1)) [du(?) -

Comparing the final term in (3.3.7) with the right hand term in (3.3.6) we see
that it suffices to prove that

o [o-1%5)
m J 1 — A(f(z, t))du(t) <ed0, m . (3.3.8)
Let now ¢t €7T. We shall write
n — y(t) = Re { f [, t)dl(x')} , (3.3.9)
and we have then
11— A(f(z, )] < &0, y(2)) . (3.3.10)

Now by (1.2.5) and Fubini’s theorem we have also
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T/ y{t)du(t) = Tf ndu(t)—Re{ Tf Xf ), t)d}t{x')du(t)} -

:n(l—{—y)~‘/‘l-dl(x’):n—kny—n:ny‘

X’

(3.3.11)

Since the function &.(0,y) is concave we have by Jensen’s inequality (turned
upside down)

1

5y / (0, y(t))du(t)

T (3.3.12)
1 ny
< e,,(O, T4y Tf?/(t)du(t)) = 6n<0, T y) .

and this proves the theorem.
Remark: In the case n = 2, one can using Grothendieck’s »fundamental theorem»
prove that the function #,(y) == 15y satisfies the conditions of the theorem.

1
15y Tf 11— A(f(, 1) duft) <

As an immediate consequence of Theorem 2, we have the following

CoroLLARY 3.1. Let {X,}' | be compact spaces and let X and X’ be as above.
Let for each i, g; € S(X;), t.e. ¢; € C(Xy) and l|g:| = 1, and define the functions
g €CX) and g € C(X') by (1.1.2) and (1.1.8). Let T be a locally compact space
and let w be a positive measure on T with | <1 -+ y. Let further for each 1,
fi€C(XixXT), and let f and [ be as above, and let

[ £, nauy = gy .
‘Z'I’

Writing now F(x) = fo(x, £)du(t)
we have F €V, [[Fly, <14y and |lg — F|| < n,.(y).

Proof. We shall define functions kb € C(XixT) by hiz:, t) = gla)fi(ws 1).
Defining then h, 2’, and H by resp. (1.1.2), (1.1.3) and (1.2.6) we have by Theorem
1.2.

HeV, [Hl, <14y and |1 — H| < raly) . (3.3.13)

But we have also g=g¢-1, F=¢-H, and Jg|r <1, and therefore
Wl <lgll - 1Hl <14y and |g — Fl| <lglf- 11 — H| < naly).
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CorOLLARY 3.2. Lef {X,}' , be compact spaces, and let F € V(X) be such that
IFly <1, |1 — Fll, <y, (3.3.14)
then i1 — Fliy < 1094(y) .

§ 4. Helson sets in D,

1. The group D, is the product, as a group and as a topological space, of a
denumerably infinite number of compact abelian groups isomorphic to Z(g), the

cyclic group of order ¢. The dual group ﬁq, is the sum of the corresponding dual

groups. D, is compact metrizable and totally disconnected, and ﬁ; is discrete
and denumerably infinite [7].
In § 1 a closed subset K of a compact abelian group G was called a K,-set

if & |z = Sy(E). It is easy to see that the group D), contains K, -sets, and it was
observed by Varopoulos, that if {K,};_, are closed subsets of D, and if UK;
is a K,set, then A3 K;) is a tensor algebra. On the other hand the group D,
does not contain Helson-(x)-sets, for « arbitrarily close to 1, so Theorem 1.1 can
not in general be used to provide weak conditions on a set {K} ; of subsets,
ensuring A(Z K,) to be a tensor algebra. Nevertheless it seems reasonable, in the
light of Theorem 1.1 to conjecture that if U K; is almost a K,set then A(> K;)
is a tensor algebra. In the next paragraph we shall prove this in the case n = 2,
ie. A(K; 4 K,) is a tensor algebra if K, U K, is almost a K,-set. In the proof
of this result an important role is played by functions with f? =1, in fact we
shall have to assume that the characters are sufficiently dense in the appropriate
metric sense in Sy(K; U K,). This assumption is however not used in the definition
of the Helson constant, and we shall therefore consider also another type of Helson-
constant, which is more suitable for our purposes, and is conceptually more natural
for subsets of D, We then study the relations, between the two concepts, and
we shall prove that they are essentially equivalent.

2. We shall presently consider subsets E of the group D, that are either K -sets
or Helson-sets. In these considerations an essential role is played by the groups

Sy(E) and its subgroup 1/)\9,] g To see the nature of this role we shall however first
consider a more general problem. We shall need some definitions and notations.
Let K be a compact metrizable Hausdorff space, and let P be a compact convex
set, containing 0, in the complex plane. We shall denote by P(K) the set of all
functions f in C(K) with f(K)c P, and by P’(K) the set of Borel functions
with f(K) c P. P(K) is a bounded convex subset of C(K). To avoid trivialities
we assume that P contains some point outside 0, and it is easy to see that then,
every functionin C(K) can be represented by a finite linear combination of functions
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from P(K). We can therefore define an equivalent norm in C(K), which we shall
call the P-norm, as follows

Ifllp = inf > |ax| over all representations f== > axfs, fr € P(K). (4.2.1)

We shall denote the space C(K), when given the P-norm by Cp(K). The norm-
dual of Cp(K) will be denoted Mp(K), and is the usual space M(K), with norm
given by

il = swp| [ fdai, fePE). (£22)

We shall later consider mainly the cases, when P is a set P, = the convex hull
of the ¢™ roots of unity, and when P is the unit interval. We also observe that
the P-norm obtained, when P is the unit dise, is the usual sup norm in C(K)
resp. the usual total mass norm in M (K).

For a convex set E of complex numbers we shall denote the radius of the set
by r(#), ie. r(f)=sup |z, 2 € E, and we shall denote the perimeter by p(H).
For a bounded convex set containing 0, we have 2r(E) < p(#) < 2x-r(H). For
normalization of the base set P, we shall assume that 1 € P, and that »(P) = 1.
Denoting the unit interval by I, and the unit disc by D, we assume thus I ¢ P cD.
These assumptions imply that the P-norm of a measure is at most the total mass,
and that the P-norm of a positive measure is the total mass.

A natural starting-point for investigations on P-norms is the following fact,
well-known in the theory of convex sets.

Let € and D Dbe convex sets in the plane, and let £ be the sum-set
E=C-4 D. Then E is a convex set, and

p(E) = p(C) + pD) . (4.2.3)

The identity (4.2.3) is implicitly contained in some more general formulas in
e.g. Bonnesen—Fenchel [1], and is obvious on inspection when € and D are
polygons. Finally an analytic proof of (4.2.3) can be based on a formula of Cauchy,
showing the perimeter of a convex set to be a linear function of the width of the set.
This formula can be written e.g. as follows [see 1, p. 48]

27

p(C) = ;— [sup (@ u) — inf (y - »)]d0, (4.2.4)

x€C yecC

% = (cos @, sin @), (x-u) the usual inner product in R2

Formula (4.2.4) clearly shows the additivity of the perimeter. We observe also
that the radius is subadditive under addition of convex sets, so that if £ =C + D,
then

7(E) < r(C) + (D) . (4.2.5)
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We now introduce some notions, that will be used throughout this §. Let P
be a compact convex set containing 0 in the complex plane. Let a bz a complex
number, we shall write

aP ={w|w=az, z€P}. (4.2.6)

Let now a = {a;};_; be a set of complex numbers. The P-range of a is the set
Qp(a) = 2 ((LkP) = {Z ! Z = z a2, 2r € P} . (4.2.7)
k=1 k=1

It is obvious that p(aP) = |a|- p(P), and it then follows from (4.2.3), that

P(@r(a)) = (2 ) - p(P) . (4.2.8)

Let now K be a compact metrizable Hausdorff space, and let u € M(K). The
P-range of u is the set

Qp(p) = cl {z |z = ffd,u, fGP(K)} ) (4.2.9)
or equivalently
Qelp) = {z 2= f fu fGP'(K)}- (4.2.9)

@p(u) is the continuous linear image under u, of the bounded convex set P(K),
and is therefore bounded and convex. It follows moreover e.g. from a partition of
unity argument, that

2(@p(w)) = P(P) - lpllx) - (4.2.10)

By definition we have further |y, = #(@p(n)). The fact that both the P-norm
and the usual norm can be read off from the set @p(x), indicates the importance
of this set for problems on relations between P-norms and usual norms.

Now the perimeter of a convex set is a monotone function on the set of all convex
sets, so a set of perimeter L cannot be contained in a circle of radius r if » < L/2m,
and we have therefore

P
llwlle = pz(—n) el ey - (4.2.11)

Denoting by I, the identity map of C(K), considered as a map from C(K) into
Cp(K), we see thus that |[p] < 2a/p(P).

Let now P be one of the sets P, (resp. the unit interval I), and let us speak
of g-norms instead of P,norms, and of spaces U (K), and M, (K), and of the
g-range @, (u). We have in this case p(P,) = 2¢ - sin (nq) (resp. p(I) = 2), and
from (4.2.11) we have then
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2q sin (7
e = 2 (4.2.12)

1
Tesp., ludl = p. llallna iy - (4.2.13)

If the set K is totally disconnected, then convex combinations of functions from
Sy(K) are dense in P, (K), and therefore the set @ (u) is in fact the closed convex
hull of the set of all z in C, such that z = f fdu, with f in Sy(K). In particular
we have therefore |jull, = r(@Q,(w)) = sup | f fdu), f€8,{K). Combining this with
the definition of a Ky set, we see that the Helson constant of a Kgset is
e = sin (2/q)/(7/q)-

When P is the unit interval, we use the general principle, that what can almost
be done by continuous functions, can be done by Borel functions, to conclude the
existence of a Borel function ¢, which we may in fact assume to be idempotent,

with ]f @ du| = HMHM(K)/TE'
These results are all well-known, [3, p. 565; 5]. The standard proofs are different,
but also the more natural approach given here is known, see e.g. [5, p. 674].

3. By very general arguments we have proved that no infinite subset of D,
can have a Helson constant greater than y,, and that on the other hand a K -set
has the Helson constant y,. If K is a Kgset we have in fact A(K) = Cy(K)
canonically, which means that for every function f in C(K) resp. every measure
pw in M(K), we have

[fllagy = 111y < vg'ifll (4.3.1)
resp. lullpmey = llelly = vl - (4.3.1)

Let now E be a Helson set in D,. The Helson constant o(E) of E is defined
by comparing norms in A(H) and norms in C(E). By the above we may write
a(B) = yo(1 — ), and we have then

1flle = 7ot — ) * I fllazy» all f €O, (4.3.2)
resp. [lullemmy = V(1 — 1kl all p € M(E). (4.3.2)

If 5 is small, then condition (4.3.2') is, in terms of a fixed u, a strong condition
ift {lull/lplls is close to y,, while it requires considerably less if {|ull,/llully is close
to 1. It is therefore natural to consider instead of (4.3.2) and (4.3.2") conditions of
the following type

Ifllg = (@ — d)liflle, all feCE), (4.3.3)
resp. ey = (1 — Olplly, all p € M(E), (4.3.3")

and we shall make the following definition:
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Definition 4.1. Let K be a Helson setin D,. We shall say that K is a H(g, B) set
if for every f€ C(K), we have

(1l < B7If
or equivalently, if for every u € M(K) we have

(lullpar > Bilully -

It is clear that a H(g, ) set with p close to 1, is a Helson set with Helson
constant close to y,. We shall however also prove, and this is the main result of
this section, that a Helson set, with Helson constant close to y, is a H(q, f) set,
with B close to 1.

The main step towards this is to prove the following theorem

THEOREM 4.1. Let & be a posilive number, 0 << & << min (7%/8¢%, 1/15), and let
K be a totally disconnected metrizable compact Hausdorff space. Let further 7 < Sy(K)
be a family of functions with the following property:

For every measure u € M(K), there exists g €7, with

’fgd } / /q (1 _“)[’ﬂ”M(K)' (4.3.4)

Then: If w=f-|ul, f a Borel function with f1 =1, there exists g €7, such
that

tf g dM| > (1 — 14(x/Q)Vulwy of 9 =2 (4.3.5)
and ] I ydﬂ! (1= 5 gy O =2 (43.6)

Remark 1. Without loss of generality we assume that the family 7 is closed
under multiplication by ¢™ rooths of unity (otherwise simply adjoin all multiples
by ¢™ roots of umity), and we shall under this condition prove that we can in
fact find g €7, such that

Re ( [o dﬂ) > (1 — 14(6/0)")larcs, -

Remark 2. Theorem 4.1 is stated and shall be proved without using the con-
cepts of g-norms. In the following proof, the norm of a measure will always be the
total mass norm.

Remark 3. If x = n%/8¢%, then (1 — &)y, > (1 — 14(x/q)**), and this shows
that the given range of «’s contains the range of interest.

Remark 4. The observant reader has already noticed that we have followed
our own advice from § 1, and used strict inequalities in both assumptions and con-
clusions of the theorem.
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4. Outline of proof: Any function ¢ in Py (K) with

fgfd[ﬂl

(and with — (z/q) < arg (I,(9)) < (n/q)) is close in L*(|u|) to the function f.
The proof consists therefore essentially in finding a function g in ¥ sufficiently
closeto f. This we can not do only in terms of the measure u, and we shall therefore
construct another measure », which is more adequate for our purposes. In the
case ¢ = 2, the measure yu is assumed to be real, and the problem is to find a
suitable imaginary part to add to u. The constructions in the proof are mainly
geometric, and a crucial step in the proof is a purely geometric lemma on the peri-

meter of certain convex sets.

(g = > (L — &)llull

Proof of theorem. From general facts about sets @Qp(u), we know that @ (u)
is for every u € M(K) a compact convex set containing 0. We also know that
P(Q,) = p(P,) - |ul = 2, - .

We next observe that if f€ P (K) then f-P,(K)c P,(K), and therefore
Qf - 1) c @ (n). If we have moreover f?= 1, then f- P (K) = P(K) and hence

Qf - 1) = Qy(m) - (4.4.1)

In fact, (4.4.1) holds also if f? =1, and if f is a Borel function. In particular it
follows that Q,(u) is invariant under multiplication by g™ roots of unity. Another
consequence of (4.4.1) is that if u=f-|u], ff=1 then

Qqp) = llult - P, . (4.4.2)

To ce> this we assume, by (4.4.1), that x is positive. We take then
g = 1€ P(K), and we see that the complex number |u|| belongs to @,(u). Since
Q,(u) is convex and invariant under multiplication by ¢™ roots of unity, we have
then [ul|- P, c @,(x). Now we also know that the sets have equal perimeters,
and therefore they are equal.

To illustrate the geometric notions involved, we shall construct explicitly the
set Q. (u), for a measure p with finite support. In this case we may also write
Q,@), for a certain set a = {a,}i_;. By (4.4.1) we may assume that — (7/q) <
arg (o) < {(7fq), and it is algo clear that we may assume that arg (a,) < arg (a,,,),
all k. Wenow take 2z, = > i_; @, and we see that z, is a boundary point of @ (a).
In fact 2, maximizes the real part in @,(a), and maximizes the imaginary part
amorg all such points. We now define consecutively

Ze=2Z1 e — 1), 0= el

All the points {z,};_o are then extreme points of @,(a), and we have further
2z, = 0+ 2. Dofinirg now 2z,,,=0'%, we get all the extreme points of € (a).
ce F.gures 1 and 2.
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5
P

Fig. 1. Q,(a)

a = {(ay, ay ay)

>
7 1
Zy = 0y + a5 + ay

O

Fig. 2. Q4(a) T
a = (al’ aé)
Zy = ooy < @y

N
[~y

Zy = a; + a,
3\

N

Conversely, we see that if @ is a convex polygon, invariant under multiplication
by ¢™ roots of unity, then @ is a @,(a), for some set of complex numbers. To
construct one such set, we assume that ) has say q-n vertices. We enumerate
then the vertices consecutively, starting from an arbitrary vertex by zy 2, ...,
Zps - -2 Wehave then z, = 0z, and we define @, = (2, — 2,_1)/(¢ — 1), L.<k <.

n
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We shall now prove that if the given measure u is continuous, or more precisely
if u can be decomposed into sufficiently small mutually singular parts, then the
conclusion of the theorem holds. Towards this we first define a real number a,
by the relation

I+ 2% (tanag — a) = (1 — o)t (4.4.3)

or equivalently,
1 47

¢ X
ana~a—3 11—« q.

Using now the elementary estimate 7? < 10, and the assumption « << 77?842 <
7%/32, we have

a® < 3(tan o — a) << _ -oi.
= 5\ ¢
-
This implies then
64750( 1/3 8763 1/3 T
a << 1ig ) < <11q3> < —q‘ . (4.4.4)

On the other hand, we have also « < 1/15 and therefore a < m/4.

We next denote by A (a) the set defined as the convex hull of the union of
the unit disc and the points *(1/cos @), 1 < k < ¢q. We further define a function
F(z) (or more properly F, . (x)) by

Fig. 3. A,(a)

2
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Fig. 4. A,(a)
/
(4]
F(z) =supy over all (z,y) € 4,(a), (4.4.5)
cos (2 1
for —(lQ) <x<<—.
cos @ cos @

(Figures 3 and 4.)

We have, since a < m[q, p(A4a)) = 27 + 2q(tan a — a), so if A’ isa polygon
with sufficiently small sides and with vertices on the boundary of A4,a), then
p(A4") > 27 + §2q(tan @ — a). We shall presently comstruct a » whose @,(v)
is such an inscribed polygon. We shall then have

. 3
il = 2@ p(Py) = p(Qu¥))[2myy = 7" (1 + Zs% (tan a — 00)) »  (4.4.6)

and by (4.4.3) and the assumptions on ¥, we can thenfind g € 7 with |I,(g)] > 1.

To make the construction, we first break u into small pieces. We partition K
into a finite number of disjoint Borel sets {E,};, and we assume for simplicity
that |u(B) =7 >0, all 4. We denote p =7 "'" #lg, so that we have
g =2 rqu. Now, for all ¢ we have @ (w)= P, and this implies that if
ula) = Z aipi, then @Q,(u(a)) = @y (a). The measure » will be such a linear com-
bination, and for ¢ = 2 the construction is illustrated geometrically in Figure
3. We shall carry out the construction first in the somewhat simpler case ¢q = 2,
and then for an arbitrary gq.

The case q = 2. We assume |jy| = (cos @)1, and we have then positive numbers
{r}L,, such that > r; = (cos a)™l. We denote now
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k
= —(cosa)yr+2>n 0<k<N (ie. zp= — (cos@)?),
i=1
and we denote, in terms of the F(z) defined in (4.4.4) 2z = 2y, + ¢F(x), 0 < k < N.
We can now finally define

fp, — %p_1

>, 1<k<N.

ar —

The set a = {a,}r-, is constructed in such a way that @,(a) is a polygon in-

scribed in Ay(a), and we have Re (a) = 7. We define now » = > anus, and

we have then pu=Re (). We assume now that all 7 are so small that

Wl > (7/2)(1 — «), so that there exists g €Y with |[(g)| > 1. Assuming

Re (I,(g)) = 0, we have Re (I,(g)) > cos @, andsince g isreal andsince u = Re (v)
we have

I(g) > cosa = cos?a-flu] = (L — 5 o™)lju

Arbitrary q. We agsume again |jy| = (cos a)™1, and we have then also in this
case positive numbers {r;}i.,, such that > 7; = (cos @)L, In this case we shall
however first pass over to the numbers {s;}, defined by

8 = 2 (1 — cos a cos (z/q))r; .

We denote now

k
=+ (cosa)r —> & 0<k<N.
<1

We define now L by wx; > cos (7/q) > xp,,, and
zk-—_xk—l—féF(wk), OSkSL
We denote further

N
e = (cosa)r—>s, L+1<E<ZN,

ikl
and we =1y —tFy), L+1<EkE<N.

Defining now z for L4-1<Ek<N by zx=10"wi @ =€ we have 2z
defined for all £k, 0 <k < N. We can now define

2 — 2p_1

o = 1<k<N.

e—1 "7

This finishes the construction of the numbers ax. We set v = > axux, S0
that @Q,(») is a polygon inscribed in A, (a), and assuming all 7. sufficiently
small we have then y,(1 — &)} > 1. By assumption, there then exists g € 7
such that |[(g)| > 1. Assuming — (n/q) << arg (I,(g)) < (n/q), we have, since
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I,(9) € Q,(») c 4,(a), Re (I,(9)) > cosa. We shall estimate Re (I,(g)) and to-

wards this we first define f gdur =t = 1 — w, and since # € P, we have
— (7/2 — 7lg) < arg (w) < (7/2 — m/g). We can now write

1
Re (I,(g)) = Re (z ax(l — uk)) = Re (Z akuk)
1
and Re (I,(g)) = Re (3 m(l — w)) = p——— Re (> rew) « (4.4.7)

Qur task is thus to estimate Re (z rkuk) in terms of Re (Z akuk). Examining
carefully the construction of the numbers ax, we see that — (w/q) < arg (a) < 7/q,
so that Re (mux) > 0, unless ur = 0. We define now for every k a positive
number b, by the condition that b is the largest real number, such that

Re (hiw) < Re (axu), for all u with — (72 — =/g) < arg (w) < (/2 — 7[q), (4.4.8)

Fig. 5.

~w

b
>

b —
/
[~
b

-—

«
*

-~ am— -#-— - —
L\'4

- e LA )
-
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thus
sin (m/q — arg |axl)
sin /g

L —

Notice also that for &t < L, we have arg (a) < 0.
(See Fig. 5.)
Now it follows from this definition of the numbers b that s, << (1 — cos 27/q)bs,
with equality unless k= L 4+ 1.
We have then
1 — cos (2m/q)

LIRS 2(1 — cos a cos (7/g)) b < 2B,

and therefore Re (z muk) < 2Re (Z bkuk) < 2 Re (Z a,kuk) < 2 sin a tan .
We have therefore finally

Re I,(g) > (1 — 2sin* a)ljul] > (1 — 14(x/q)"")l|ud] -

5. 4 geometric lemma.

So far we have proved that the conclusions of the theorem hold for every measure
that can be decomposed into sufficiently small mutually singular parts. Our next
task is to decide how large »sufficiently smally can be. This is a purely geometric
problem, and one solution is given by the following lemma. The lemma is stated
so as to fit with the construction of the measure » in the case ¢ =2, but it is
easy to see that the estimates obtained will be wvalid for arbitrary q.

Levma 4.2. Let a, 0 << a << 72/4, be a real number and let F(x) or more properly
F, () be the function defined in (4.4.4). Let {z,)i~, be real numbers, such that

—1 1 ,
= = 4.5.1
0= cosa’ ™7 cosa ( )
1
and 0<m —a_ < —cosa=singtana. (4.5.2)
cOS @

Let further 2z = an + iF(xs), 0 <k <M, and let

fp — 25
akx—ka_l, 1<k< M.

Then Q,(a) is a polygon with vertices on the boundary of A,(a), and

p(@xa)) = 4(/2 4 §(tan o — a)) . (4.5.3)
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Proof. We shall denote the set A4,(a) simply by 4, and the set @,(a) by A4’
We shall estimate p(4’), so we write

p(4d') = p(d) — (p(4) — p(4")) = (27 + 4(tan @ — a)) — 4D .
We shall first make the additional assumption that
Xy = — COSQ, Zpy_;=COSG (4.5.4)

and we shall under this additional assumption prove that D < (tan ¢ — a)/8.
To estimate D we parametrize the upper boundary of 4, by using arc-length
(to the right) from z = ¢ as parameter. We have then

X = sin 8, 2r=—sins;+4coss, 1 <k<M-—-1,

We denote further

Sy )
mk=i—12i—", =8 —S_p, 2<k<M-—1.
We have then
S (o2 )
2D = d, — 2sin — 4.5.5
122 A sin ( )

By condition (4.5.2), we have now
. . . O .
2, — %_; = sin s, — sin §;,_; = 2 sin 5 008 My <sinatang =B,

and therefore 2sin d,/2 < Bfcosm,. We have also the trivial estimate d, <
tan o < 2¢, and therefore
ds d 20 B @ tan a

= ———— - 2sin — - = . 4.5.6
2 sin dif2 Sy = 2 sin @ cos my COS My, ( )

dx

By a series expansion and (4.5.6), we have now

& — 2 sin — . (45.7)

d: 1 p <a tan a>2 @ tan’a  dy
T 24 cos? my,

2 COS My

The function ¢(f) = lfcos?¢ is convex, and by Jensen’s inequality, we have
therefore
mk+dk/2

e < f ! dt 4.5.8
cosZmy — cos?¢ (4.5.8)

my,—dp,/2

Combining now (4.5.5), (4.5.7) and (4.5.8), we have
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7|2—a

. M—1 <d 2 & dk) - o? tan2 g f di
:,‘22 ko 28I = 24 / cos? t
a—f2
a? tan2 q a? tan? o? tan @ (4.5.9)
:T 2tan(n/2——a) = 1—2—00ta= 12
tana — a tanae — @
< 4 and so D < _8——

We now prove (4.5.3) without additional assumptions on the z’s. Towards
this we first denote by A”, the polygon that besides the vertices of A’ has additional
vertices at - e*®, and we observe that by the previous case we have p(d4) —
p(4") < (tan ¢ — a)/2. To complete the proof we must show that 4D, = p(4") —
p(4’) < (tan @ — a)/2.

To fix notations we assume o << €08 @ <<y, ,, and we shall denote

Zp_g = €08 (@ -}- 8) -} ¢ sin (@ - 8)
Zy_y=cosa-ftsing + 4 (sina — tcosa).

We further write ! = 2 sin (s/2).
We have then, by the cosine theorem

D= |Zy_{— eiul -+ [eia — Ziyg_o| — Zy_y — Zipr_sl

=+t — l/lz+t2+2(cosf2—>lt:

20t
==(l+t)<1— l/l—m(l——cosz'))

it s2 s
=@+ (1 —<1 - (l+t)2'§)) =% s¥¢
We further have s+t < tan a, and therefore

(tan )3 (tan a)® - 27

D, < : 3(1 — )] =
e S g max [l — a)] 8- 256

ja—t

Since we have assumed a << n/4, we have now
(tan a)? (tan mf4)? 1 4
3(tana —a) — 3(tan /4 —=fd)  3(1 — w/4) 34 — m)

and therefore

81 4 1
D, < 1092 '3(4-—%)' (ta,na—a)_<_~8*(tana——a).

and this proves the lemma.
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6. Conclusions of Lemma 4.2.

The polygon in Lemma 4.2 is the @,(») constructed earlier. Combining the
lemma with the previous construction we see therefore that: If u = 3 riux, s
mutually singular real measures [ = 1, and if 0 < < Lsin?a-[yl, all k,
where @ is defined by (4.4.3), then the conclusion of the theorem holds for u.

Let now E be a finite subset of K with card (E) = N < 2/sin? a. We define
a real number ¢’ > a, by sin?a’ = 2/N, and we define u € M(E) c M(K) by

1
14 :xk%E<N oS a/) Ska(xk) »

where (i) is the point mass at x,, and & = 1. We now construct as above a
measure » with vertices of @,(») on 4,(a’). We have then

Pl = (/2 + §(tan @’ — @) = (#/2 + f(tan @ — a)) = (p(1 — )T,

and there exists then ¢ €%, such that |[(g)] > 1. Assuming as usual
Re (I(g)) =0 we have I,(g9) = Re (I(g9)) > cosa’. If now g(x) = e,
all k, then I (g)= 1/cosa’, otherwise, we have in fact I (g) < 1/cosa’ —
2 - sin @’ tan @’f2 = cos ¢/, and this would contradict the choice of g. This proves
thus, that 7|p = Sy(&).

If we have ¢ > 2, then the estimates used in the proof of Lemma 4.2 are still
valid, and combining the lemma with our previous construction, we have: If
= Tk, p=fel|, f a Borel funetion, fI=1, [ml =1, m mutually

sin? a

. . <
singular, and if 0 <7, < 2(1 — cos @ c0s 7/g)

theorem holds for u. We have also, by the above arguments, that if F is finite
subset of K, card (E) < 2(1 — cos a cos (7/q))/sin? @, then 7|; = S,(E).

We have thus proved, that if u = f|u|, f a Borel function with f?= 1, and
if either the support of u is a small finite set, or if u can be decomposed into
sufficiently small parts, then the conclusion of the theorem holds for u. In the
general case, we shall first replace u in a suitable way by a measure p’ for which
the theorem holds. We take then a g € ¥, satisfying the conclusions with respect
to u’, and we shall see that such a g satisfies the conclusions also for the original
measure u. To construct the measure u’, we shall use the following lemma.

-lpll, then the conclusion of the

Lemma 4.3. Let b be a real number, 0 << b <1, and let {c,}n_, be real numbers,
such that ¢, > ¢, > 0, and such that > ¢ < 1. Let M < N be the natural number
defined by the conditions

M+1

M
kzlck > Mb, ’Zlck < (M + 1)b (4.6.1)

N
(If > cx = Nb, then we put M = N)
k=1
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M
Finally, let ¢ = (1 — Mb)- (1 — > &)~

k=1
Then tCM+1 < b.

Proof. By the definitions we have ¢t > 1. We denote R =1 — Z ¢k, and we
see that ¢ is defined so that

N M
Mb+H(R+Da)=Mb+4(l—3a)=1. (4.6.2)
k=M+1 k=1

If now, M = N, then there is nothing to prove, and if (M 4 1)b > 1, then
N
1 — Mb<b, so that #(eyyy + D e+ R)=1— Mb<b, and in particular

k=Mt2
teyry, < b, If (M 4+ 1)b = 1, then by the choice of M, we have either R > 0
or N> M -1, and in both cases do we have ey, <<b.

We assume now (M + 1)b << 1, and by definition of M we have then

M+1
R+ch:1520k<1—(M—l— 1),
k==M--2
and therefore
N
fepry =1— Mb —t(R+ > a)<1— Mb— {1 — (M- 1)b)

k=M42

<1—Mb— (1 — (M--1)b)=5b.

This proves the lemma.

End of proof of Theorem 4.1.
Let p€ M(K), u=flul, f a Borel function, f1=1, [ul=1. We write
H = pa -+ g, where u. is continuous, and
Ha :kzlckéka(xk): k=1, ¢ =¢,,>0.
We assume that wus has finite support, but since there is otherwise nothing

new to prove, we shall also assume that either w, # 0, or

2(1 — cosacos
N ( 19)

sin? ¢
‘We now use Lemma 4.3 on the numbers ¢, and with

b sin? @
~ 2(1 — cos a cos wfq) (4.63)
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The lemma gives us numbers M and ¢, such that writing

M N
W=+t =53 ad@) + 1 > aodlam) + p)
k=1 k=M+1

(b defined by (4.6.3)), we have [lu/| =1, and p’ can be decomposed into small
parts.

In the case ¢ = 2, we complete the proof as follows. We use the fact that the
theorem holds for u’, and we choose ¢ such that

IA9) =109+, (9)>1—sin?a. (4.6.4)

We have now g¢2= 1, and this implies that either (i) Z,(g) = |lu)| or (ii)
I,(9) <llwll — 2b = |luyf| — sin?a. Since (i) contradicts (4.6.4) we have (i), and
this implies that g(zi) = a(= o), for 1 <k < M. We have then

M N 1
I,(9)= > o+ L(9)=2>ce+ (”Mz” iy sin? a) >1-—sin’a, (4.6.5)
k=1 k=1
and this finishes the proof in the case ¢ = 2.

If ¢ > 2, then things are technically more complicated. In this case we cannot
use merely the fact that the theorem holds for ', but rather the proof. I.e. we
must construct a measure » as in the continuous case, and choose ¢ with
Re (I,(g)) > cos a. From this fact we can now conclude that Re (I, (9)) = |luyl.
Once this is known, the proof can be completed as in the case ¢ = 2, and we have
then proved Theorem 4.1 in full generality.

7. Theorem 4.1 can in certain instances, be used as a substitute for a condition

of type (4.3.3), but nevertheless we want a complete result on norm relations.
To this end we shall need the following proposition.

ProrosiTioN 4.4. Let K be a compact melrizable Hausdorff space, and let

7 € Py(K), be a family of functions, such that for every p in M(K) with u = flul,
f Borel, f1=1, there exists a g €7, such that

Re [ gflul > (1 = Ol

Then to every u in M(K) there corresponds @ g in ¢, such that

| I ng’ > (1 —20)ully or > (1— Ml i 7=2)
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Proof. Let us write |u] =4 and u= @2, |p|=1 ae. (1). There exists a
Borel function f such that f?=1, and

()i = {/ﬁ?dl( = [lully - (4.7.1)
We can choose « real such that e®I(f) = |I(f)| and replacing thus if necessary

g by €%u, we assume I(f) > 0. We next write fp = ¢ ™, and we have then
by (4.7.1), —alg <y <=fqg a.e. (1). We have then

p=gh=ffpd=Ff e - L=F-(cosyp —isiny)- 1,

and we shall denote the measure f- cosy - 1 by ». It follows from our assumptions,
and from the construction of », that

= [ fiar= [ ffteos par = [ 10 = i

By the assumptions of the theorem we can find g € #, such that

Re fgdv = Re fgfcoswdl < (1 — )| -
We shall write gf =%, and we observe that & € P;(K), and we have then

HIm A| < cot (n/q) - (1 — Re k), if ¢ <2, while Imh=0 if ¢= 2.
We can now estimate

Re fgd‘que /gf(coszp—isiny))dlzRe fgfcoszpdl-{— fImhsinzpdl.
By the above we have then

Re [gdu= (1~ o)uy if ¢=2,

and
Re [ gduz (U= ol — [ 1Tm |- sin pla2
= (1 — 8)l — eot (afg) tan (wfg) [ (1 — Reh) cos pdd = (1 — 20)ul, if 9> 2.

This proves the proposition.
As an immediate corollary of Theorem 4.1 and Proposition 4.4 we have now

CoroLLARY 4.5. Let K c D, be o Helson-(yy(l — &) set, then K is also a
H(g,1 — B) set, with B = K << 28(x/q)*>.
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§ 5. Tensor algebras in D,

1. We shall first introduce some notations. Let X be a totally disconnected
compact space, and let I, be the identity map of C(X), considered as an operator
from C(X) into C(X). By § 4, we have then [[ ]| < yq_l = (n/q)/sin (m/q). Let
now {X.}; ; be totally disconnected compact spaces, we shall write

V(X) = CX) © OfXp) @ ... ® O[X,) .

Let further J, be the identity map of V(X) considered as a map from V(X)
into V,(X). Since J, = (I)); ® ([); ® ... ® (I,),, We have by standard properties
of tensor norms [J | < y;". Combining this with Theorem 1.2 (resp. Corollary
3.1) we have under the assumptions of Theorem 1.2 (resp. Corollary 3.1) that
It — Fly, < v;"nay) (esp. lg — Flly, < 77"na))-

We can now state and prove the following theorem.

THEOREM 5.1. Let 6, 0 << d << 1, be a real number. For every notural number
q = 2, and every natural number n > 2, there exists a number f, ., > 0, such that
if {K}i_1 are disjoint compact subsets of D, and if UK, isa H(q,1 — B) set,
B < Byn then the map

T:A4(2 K)— V(K) (defined as in § 1)

is a topological isomorphism, and ||T-Y < 671

Proof. Let n.(y) be a funetion satisfying the conditions of Theorem 1. We
define a positive number y,, by the relation

1 — 9 " Nal¥an) = (1 -+ ¥g,0)0 - (5.1.1)
and we define g, , by
1
V—Bon =177 - (5.1.2)
R S o

Let now B, 0 < < B, ., be areal number, and let {K,}_; be disjoint compact
subsets of D, such that U K; is a H(q, 1 — f)-set. For convenience of notations
we shall write (1 — )1 =1+ y. In accordance with our previous notations
we shall also write K = K, XK,X... XK, and K = UK,

To prove the theorem we shall use the same duality argument, that was used
in the proof of Theorem 1.1. Let therefore A € BM(K), |4, = 1.

We choose &> 0, such that 1 —e&— y;™.(y) > (1 + y)6. Then, by the
definition of norm in BM(K), there exist functions g; € §(K;), such that

[Ag)>1—e, (5.1.3)
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where ¢ is defined by (1.1.2). Now the function ¢’ defined by (1.1.3) belongs to
C(K"), and we have |g'l, = 1. By assumption we have therefore

9 gy < 1+ 9. (5.1.4)
There exists therefore a representation
g'(k') =2 azk), x€D, >lal<1+y. (5.1.5)

We shall write F(k) = > a,x(k)y(ky) ... g(ka), k= (ky, ko, ..., kn), ki € K,
By Corollary 3.1 we havethen F €V, ||[Flly <1+ v, llg — Flly < n.(y). Since the
functions y used in the representation of F all belong to §,, we have in fact
IFly, <14y, and we have also lg — Flly, < 75 "na(t).

But this implies then

[A(F)| = |Ag + F — g)| = |4(g)| — [AUF — g)]
=1 —&— HA”BMq | — gHVq =1 —&—y"n.(Yy) -

By choice of &, we have therefore |A(F)| > (1 + y)é.

By the usual map of K into > K;, we consider A(> K;) as a subalgebra
of V(K) (= V(K)). Now the function F constructed above belongs to A(K),
we have a representation of F, showing that ||Fjlyx <1 -+y, and we have
|A(F)] > (1 4 y)d. This implies then |[Ajlpy > 8, and this proves the theorem.

Finally, Theorem B follows from Theorem 5.1, combined with Corollary 4.5.

(5.1.6)
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