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w O. Introduction 

1. Tensor algebras, or to be precise, projective tensor products of C(K)-spaces 
have impo~%ant relations both with I~ilbe~ space and with 11. The relation with 
Hilbert space was discovered by  Grothendieck, and was called by  him >>the funda- 
mental theorem on the metric theory of tensor products>>. I t  certainly is the deepest 
result in this metric theory [see e.g. 6]. The relations with 11 were discovered by  
Varopoulos, and their importance lies in the fact that  they  relate the algebra 
structure of tensor algebras to the algebra structure of group algebras [8]. These 
relations are two-fold, in the first place, a group algebra can in a canonical way 
be embedded as a closed subalgebra of a tensor algebra. Through this embedding, 
information on tensor algebras can be obtained from information on group algebras. 
In the second place a tensor algebra can be represented as a quotient of a group 
algebra, so that  information on tensor algebras can be transferred to group algebras. 
The main result in the second connection is the following; if {K~}~= 1 are disjoint 
compact subsets of a compact abelian group, and if O K~ is a Kronecker set (or 
a Kfse t ) ,  then A ( ~  K~) is a tensor algebra. In this paper we shall consider to 
what extent the ]~Lronecker condition in the theorem of Varopoulos can be replaced 
by  I-Ielson conditions on the sets. Our main results are the following. 

T~EO~E~ A. To every natural number n ~ 2, there corresponds a real number 
~ ,  such that i f  {K~}~=I are disjoint compact subsets of a compact abelian group, 
and i f  U K~ is a H e l s o n - ( 1 -  ~) set, or < o;n, then A ( ~  KI) is a tensor algebra. 

THEOI~nM B. To every natural number q > 2, and every natural number n > 2, 
there corresponds a real number aq, n such that i f  {K~}~I are disjoint compact subsets 
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of the group Dq, and O Ki is a Helson-(yq- a) set, where ~ < ~q,, and 
rq -- sin (s]q)/(s/q) is the Helson constant of an infinite Kq-set, then A ( ~  Kq) is 
a tensor algebra. 

The proofs of these theorems are based on the metric theory of tensor algebras. 
The main tool in the proof of Theorem A is a rather elementary measure inequality 
with which we can s tudy the dual space of a tensor algebra. 

To prove Theorem B we shall combine the methods used to prove Theorem A, 
with a theorem ef  Bohnenblust and Karlin on the geometry cf  Banach algebras. 
However,  besides this we shall also have to s tudy various possible definitions of 
gelson-eonstants for subsets of Dq. 

Loosely speaking, the proof of Theorem A is based on a notion of weak approxi- 
mation, while the proof of Theorem B is based on uniform approximation. 

w 1. Tensor algebras in general groups 

1. We shall start  by  some standard definitions and notations. Let G be a 
compact abelian group and let E be a closed subset of G. We shall denote by  
A(E) the restriction of A(G) to E. A(E) can also be represented as the quotient 
A(G)/I(E), where I(E) is the closed ideal of all functions f in A(G) with 
f-l(0) D E. I t  follows from this representation that  A(E) is a Banach algebra 
with maximal ideal space E, and that  every element f in A (E), has an expansion 

f(x) ~- ~ axz(x), Z e G, ~ lax] < IlfllA(E) + ~, X e E .  (1.1.1) 

The dual space of A(E) will be denoted PM(E), and its elements will be called 
pseudomeasu_res. 

Let  X be a compact space (all topological spaces considered in this paper 
will be assumed to be Hausdorff  spaces). We shall denote by  

(i) l x  the identity element of C(X) 
(ii) C(X)I the unit ball of C(X) 

(iii) S(X) the group of all functions f e  C(X) with If[ = 1 
(iv) S~(X) the group of all functions f e C(X) with f~ : 1. 

With the uniform topology, S(X) is a topological (abelian) group under point- 
wise multiplication of functions, and Sq(X) is a discrete subgroup of S(X), which 
separates the points of X if and only if X is totally disconnected. 

Let  E be a closed subset of a compact abelian group G. We shall call E 

a) a Kronecker set, if GIE is dense in S(E). 
b) a Kq-set, if G[E Sq(E). 
c) a Helson-(a) set, if A(E) = C(E), and if for every f in C(E) 

[If tiC(E) ~ aIIfI1A(E), 
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or equivalent ly b y  dual i ty ,  if for every measure /x wi th  support  on E ,  

2 E G  

In  dealing wi th  Helson-(~) sets, ~ < 1, we shall in this paper often make 
the  technical assumption,  t h a t  for every ~ E M ( E ) ,  /x # O, we can in fact f ind  

Z r ~, such tha t  I~(X) l > aII/zftM(s) - Nota t ional ly  this assmnption means t ha t  we 
can avoid certain e-quantities, and conceptually it  means, a t  most,  t h a t  we consider 
a Helson-(~) set as a Helson-(a') set, for some ~' < ~. 

Le t  {X~}f~z be compact  spaces. We shall denote their  cartesian product  by  
X and  their  disjoint union by  X' .  Le t  fltrther f i  E C(X,) ,  we shall define functions 
f E C ( X )  and  f ' E C I X ' )  by  rasp. 

I(x) = f(x x, x., . . . .  , Xn) = fl(zl)f2(x2) . . . f,,(X,) (I.1.2) 

and  

f ' l x ,  = f f .  (1.1.3) 

We shall denote by  

(i) ] - [  (X) the  set of  all functions 
f i  E C(Xi)x for all i. 

f E C(X) defined by  (1.1.2), such tha t  

(ii) g(X) the  projective tensor product  C(X1) ~ C(Xe) ~) . . .  ~) C(X,,)  [S]. 

V(X) is a semi-simple Banach algebra with maximal  ideal space X, and every 
element  F E V(X), has a representat ion 

~ i F@) = ~ a~t~(z), t~ e ]-[ (X), Ia~l < llFllv~x~ + ~.  
k = l  k = l  

I t  is well-known t h a t  convex linear combinations of S ( X )  are dense in C(X)I, 
so t h a t  in the above representat ion we m a y  in fact assume fn E ] - [  (X), Ifif ---- 1. 

An algebra isomorphic to Some V(X) will be called a tensor algebra. 
The dual space of V(X) will be denoted BM(X),  and is canonically identif ied 

= X with the space of  continuous e-linear forms on ]-[i=~ C ( i ) .  An element of B M ( X )  
will he cal led a mul t imeasure  of order n, a mult imeasure  of  order 2 is called a bi- 
measure. For  A E B M ( X ) ,  we have IIAIIBM = sup{[A(/)[  t /E~- / (X)} ,  and we 
should like to point  out, t h a t  in contrast  to the similar case for measures, we can 
no t  tu rn  the sup into a max  bY going over to Borel functions. 

Le t  A E B M ( X ) ,  and let f jEC(Xj ) ,  1 < j < _ < n ,  j : / : i .  The functional  on 
C(X~), t a k i ~ g  ~ E C(X~) into (f~ | f~ | . . . .  | fi_~ Q q~ | fi+~ | . . . .  | f,,), is 
then  linear and  bounded a n d  is by  the Riesz representation theorem given by  a 
measure on Xi which wesha l l  denote by  A~(fl | �9 �9 �9 ~ _ j  | f i+i | �9 �9 �9 | f~). I t  is 
clear t h a t  

liA,<fx | . . . .  | f , - ,  | f,+~ | . . -  | f=)[[MtX,) ~ [tA[IB~" [Ifx[loo.-. [[f,,[[~ - 
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We have thus interpreted A as an ( n -  1)-linear operator into M(X~). In 
the same way we can consider A as a multilinear operator from the products of 
any of the C(X)'s into the multimeasure space over the rest. I t  is clear that  all 
these operators have the same norm, namely IIAIIBM. 

Let now A EBM(X),  let fi C C(Xd,,  and define f E C(X) by (1.1.2). We 
shall denote 

2,(f) ---- A~(fl | . .  �9 | f i_l  @ f,+l | �9 . .  | f . )  �9 (1.1.4) 

Since we may consider each X~ as a subspaoe of X', we may also consider ~he 
~,'s as (mutually singular) measures on X', and we can therefore define 
2'(f) e M ( X ' )  by 

~.'(f) = 21(t)  4-  ~,~(I) + . . .  + 2 , , ( f ) .  ( 1 . 1 . 5 )  

VVe also observe that  since we have for each Xi II~i(f)llM(Xl)_< llAIIBM we have 

IIZ(t)ilM<x,) < n llAli,mx). 

I t  is also obvious, but nevertheless important, tha t  BM(X) is a module over 
each C(X~) if we define the multiplication as follows: Let A E BM(X) and let 
ei E C(Xd,  we define eiA, by 

(e~A)(fl |  | J~ | . . ,  | f , )  = A( f l  |  | e,f, | . . .  | f~), A e O(Xj), 

l < _ j < n .  (1.1.6} 

Clearly we have then Ile~AI[BM ~< [Ie~I[~ " [IAllBM- 
The simplest example of a closed subset E of a group G, for which A ( E )  

is a tensor algebra is the following: 
Let E i c  Gi be Helson-(~i) sets, and let E = l - [E l ,  then A(E) = 

A ( " ~  G~)/I(E), is a tensor algebra, and for every f in A(E)  we have 

tlflIv(E) ~ [~  ~ " HflIA(E) " 

The above example works however only in product groups; and the importance of  
the theorem of Varopoulos lies in the fact tha t  it does not, require the group to be 
a product. 'On the other hand it does require a ~>product seb> in an arbitrary group, 
and such a thing is found in the following way. 

Let {K~}~ ~ be a set of closed subsets of a compact abelian group G, denoting 
their cartesian product by K, we have K ---- ]-[ K~ c ]--[ G = G ~. Let further s 
be the group addition map taking the point (gv g2 . . . . .  g~) C G" to ~he point 
g l + g ~ + . . . - t - g n C G .  The image of the set K under the. map s is usually 
called t h e s u m  of the sets Kf, and we shall denote it by ~K~.  The map s is a 

continuous group homomorphism, and induces a map ~ from G into G ~ = G'. 

By restriction, the set of functions GlzK~ is mapped into a subse~ of the set of  
^ ,  

funetioI~s G IK- Exte~ading ~ by lineari*y ~e  have a map, which w e  shall also, 
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denote by ~ of A ( ~  K~) in to  A(K). Identifying A ( ~  Kd with its image under  
in A(K), we may consider A ( ~  Ki) as the space Ao(K ) of all functions f in 

A(K), which have an expansion 

f(ic) = ~ a,z,(ic), ~ ia, l < ~ ,  k = (ICl, Ice , - . . ,  Ic~), (1.1.7) 

and with )/i E s(G). ~ is the diagonal imbedding of G into G ~, and is of co~rse 

the set of all characters Z in G~, for which 

z ( I c )  = z(Ic~  + Ic~ + - -  �9 + Ic~), Ic = ( I c .  Ic2 , -  �9 �9 Ic~) �9 

The natural embedding of A~(K) into A(K) is of course normdeereasing. We have 
further 

A(K) : A ( K ~ • 2 1 5 2 1 5  =- 

= A(K~) ~ A(K2) ~ . . .  Q A(K, )  c c(g~) ~ C(K2) Q . . .  Q C(K~) = V(K) 

and .this gives a natural normdecreasing injection of A(K) into V(K). We shall 
denote by T the composite of ~ and this natural  i~jeetion. T is then a norm- 
decreasing injective algebra homomorphism of A ( ~  Ki) into V(K), or 
equivalently of A~(K) into V(K). 

2. To prove our main results we shall need the following two theorems from 
the mer theory of tensor algebras. These theorems will be proved in the next two 
sections. 

THI~ORE~ 1.1. For every natural number n > 1, there exists a continuous real- 
valued function e,(x, y), 0 < x < 1, 0 < y ~ 2n, such that sn(O, O) = O, e,(x, y) 
is concave and increasing in each variable, and having also the following property: 

Let {Xi}i~ 1 be compact spaces, and let X and X" be rasp. their cartesian product 
and disjoint union. Let A e BM(X), IIAll = 1, let f~, g~ ~ C(Xdl, be such that 

B e  { A ( f ) }  > 1 - -  x (1.2.1) 

{ f ~ n - - y ,  (1.2.2) 
X '  

where f, g' and 2'(f) are defined by resp. (1,1.2), (1.1.3) and (1.1.5). Defining now 
also g by (1.1.2), we have 

]1 - -  A(g)]  < an(x, y).  (1 .2 .3)  

T~EOnEM 1.2. For every natural number n > 2, there exists a continuous real- 
valued function %(y), 0 < y, with ~(0)  ~-- O, and having the following property: 

X "  Let { ~}~=~ be compact spaces, let T be a locally compact space and let u be a 
positive measure on T with 

]]Ul]M(T) __< 1 + y .  (1.2.4) 
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Let further f i (x ,  t) E C(X,  • T)I , 
resp. (1.1.2) and (1.1.3), and let 

Writing now 

we have F E V(X), 

define f E C ( X •  

f rqx '  t)du(t) = lx,  d \ , 

T 

i., 
F(x)  = [ f(x, t)du(t) 

IIFll~ < 1 -~ y, and 

1tl - -  Fl[v <_ ~ ( y ) .  

and f '  E C(X '  • T)  by 

(1.2.5) 

(1.2.6) 

3. Using Theorem 1.1 we shall now state  and prove  Theorem A in a slightly 
more  precise form as follows. 

T~EOREM 1.3. Let (5, 0 < (5 < 1, be a real number. For every natural number 
n ~_ 2, there exists a real number fi, > O, such that i f  {K~}i~l are disjoint compact 
subsets of a compact abelian group G, and i f  U Ki is a Helson-(1 - - f i )  set, fl < fin, 
then the map 

T : A ( ~ K , )  - *  V(K) 

is a topological isomorphism, and lIT-l]] < (3-1. 

Proof. We first  define fi= in terms of the  funct ion en(','), b y  the  relat ion 
1 - -  e,(O, nfln) = d. Since we fur ther  assume fl < ft,, we can then  choose e > O, 
such t ha t  

1 - -  en(e, n(fl ~- e)) = 5 .  (1.3.1) 

Le t  now A E B M ( K ) ,  []A[]BM : 1. To prove the  theorem it suffices b y  well- 
known  dual i ty  arguments  to prove  t ha t  

t[T'(A)IIPM(ZKi) >-- 5 , 

and  this means t ha t  we must  f ind  a charac ter  Z in 

[A(Z)I > a .  

s(G), such t h a t  

(1.3.2) 

(1.3.3) 

Le t  e > 0 be the  e def ined b y  (1.3.1). B y  the  def ini t ion of norm in B M ( K )  
we can then  f ind  functions fi E C(K~), such t h a t  

A ( t )  = ~ e  { A ( t t }  > 1 - ~ ,  
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where we have defined f by  (1.1.2). Le t  now 2'(f) 6 M(U Ki) = M(K') be the 
measure defined by  (1.1.5), and let f '  6 c ( u  Kd = C(K') be defined by  (1.1.3). 
Since we now huve by  definit ion 

f f'dA'(f) = nA(f) > n(1 -- e) ,  (1.3.5) 
uK~ 

and since [!f'll~ --< 1, We h a v e  II),'([)IIM(UKI ) ~ n(1 -- e). By  the assumption on the 

set U K ,  we can now f ind  a character Z 6 G, such tha t  

l f zdZ'(f) I > (l -- fi)Ill'(t)l[ > n -- n(fl + e) . (1.3.6) 

OK i 

Let  e -~~ be the a rgument  of the integral in (1.3.6), and put  gl ~-e~OZ[K~. 

We have then  g~ 6 C(K d and we define g and g' by  (1.1.2) and (1.1.3). Bu t  this 
implies then  tha t  

g~{ f g'dX'(t) }= P~e{e'~ f zdx'(t)}----[f zdX'(t)i > n-- n(~ + ~ ) . (1.3.7) 

By  (1.3.4), (I.3.7) and  Theorem 1.1 we have then 

I1 - -  A(g ) l  < e.(e,  n(/3 @ e)) = 1 - -  d,  

and therefore IA(g)l > ~. Bu t  we have also IA(g)] = [ei"~ = IA(z)], and 
therefcre /A(z)/ >_ b, and  this  proves the  theorem. 

w 2. T w o  m e t r i c  l e m m a s  

1. To prove Theorem 1.1 we shall need two lemmas. The first  lemma is the 
key  lemma of the proof. I t  is an inequal i ty  for bimeasures, which follows from 
a more general inequal i ty  valid in complex Le-spaces, 1 < p < 2. The second 
lemma is s imply a eonvenient quant i ta t ive  version of the quali tat ive s ta tement ,  
t h a t  for every # in M(K), the function g in the uni t  ball of L~(I#]), for which 

fgd~ = I1~11, is unique as an element of L~(I#]). 

LEMMA 2.1. Let X 1 and X 2 be compact Hausdorff spaces, let A 6 BM(XIXX2) ,  
and let e~ 6 C(X1), i = 1, 2, be such that sup~ex,{[el(x)] + /2(x)[} _< 1. Let further 
eiA 6 BM(X), be the bimeasure defined by (eiA)(f @ g) ~ A(eif @ g), f 6 C(X1), 
g e C(X~). 

Then 
4 

IIAII~M >--[lelA[k~.M + ~ Ile2AII~M 
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The proof of Lemma 2.1 is based on the following general inequality. 

PROeOSlTIOZ~ 2.2. Let i~ be a 10ositive measure on a locally compact Hausdorff  
space X,  and let f and g belong to Lv(#), then the following inequalities hold." 
i f  10~  1, then 

2:e 2~ 

2-~ llf -4- e~~ gil:dO >~ 2-~ [ I[f!l~ -4- e~~ :dO (2.1.1) 
o 0 

I f  1 < p < 2 ,  then 

2~ (1? 
[If + e~~ dO >-- Jlf]l~ + ~i )]glib. 

0 

(2.1.2) 

Note 1. In the case 
is ~rue, and is of course elementary. 

_Note 2. For all 10>~1, we have 

2,~ 

sup IIf @ e'~ _ > 2~ IIf -~ e~~ dO 
0 

p ~ 2, a stronger inequality with 4/.~2 replaced by 1 

(2.1.3) 

In a pplieatioI1 we shall often need to combine (2.1.3) witll the inequMities (2.1.1) 
or (2.1.2) above. 

Proof of the proposition. We s~art by observing that  for arbitrary complex numbers 
a, b, we always have 

and 

2:v 2~ 

2Z4 ~ Ilal + e~~ 
0 0 

(2.1.4) 

~2V 

if  if 2~ [ [ a / + e ' ~  ~ [J~l+e~~ 
o 0 

(2.1.~) 

>_- (lal+e'~lbl)dO = I a l +  ~ Ibl 
7g 

0 

4 \:12 
= : a l ' +  ~: Ib:•) . 

We now prove (2.1.1). 
Usi~g the definitio:~ of lterm, Fubi;:i's ~,hcorem a:td (2.1.4) we have 
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2xr 2 ~  

if , f f  2~ IIf + e'~ dO = -~  If + e'~gldtt dO = 
0 0 X 

2 ~  2 ~  

I 1 

X o X 0 

Now using Fubini 's  theorem again, then the triangle inequality, and then again 
the definition of norm, we have 

2z 2~ 

f l f  l f f  -~u tifl + d~ = -~x llfl -I- d~ >_ 
X 0 0 X 

2z. 2~v 

if dO = ~ l]If]l~ + e'~ dO. 
O 

l ! /  : 
--> ~ (If] + e'~ * 

This proves (2.1.1). 
Before proving (2.1.2), we observe, tha t  if p > 1, then by tI61der's inequality, 

(2.1.4) and (2.1.5), we have 

2~ 2:v 

12~ [a + e%FdO_> ~ [a + e%IdO _> [al 2 + -~ Ibl S (2,I.6) 
0 0 

We now prove (2.1.2). Using the definition of norm, and Fubini 's  theorem, we 
have 

2~: 2 ~  
�9 ~ 2/e 

0 0 X 
2.~ (2.1.7) 

1 ~2/p 

X 0 

Applying (2.1.6) and Minkowski's inequality (observe tha t  p/2 < 1), we have 
~:rg 

(f f 
X 0 

~ 2 lp 

If + d~ dO dlx) 

X 

>- . Ifl ~ + ~ 5gl ~) ~ )  > 
X 

4 \2/p 

X 

which is by definition [[fll~ + (4/~)llgll~, and so (2.1.2) is proved. 
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Proof of Lemma 2.1. We firs t  observe t h a t  it  follows immedia te ly  f rom Pro  
13osition 2.2, t ha t  if  /~, v E M(X) ,  t hen  

max  I1# + e'%il ~ II#ll 2 + ~ II~ll 2 �9 
0_<oE2a  

We consider A as an opera tor  f rom C(X~) into M(X2). 
nota t ions  we have then  obviously 

IIAIIBM =- sup llA2(f)liM(xO 

IIe~AIIBM = sup ][A~(e~f)llM(XO f e C(X1) 

tIe~AII~M = sup I]A2(Qf)I!M(X~) 

Now let s be a posit ive number .  We can f ind  fl C C(X1), 
][A2(e~fi)llM(XO >_ ]Ie~AI].M- e. B y  l ineari ty,  and b y  (2.1.8) we have now 

max  I[A2(effl + io ~ = e Ae(eJ,2)lIi(x~ ) > e e2f2)llM(X, ) max  [[A2(effl ) 4- io 2 
0_<o_<2:r 

4 4 
> llA2(elfl)l] 2 4- ~ HA2(eJ2)H 2 > (I[e~AIIBM - s) 2 4- ~ (][e2A[IBM --  e) ~ �9 

(2.].s) 

Using our s tandard  

(2.].9) 

such t h a t  

Since s is a rb i t rary ,  and since Ilelfl  @ e~%2fi.tl~ ~__ 1, the  lemma follows. 

2. In  the  proof  of the theorem,  we shall also need the following lemma. 

L~MMA 2.3. Let a, b be positive numbers, and let X be a compact Hausdorff  
space. Let further # E M(X) ,  f, g c L| be such that 

I1~11~1, f i l l ~ l ,  []g/l~l 

and geffd#   fgd. 
then 

( f I f - -g]d] t tO e ~ f ]f --  gied]t t] ~ 2(%ffa4-  %ffb)e. 

(2.2.1) 

(2.2.2) 

# 

Proof. Write  # =  F .  j#], IF[ = 1 a.e. (]#l). 
]~eplaei~g then  f and g by  J'~, g~, and # b y  f#l, we see t h a t  we m a y  assume 
to be positive. 
We now write  

f --- A + if2, g = g14- ig2 ; f i ,  gi real. (2.2.3) 

We have then  
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fLd.>l-a, fgld.>,--b (2.2.4) 
and therefore 

f ( f ) '  f ~ d #  > f , d #  > _ ( l - - a )  ~_> 1 - - 2 a ,  

but  then  

f <,' + < f (, - :;> ~, < 1 -- (1 -- 2a) = 2a, 

N O } V  

f g~ d~ > 1 -- 2b (2.2.5) 

f g~ d# ~ 2b (2.2.6) 

_< f (, - ~ a -  e,>+ = ~ .  

(2.2.7) 

Writ ing this in terms of real and imaginary  parts,  we have 

= f (, - ~<:,., +:,.,>>~. = ~ f  (I - -  f l  @" f l (  1 - -  ~'1) - -  f 2 ~ 2 ) d / ~ -  

Using (2.2.4) we have now 

A < 2 (a @ b + f f2g2 d~ ), 

and finally by  Schwarz's inequal i ty  and (2.2.6), 

< 2(a + b + (2a. 2b) 1/2) = 2 ( V / a  + V/b)  ~ . 

This proves the lemma. 

w 3. Two metric theorems 

1. We shall now first  prove Theorem 1.1. To do this we shall f irst  prove the 
special case n = 2, and we shall then  prove the general ease by  induct ion on n. 

Proof of special case. We shall prove tha t  the function 

~2(x, s) = VTv + ~(2. + v/T. + ~/Yv)l/2 
satisfies the conditions of the theorem, and  we star t  by  observing tha t  it is dea r ly  
increasing and  concave. 

We next  observe t ha t  since 1121(l)[IM(x 0 < 1, we clearly have both  

t~e{ /g ld&( f )}> l - -y  and I~e{fgfl,~2(f)}>l-y. (3.1.1) 

XI X2 



118 STE?r KAIJSE~ 

B y  l ineari ty we have now 

A(g) ---- A(g~ | g2) = A((f~ § g~ - -  f l )  | g2) = A(f~ | g2) - -  A((f~ - -  gl) | g2) (3.1.2) 

and  therefore 

ll -- A(g)I _< ]1 - -  A(f~ | g2)] § i A ( ( f l  - -  gl) @ gu)/= A @ B .  (3 .1 .3)  

:By defini t ion of norm we have now [A(f~ | g2)l <-- 1, and by  (3.1.1) we have 

I~e {A(fl | g2)} >~ 1 -- y, and this implies t h a t  A < ~ y y .  

I t  remains to prove that B _< ~(2x -b %/2x  + %/~y)~/2, and towards this we 
firs~ observe t ha t  

~ e {  f f ldAl( I )}  = R e { A ( f ) }  ~ l - -  (3.1.4) 

X~ 

:By (3.1.1), (3.1.4) and L e m m a  2.3 we have ~herefore 

f lA - g1Id[21(f)[ ~< ~ 2 x - ~  %/~-y. (3.1.5) 

X~ 

Let  us write e 2 = If: - -  g11/2, and e: = 1 -- % 
We have then  

{/ } 1/ 
g ~ { ( r  |  = g e  (1 - -  ~z)f~dXl(f) _> 1 - -  x - -  ~ I l l  - -  a l d l & ( t ) l  > 

X~ X~ 

1 (3.1.6) 
1 - -  x - -  ~ ( V - ~ x  q- @ T y )  > HelAI]BM. 

B y  L e m m a  2.1 we have fur ther  

IleaAIlsM <_ ~ 1 - -  1--  

4 
][qAII ~ + ~ lle2All 2 < 1, and  therefore 

Y~ 
~ (2X ~- ~-~X -]- V ~ y )  1/2 

Final ly  we have now, denot isg  h = sign (fl -- gl), 

B = IA((fl  - -  gl) @ g2)[ = [2A(e~ h | g2)[ = 2l(e2A)(h Q g2)[ 

and this proves the  special case n = 2. 

(3 .1 .7)  

(3.1.8) 
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2. The  general case. 

The p roof  is b y  induct ion.  We define el(x, y) = y, and  we t ake  for  e2(x, y) 
the  funct ion def ined  above.  We now assume sk(x, y), 1 < / c  < n - -  1 const ructed,  

and  we shall cons t ruc t  edx, y). L e t  therefore  A ~. B M ( X )  be a mu l t imeasu re  of  
order  n, and  let f ,  ff ~ ] ~ ( X ) ,  sat isfy the  assumpt ions  of  the  theorem.  We ~ i t e  

f = f l  @ f2 | fa  | �9 �9 �9 | f - ,  g = gl | g~ | ga | �9 �9 �9 | g~, and  we use the  fac t  
t h a t  a mu l t imeasm 'e  m a y  be considered as an ope ra to r  f rom a p roduc t  of  some of  
t he  C ( X )  spaces in to  the  mul t imeas~re  space over  the  rest ,  which is a mu l t imeasu re  
space  of lower order.  This means  t h a t  we m a y  use the  induct ion  hypothes i s  to  
replace  any  k, k < n - -  1, of  the  f ' s  b y  

i re  ( A ( f l  | f~ | g~ | g4 @ �9 �9 �9 

Re {Atfi  | g~ | g3 | g4 | . . .  

l~e (A(g I | f2 | ga | g4 | �9 �9 �9 

g's. Doing this we have  e.g. 

@ g,0} > 1 - -  e~_~(x, y ) .  

(3.2.1) 

B u t  now A(~ @ ~ o @ g a @ g 4 |  @g, ) ,  q~EC(X~),  ~ fEC(X~) ,  is a bi-  
meastu 'e  in B M ( X  1 X X2), and  we use the  special case p roved  above  to conclude 
t h a t  

LA(G)I > 1 - -  e2(G_2(x , y), 2G_l(x , y ) ) .  (3.2.2) 

W e  define ghus e~(x, y) = s2(e,_2(x, y), 2e,~_l(x, y)), and  this  completes  the  p roof  
of  Theorem 1.1. I t  is easy  to  ve r i fy  t h a t  s~(x,y) is concave  and  increasing.  

3. I n  the  p roo f  of  Theo rem  1.2 an essential  role is p l ayed  b y  a resul t  of  
Bohnenb lns t  and  K arl in (Proposi t ion  3.1 below). To  s ta te  th is  resul t  we shall 
need  some nota t ions ,  

Le t  A be a B anach  a lgebra  wi th  uni t  e lement  1, and  dual  space A ' .  We shall 
define a convex  set D A C A' ,  b y  

and  

D A = { f e A ' [ f ( i ) =  l, HfllA'~ 1}. (3.3.1) 

Le t  fu r the r  a E A, we shall t hen  wri te  

V(a) ~ {z e C l z ~ f (a) ,  f e D~} , (3.3.2) 

v(a) =: sup Izl, z E V(a) . (3.3.3) 

V(a) is called the  numer ica l  range  and  v(a) the  numer ica l  radius  of  the  e lement  
a E A. The  resul t  t h a t  we shall need  is the  following 

PROPOSlTrOX 3.1. [2] Let A be a Banach  algebra wi th  un i t  1, and let a E A ,  
then llaIIA ~ e .  v(a). 
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Proo f  of  Theorem 1.2. To see t ha t  F C V we first  observe that  for all t C T we 
have t r ivial ly  f E V, ][f]]7 < 1. We nex t  use the  fact  t h a t  the funct ion t ---~-f(x, t) 
is a cont inuous funct ion f rom T to  V. Therefore  the  integral  is well-defined and  
takes its value in V. Final ly  we have 

HFHv ~_ f [If(x, t)llTdu(t ) ~_ 1 -[- y .  (3.3.4) 
T 

For  the second par t  of the  theorem we shall prove  tha t  for any  funct ion e~(x, y) 
satisfying the conditions of  Theorem 1.1, the  funct ion Vn(y), def ined b y  

~(y)  = e .  y + (1 + y)~o o, ~ (3.3.5) 

satisfies the conditions of Theorem 2. To do this it  suffices b y  proposi t ion 3.1 to  
prove  t ha t  

v ( 1 - - F )  < y +  ( 1 - ~ y ) e ,  O, , (3.3.6) 

where v ( i -  F)  denotes the  numerical  radius. 
Towards  this, let A E Dv  and  let the (probabil i ty)  measures 2~ --~ 2~(1) and 

2' be def ined b y  (1.1.4) and (1.1.5). We have now 

[A(i - -  F)] z [1 - -  A(F) I  : ]-- y -~ (1 ~- y - -  A ( F ) )  I (3.3.7) 

I I I = i -  y + (i - A(f(~,  t))du(t/ < y + I1 - A(f(x,  t ) ) Idu(t / .  
I 

T T 

Comparing the  final  t e rm  in (3.3.7) with the  r ight  hand  t e r m  in (3.3.6) we see 
t ha t  it  suffices to prove t h a t  

f 1 -~ y ]1 - -  A ( f ( x ,  t)) ldu(t  ) < ~ O, . (3.3.8) 
T 

Let, now t E T. We shall write 

n - - y ( t )  ~ ~e[fr'(x't)d~(x')}~, , , (3.3.9) 
X '  

and we have  then  

i l - -  A ( f ( x ,  t))[ _~ sn(0, y ( t ) ) .  

Now by  (1.2.5) and  Fubini ' s  theorem we have also 

(3.3.10) 
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fv(t)du(t)=fnd. (t,-- e{f 
T T T X "  

= n(1 4 -  y )  - -  f, = n + n y  - n = n y .  

X "  

(3.3.11) 

Since the funct ion e~(O, y) is concave we have b y  Jensen 's  inequal i ty  ( turned 
upside down) 

1 + y [1 --  A(f(x ,  t)lldu(t ) < 1 +  y 
T T 

e~ O, l @ y y(t)du(t) = s, O, i ~  y ' 
T 

(3.a.12) 

and this proves the  ~heorem. 
Remark." In  the case n = 2, one can using Grothendieck 's  ~)fundamental theorem~y 

prove tha t  the  function V2(Y) ---- 15y satisfies the  conditions of the  theorem. 

As an immediate  consequence of Theorem 2, we have the following 

COROLLARY 3.1. Let {X~}~I be compact spaces and let X and X '  be as above. 
Let for each i, gi E S(X 0, i.e. gi E C(X d and Ig~l = 1, and define the functions 
g C C(X) and g' E C(X')  by (1.1.2) and (1.1.3). Let T be a locally compact space 
and let u be a positive measure on T with HuH <_ 1 @ y. Let further for each i, 
f i E C ( X i x T  h and let f and f '  be as above, and let 

f f ' (x ' ,  t)du(t) = g'(x') . 
J 
T 

Writing now F(x) = f , f(x, t)du(t) 

we have F E V, llF]lT < 1 - t - y  and ] [ g - - F  H <_ ~,,(y). 

Proof. We shall define functions hi E C(X~ • T) b y  hi(xl, t) = g(x~)fi(xi, t). 
Defining then h, h', and H b y  resp. (1.1.2), (1.1.3) and (1.2.6) we have b y  Theorem 
1.2. 

H E  V, J]H][ v_< 1 q - y  and I [ 1 - - H [ l _ < ~ , ( y ) .  

Bu t  we have also g - - g ' l ,  F - - - - g . H ,  and IIg/]v<-- 1, 
IIF[] _< []g]I" !]HH --< 1 @  y and l[g - F]I --< ]]g[[" [[1 --  HI] < ~7,(Y). 

(3.3.13)  

and therefore 
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COI~OLLAI~Y 3.2. Let {Xi}~_ 1 be compact spaces, and let F E V(X) 

l l~l l .  < 1 ,  I!1 - FII~ < y ,  

then II1 -- l i ly  <-- lO~?~(y) . 

be such that 

(3.3.14) 

w 4. Helson sets in Dq 

1. The group Dq is the preduct, as a group and as a topological space, of a 
denumerably infinite number of compact abelian groups isomorphic to Z(q), the 

/ x  

cyclic group of order q. The dual group Dq, is the sum of the corresponding dual 

groups. Dq is compact metrizable and totally disconnected, and ~ is discrete 
and denumerably infinite [7]. 

In w 1 a closed subset E of a compact abelian group G was called a K~-set 

if GIE = St(E). I t  is easy to see that  the group Dq contains K~-sets, and it was 
observed by Varopoulos, tha t  if {K~}'~=I are closed subsets of Dq, and if  U K~ 
is a Kq-set, then A ( ~  Kd is a tensor algebra. OR the other trend the gro~Ip Dq 
does not contain tIelson-(~)-sets, for c~ arbitrarily close to 1, so Theorem 1.1 ear 
not in general be used to provide weak conditions oR a set {K~}~=I of subsets, 
ensuring A ( ~  Ki) to be a tensor algebra. Nevertheless it seems reasonable, in the 
light of Theorem 1.1 to conjecture that  if U Kf is almost a Kq-set then A ( ~  Ki) 
is a tensor algebra. In the next paragraph we shall prove this in the ease n = 2, 
i.e. A ( K  1 + K J  is a tensor algebra if K 1 U K2 is almost a K~-set. In the proof 
of this result an important role is played by functions with fq = 1, in fact we 
shall have to assume that  the characters are sufficiently dense in the appropriate 
metric sense in S~(K 1 U J~TJ. This assumption is however not used in the definition 
of the ttelson constant, and we shall therefore consider also another type of Kelson- 
constant, which is more suitable for our purposes, and is conceptually more natural 
for subsets of D~. We then study the relations, between the two concepts, and 
we shall prove tha t  they are essentially equivalent. 

2. We shall presently consider subsets E of the group Dq that  are either Kq-sets 
or ]-Ielson-sets. In these considerations an essential role is played by the groups 

S~(E) and its subgroup #q]F. To see the nature of this role we shall however first 
consider a more general problem. We shall need some definitions and notations. 
Let K be a compact metrizable Hausdorff space, and let P be a compact convex 
set, containing 0, in the complex plane. We shall denote by ~P(K) the set of all 
functions f in C(K) with f ( K ) C  P, and by P'(K) the set of Borel functions 
with f (K)  c:: P. P(K) is a bounded convex subset of C(K). To avoid triviMities 
we assume tha t  P contains some point outside 0, and it is easy to see tha t  then, 
every function in C(K) can be represented by a finite linear combination of functions 
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f rom P(K). We can therefore  define an equivalent  norm in C(K), which we shall 
call the P-norm, as follows 

J[f[[~ = i n f ~  ]akl over  all representa t ions  f - -  ~ akfi, f i e  P(K).  (4.2.1) 

We shall denote  the space C(K), when given the  P - n o r m  b y  Cp(K). The norm- 
dual  of Cp(K) will be deno ted  Mp(K), and is the  usual  space M(K), with  no rm 
given by  

II~!L. = sup [ f f ~l~ l , f c P(K ) . (4.2.2) 

We shall la ter  consider main ly  the cases, when P is a set Pq = the convex hull 
of the  qth roots of  un i ty ,  and  when P is the  refit interval .  We also observe t h a t  
the  P - n o r m  obtained,  when P is the uni t  disc, is the  usual sup norm in C(K) 
resp. the  usual  to ta l  mass norm in M(K). 

For  a convex set E of  complex numbers  we shall denote  the  radius of the  set 
by  r(E), i.e. r(E) = sup Iz[, z e E,  and we shall denote  the  per imete r  b y  p(E). 
For  a bounded  convex set containing 0, we have  2r(E) _~ p(E) ~_ 2~. r(E). F o r  
normal iza t ion  of the  base set P, we shall assume t h a t  1 e P ,  and  t h a t  r(P) ~ 1. 
Denot ing the uni t  in terval  by  I ,  a~ld the  uni t  disc b y  D, we assume thus  I ~ P c D .  
These assumptions imply  t ha t  the  P - n o r m  of a measure is a t  most  the to ta l  mass, 
and  t h a t  the  P - n o r m  of  a posit ive measure is the  to ta l  mass. 

A nat~tral s tar t ing-point  for  invest igat ions on P -norms  is the  following fact ,  
wcl]-kno~vn in the  theory  of convex sets. 

Le t  C and  D be convex sets in the  plane, and  let E be the sum-set 
E = C + D .  Then  E is a convex set, and 

p(E)  : p(C)  -~ p (D)  . (4.2.3) 

The iden t i ty  (4.2.3) is implici t ly contained in some more general  formulas  in 
e.g. Bonnesen - -Fenche l  [1], and is obvious on inspection when C and  D are 
polygons.  F inal ly  an ~nalytic p roof  of (4.2.3) can be based on a ibrmnla  of Cauchy,  
showing the per imeter  of a convex set to  be a l inear funct ion of the  width  of the  set. 
This formula  can be wr i t t en  e.g. as follows [see 1, p. 48] 

2 z  

if p(C) ~ ~- [ sup (x. u) -- inf  (y .  u) ] dO, (4.2.4) 
~EC y E C  

0 

u : (cos O, sin 0), ( x - u )  the  usual inner  p roduc t  in 1t ~. 
Fo rmula  (4.2.4) clearly shows the  addi t iv i ty  of  the  per imeter .  We observe also 

t h a t  the  radius is subaddi t ive  under  addi t ion of convex sets, so t h a t  if E = C -~ D, 
then  

r(E) <_ r(C) + r(D) . (4.2.5) 
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We now int roduce some notions,  t ha t  will be used th roughou t  this w Le t  P 
be a compact  convex set containing 0 in the complex plane. Le t  a b3 a complex 
number ,  we shall wri te  

aP = {w l w = az, z E P}  . (4.2.6) 

a '~ Let  now a --~ { ~}~=~ be a set of complex numbers .  The P- range  of  a is the  set 

Qp(a) = ~ (akP) = {z [ z = ~ akzk, zk e P}  . (4.2.7) 
k = l  k ~ l  

I t  is obvious t ha t  p ( a P ) :  [a] . p ( P ) ,  and it t hen  follows from (4.2.3), t ha t  

n 

p(Qp(a)) = ( ~ lakl) " p(P)  . (4.2.8) 
k = l  

Let  now K be ~ compact  metr izable  Hausdor f f  space, and  let # E M(K) .  The  
P-range of # is the  set 

Qp(#) = r { z l  

or equivalent ly  

~= f fd~, f eP(K)}, 
K 

(4.2.9) 

Q.(~)={z z--ffd~, fcP'(K)}. (4.2.9') 
Qe(#) is the  cont inuous linear image under  #, of the bou'nded convex seC P(K) ,  
and is therefore  bounded  and convex.  I t  follows moreover  e.g. f rom a par t i t ion  of  
un i ty  argument ,  t ha t  

P(@P(~)) : P(P)" [r~[l~(~) �9 (4.2.10) 

B y  defini t ion we have  fur ther  JI/~Jtp : r(Qp(#)). The fact  t h a t  bo th  the  P - n o r m  
and the usual norm can be read off  f rom the  set Qp(/~), indicates the  impor tance  
of  this set for problems on relat ions between P -no rms  and usual norms.  

Now the  per imeter  of a convex set is a monotone  funct ion on the  set of all convex  
sets, so a set of per imeter  L cannot  be contained in a circle of radius r if r < L/2n, 
and we heJve therefore  

P(P)  
[l#I]P ~ ~ - ~  [[/~[[~t(rc)- (4.2.11) 

Denot ing by  I F the iden t i ty  map  of C(K), considered as a map  f rom C(K) into 
Cp(K), we see thus  tha t  [[Ie][ ~ 2z~/p(P). 

Le t  now P be one of  the se~s Pq (resp. the  uni t  in terval  I) ,  and let us speak 
of q-norms ins tead of  Pq-norms, and  of spaces Cq(K), and Mq(K), and  of  ~,he 
q-~ange Q~(#). We have  in this  case p(P~) = 2q. sin (u/q) (resp. 1o(1) == 2), and  
f rom (4.2.11) we have  then  
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2q sin (n/q) 
i]#[!q ~> 27r H#HM(~) (4.2.12) 

1 
resp., ll#il ~ -I]~ll~(~>. (4.2.13) 

2~ 

I f  the set K is totMly disconnected, th~n convex combinations of functions from 
S~(K) are dense in Pq(K), and therefore the set Qq(/~) is in fact  the closed convex 

hull of the set of all z in C, such tha t  z = f fd# ,  with f in Sq(K). In  part icular  

we have therefore II#]lq ~ r(Qq(#)) = sup f f@], f e Sq(K). Combining this  wi th  
the definit ion of a Kq-set, we see t ha t  the Helson constant  of a Kq-set is 
yq = sin (~/q)/(r~/q). 

When P is the uni t  interval,  we use the general principle, t h a t  what  can almost 
be done by  continuous functions, can be done by  Borel functions, to conclude the 
existence of a Borel function ~, which we m a y  in fact assume to be idempotent ,  

with I f  ~ d#l >--/I#/I~(K)/~. 
These results are all well-known, [3, p. 565; 5]. The s tandard  proofs are different, 

bu t  also the more na tura l  approach given here is known, see e.g. [5, p. 674]. 

3. By  very  general arguments  we have proved tha t  no infinite subset of Dq 
can have a t te lson constant  greater t han  yq, and t h a t  on the other hand  a Kq-set 
has the 1-[elson eonsta'nt yq. I f  K is a Kq-sct we have in fact  A(K) ~- Cq(K) 
canonically, which means t ha t  for every function f in C(K) resp. every measure 
# in M(K), we have 

llfllA(~) = Ilfl/q --< 7~111fll~ (4.3.1) 

Le t  now E be a Helson set in D~. The I{~lson constant  ~(E) of E is defined 
b y  comparing norms in A(E) and norms in C(E). By the above we m a y  write 
a(E) = yq(1 - - 7 ) ,  and we have then  

Ilf[l~ >- yq(1 - -  7) "l]fI[4(E), all f e C(E), (4.3.2) 

resp. H/*I[eM(~) ~> yq(1 --V)[I#][M(E), all # e M(E). (4.a.2') 

I f  V is small, then  condition (4.3.2') is, in terms of a f ixed /,, a strong condition 
if II#llq/][#llM is close to yq, while it  requires considerably less if  I[#][q/][/~/[M is close 
to 1. I~ is therefore na tura l  to consider instead of (4.3.2) and  (4.3.2') conditions of 
the following type  

][fll, >- (1 - -  d)ll / l lA, a l l  f e C(E), ( 4 . 3 . 3 )  

resp. II/~IIpM ~ (1 - d)l!#l/~, all /~ e M(E) , (4.3.3') 

and  we shall make the following definition: 
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Definition 4.1. Let K be a I telson set in Dq. We shall say t h a t  K is a H(q, fi) set 
if  for eve ry  f C C(K), we have 

[IfIIA(K) < fi-~llfllq 
or equivalent ly ,  i f  for eve ry  # C M(K) we have 

I t  is clear t ha t  a H(q, fl) set wi th  fi close to 1, is a Helson set with IIelson 
cons tant  close to yq. We shall however  also prove,  and this is the  main  resul t  of  
this section, t ha t  a t Ielson set, wi th  Helson constant  close to  7q is a H(q, fl) set,  
wi th  fl close to 1. 

The main  step towards  this is to prove  the following theorem.  

TI~EOI~EM 4.1. Let ~ be a positive number, 0 < ~ < rain (~2/8q2, 1/15), and let 
K be a totally disconnected metrizable compact Hausdorff space. Let further ~ c Sg(K) 
be a family of functions with the following property: 

Eor every measure # C M(K), there exists g E ~, with 
I 

t I sin (=/q) (1  4.3.4) 
f g ~  > ~/q 

i 

I 1 

Then: I f  ~ = ] .  I~1, 
that 

and 
f g  

f a Borel function with f~ ~- 1, there exists g E ~, such 

d# 14 ~ 2/3 > (1 - ( /q)' )II~!I~<K) if  q _> 2 (4.3.5) 

d/, > (1 - -  5~ 2/3) " ]] /~]]M(K) / f  q = 2 .  (4.3.6) 
[ 

-Remark 1. Wi thou t  loss of  general i ty  we assume th a t  the  fami ly  ~ is closed 
under  mult ipl icat ion b y  qth rooths  of  un i ty  (otherwise s imply adjoin all mult iples 
b y  qe, roots  of  uni ty) ,  and we shall under  this condit ion prove  t h a t  we can in 
fact  f ind  g C ~, such ~hat 

Re ( f g d#) > (1--14(~/q)2/3)llttl1M(K) . 

-Remark 2. Theorem 4.1 is s ta ted  and shall be p roved  wi thout  using the con- 
cepts of q-norms. In  the following proof, the  norm of  a measure will always be the  
to ta l  mass norm. 

.Remark 3. I f  ~ ~-- z2/Sq 2, t h en  (1 - -  ~)7q ~ (1 --  14(~/q)2/3), and  this shows 
t h a t  the  given range of  a 's  contains the  range of  interest .  

Remark 4. The observant  reader  has a l ready not iced t h a t  we have followed 
our  own advice f rom w 1, and used s t r ic t  inequalities in bo th  assumptions and  con- 
clusions of  the  theorem.  
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4. Outline of proof: Any  funct ion g in Pq(K) with 

( I . (g) [  

(and wi th  --  (~/q) < a r g  (I,(g)) < (z~/q)) is close in Ll([/~i) to the  f lmction f .  
The  proof  consists therefore  essentially in findir~g a funct ion g in ff sufficiently 
close to  f .  This  we can not  do o~fly in t e rms  of the  measure #, and  we shall therefore  
construct  ano ther  measure v, which is more adequate  for our purposes.  In  the 
ease q = 2, the  measure # is assumed to  be real, and the  problem is to  f ind  a 
suitable imaginary  par t  to add to #. The construct ions in the proof  are mainly  
geometric,  and a cruciM step in the  proof  is a pure ly  geometric l emma on the  peri-  
me te r  of certain convex sets. 

Proof of theorem. F r o m  general facts about  sets Qp (#), we know th a t  Qq(#) 
is for every  # 6 M(K) a compact  convex set containing 0. We also know th a t  

p(Qq(/.z)) -~- p(Pq) �9 I]/~[I = 2 ~ .  [1~[[. 
We nex t  observe t h a t  if  f E Pq(K) then  f .  P q ( K ) c  Pq(K), and  therefore  

Q~(f'a) c Q~(/~). I f  we have  moreover  fq = 1, t hen  f .P~(K)  -- P~(K) and hence 

Qq(f.#) = Q~(/~). (4.4.1) 

In  fact,  (4.4.1) holds also if  fq = 1, and i f  f is a Borel  funct ion.  I a  par t icu lar  it  
follows tha'~ Qq(#) is invar ian t  under  mult ipl icat ion b y  qth roots  of rarity. Another  
consequence of (4.4.1) is t h a t  if  # ~ - f - I # ] ,  fq = 1 then  

Qq(/~) = I[/~[[ �9 Pu .  (4.4.2) 

To see this we assume, by  (4.4.1), t h a t  # is positive. We take  then  
g = 1 6 Pq(K), and we see t h a t  the  complex number  I]~]l belongs to  Qq(#). Since 
Qq(#) is convex and invar ian t  under  mult ipl icat ion b y  qth roots of uni ty ,  we have  
then  I]~lI-Pu c Qq(~). Now we also know th a t  the  sets have  equal per imeters ,  
and  therefore  t hey  are equal. 

To i l lustrate the  geometr ic  not ions involved,  we shall const ruct  explici t ly t h e  
set Qq(#), for a measure /~ wi th  f inite support .  In  this ease we m a y  also write 
Qq(a), for a certain set a = {ak}~=~. B y  (4.4.1) we m a y  assume th a t  -- (z/q) < 
arg (%) < (u/q), and i t  is also clear t h a t  we m a y  assume t h a t  arg (%) <_ arg ( ( ~ k + l ) ,  

all k. We now take  z 0 = ~ = 1  ak, and we see t h a t  z0 is a b o u n d a ry  point  of  Qq(a). 
In  fact  z0 maximizes the  real par t  in Qq(a), and maximizes  the imaginary  p a r t  
a m o r g  all such points.  We now define consecut ively 

Z k = Zk_ 1 -~- ak (  @ - -  1) ,  @ = e 2m/q .  

All the points  {zk}~=0 are then  ex t reme points of Q~(a), and we have  fur ther  
z, = @'z0. D , f i n i r g  now zk+, = @'zk, we get all the  ex t reme points of Qq(a). 
See Figures 1 and 2. 
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Fig. 1. Q2(a) 

a = ( a l ,  a2, aa) 

Z3 

~2 

Z~ 

Fig. 2. Q3(a) 

/ a = (a  1, a.~) 
Z* -- oa 1 --~, a 2 

.Z3 ~ Z  o = a i + a~ 

Z4 

Conversely, we see t ha t  if  Q is a convex polygon,  invar ian t  under  mult ipl icat ion 
b y  q,h roots of uni ty ,  then  Q is a Qq(a), for some set of complex numbers .  To 
cons t ruc t  one such set, we assume tha t  Q has say q .  n vertices. We enumera te  
t hen  the  vert ices consecutively,  st~rtil~g f rom an a rb i t r a ry  ve r t ex  b y  %, z l , . . . ,  

zn,. . .zq,.  We have then  z~ = @z0, and we define a k ~ (% --  zk_~)/( @ - -  1), 1 </c: < n. 
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We shall now prove  t h a t  i f  the  given measure /x is continuous,  or more precisely 
i f  # can be decomposed into suff icient ly small mutua l ly  singular par ts ,  t hen  the  
eonehision of  the  theorem holds. Towards  this we f irs t  define a real number  a, 
b y  the  re la t ion 

1 + 3q (tana--a) = ( 1 - - ~ ) - I  (4.4.3) 
47~ 

or equivalent ly ,  

I 4~ c~ 
r a n t s - -  ~ ~ - -  �9 - -  

3 I - - c r  q-" 

Using now the elementary estimate ~2 < I0, and the assumption ~ < ~218q~ < 
zz~/32, we have  

47~ ~x 

This implies then  

(,+)',' 
< \ - - i - ~  / < \ ~ /  < q " 

On the  o ther  hand,  we have  also c~ < 1/15 and  therefore  a < ~14. 
We ne x t  denote  b y  Aq(a) the  set def ined as the  convex hull of  the  union of  

the  uni t  disc and  the  points  Qk(1/cos a), 1 < k < q. We fur ther  define a funct ion 
_F(x) (or more p roper ly  F~,.(x)) b y  

Z o 

gr 

Fig .  3. A~(a) 
Z~ 

Z~ 

Z1 

4 

Zn 

X5 
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for  

F(x)  -~ sup y over  all (x, y) E Aq(a ), 

cos (2~/q) 1 
~ x ~  

c o s  a - -  - -  c o s  a 

(4.4.5) 

(Figures 3 and  4.) 
We have,  since a ~ ~/q, p(Aq(a))  = 2z  + 2q(tan a - -  a), so i f  A '  is a polygon 

wi th  suff ic ient ly  small sides and  wi th  ver t ices  on the  b o u n d a r y  of  As(a  ), t hen  
~o(A') ~ 2~ + -~ 2q(tan a - -  a). We shall p resen t ly  cons t ruc t  a v whose Qs(v) 
is such an  inscribed polygon.  We shall t hen  have  

[fvl[ = 19(Qs(v))/p(Ps) = :p(Qs(v))/2zrs ~ F~-~ 1 + ~ -  (tan a - -  a) , (4.4.6) 

and by  (4.4.3) and  the  assumptions on ~, we can then  f ind g E ~ wi th  ]I~(g)] ~ 1. 
To make  the construct ion,  we f i rs t  b reak  # into small pieces. We par t i t ion  K 

into a f ini te  n u m b e r  of  disjoint  Borel  sets {Ei}N=l, and we assume for s impl ic i ty  
t h a t  I # t ( E 0 ~ - r i ~  0, all i. We  denote  / ~ - r ~  -1 .#1~  i, so t h a t  we have  

~u----~rl/~. How,  for all i we have Qq(#~) = Ps, and  this  implies t h a t  i f  
/~(a) -~ ~. a@, then  Qs(#(a)) - -  Qq(a). The measure  v will be such a l inear com- 
binat ion,  and for q ~ 2 the  const ruct ion  is i l lustrated geometr ical ly  in Figure  
3. We shall car ry  out  the  cons t ruc t ion  f i rs t  in the  somewhat  simpler case q ---- 2, 

and then  for an a rb i t r a ry  q. 
The  case q --~ 2. We assume ]]#]] --~ (cos a) -1, and  we have  then  posi t ive numbers  

{rl}N=l, such t h a t  ~ ri ---- (cos a) -1. We denote  n o w  
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k 

x k = - -  (cosa)  - i d - 2 ~ r ~ ,  0 < k < x Y  (i.e. x 0 - ~ -  ( c o s a ) - l ) ,  
i ~ 1  

and  we denote,  in t e rms  of  the  F(x)  def ined in (4.4.4) zk = xk -4- i F @ t ) ,  0 < k < N .  

We can now f ina l ly  define 

Zk - -  Z k _  l 
a k - -  , l < k < N .  

2 

The  set a = {ak}N=, is cons t ruc ted  in such a way  t h a t  Q~(a) is a polygon in- 
scribed in A~(a) ,  and  we have  Re (ak) = rk. We define now v = ~ ak#k, and  
we have  t he n  /~ =- i~e  (v). We assume now t h a t  all r~ are so small t h a t  
Ilvll > (~/2)(1 _ ~ ) - x ,  so t h a t  there  exists g E ~  wi th  1I~(9)1 > 1. Assuming 
R e  (I~(g)) >__ O, we have  Re  ( I , (g) )  > cos a, and since g is real and  since g = Re  (v) 
we have  

I A s  ) > cos a = cos~ a "lbll >- (1 - 5 .  ~/~)ll~*ll 

A r b i t r a r y  q. We assume again [(/~[[ = (cos a) -1, and  we have  t h e n  also in this  
case posi t ive numbers  {r~}~=l, such t h a t  ~ r~ = (cos a) -x. In  this  case we shall 
however  f i rs t  pass over  to  the  numbers  {sl}~=l def ined  b y  

We  denote  now 

We define now L 

We denote  fu r the r  

and  

Defining now zk 
def ined for all k, 

s~ = 2 (1 - -  cos a cos (~/q))r i  . 

k 

x~-~--{- (cosa)  - i - ~ s i ,  0 < k  < N .  
/ = 1  

b y  xL >_ cos ( z /q )  > xL+l, and  

Zk = Xk E i F @ k ) ,  O < k < L . 

N 

y k = ( c o s a )  - i - ~ s .  L - 4 - 1  < k < N ,  
/ = k + l  

wk = yk - -  i F ( y k ) ,  L - 4 - 1 <  k < N .  

for L ~ -  l < k < N  b y  z i  == ~ . wk, Q = e 2"~/q, 

0 < k < N .  We can now define 
w e  h a v e  zk 

Zk -- Zk_l 
a k - -  , l < k < N .  

~ - - 1  

This  finishes the  const ruct ion  of the  numbers  ak. We set v = ~ ak/xk, so 
t h a t  Qq(v) is a polygon inscribed in Aq(a) ,  and  assuming all rk suff ic ient ly  
small we have  t hen  ?4(1 - -  a)llv[I > 1. B y  assumption,  the re  t h e n  exists g E 
such t h a t  lI,(g)[ > 1. Assuming - -  (x /q )  < arg ( I , (g ) )  <_ (x /q ) ,  we have,  since 
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I~(g) e Qq(v): c Aq(a), Re (I,(g)) > cos a. W e  shall  e s t i m a t e  R e  (I,(g)) a n d  to -  

w a r d s  th i s  we  f i r s t  def ine  f g dttk = tk = 1 - -  uk, and  since tk E Pq, we h a v e  
- -  (~/2 - -  x/q) < a rg  (uk) _< (u/2 - -  ~r/q). W e  can  n o w  wr i te  

~e (I,(g)) = R e  ( E  ak(1 - -  uk)) 

a n d  l~,e (I (g)) -= ~e  ( E  rk(1 - -  us)) 

O u r  t a s k  is t h u s  t o  e s t ima te  R e  ( ~  rkuk) 

1 - ~ ( X  a ~ )  
COS ~/, 

1 
~e ( X  ~ 0 .  (4.4.7) 

COS 

in t e r m s  o f  Re  ( ~  akuk). E x a m i n i n g  

ca re fu l ly  the  c o n s t r u c t i o n  o f  t he  n u m b e r s  ak, we see t h a t  - -  (u/q) < arg  (ak) < ztlq, 
so t h a t  R e  (akuk) > 0, unless  uk = 0. W e  def ine  n o w  for  e v e r y  k a pos i t ive  

n u m b e r  bk, b y  t h e  cond i t i on  t h a t  bk is t h e  la rges t  real  n u m b e r ,  such  t h a t  

Re (bku) < Re (aku), for  all u w i t h  - -  (x/2 - -  x/q) <_ arg  (uk) < (x/2 - -  ~r/q), (4.4.8) 

Fig. 5. �9 I 

{ ' ; 
I 

I 
I I 
I I 

I I 
I I 
I i 
I s~ I 

r -  1, 

t I 

I 
I 
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t hus  

Notice also t h a t  for k < L, 
(See Fig. 5.) 

sin (~r/q - -  arg lakl) 
bk -~ 

sin :~/q 

we have arg (ak) < O. 

Now it follows from this definit ion of the numbers  bk tha t  sk ~ (1 cos 2z/q)b~, 

with  equal i ty  unless k = L + 1. 
We have then  

1 --  cos (2a/q) 

r~ < 2(1 --  cos a c e s  (ze/q)) 
bk < 2bk , 

and  therefore l~e ( ~  r~uk) < 21~e ( ~  bkuk) _< 2 I~e ( ~ a k u k )  < 2 s i n a t a n a .  
We have therefore f inal ly  

l~e I~(g) > (l - -  2 sin e a)lf#ll _>> (1 --  14(cr 

5. A geometric lemma.  

So far we have proved t h a t  the conclusions of  the theorem hold for every  measure 
t h a t  can be decomposed into sufficiently small mutuMly singular parts .  0 u r  nex t  
task  is to decide how large ~)sufficiently smalb) can be. This is a pure ly  geometric 
problem, and  one solution is given by  the  following lemma.  The lemma is s ta ted  
so as to fit with the construction of the measure ~ in the case q = 2, but it is 

easy to see that the estimates obtained will be valid for arbitrary q. 

LE~MA 4.2. Let  a, 0 < a < ~/4, be a real number  and  let iV(x) or more proper ly  

-~2,~(x) be the f u n c t i o n  def ined in  (4.4.4)..Let {xk}~_ 1 be real numbers ,  such that 

- - 1  1 
x o -  , x M --  (4.5.1) 

c o s  a c o s  a 

1 
and  0 < x k - -  xk_ 1 < - -  - -  cos a = sin a t a n  a .  (4.5.2) 

COS a 

Let  fur ther  zk = x~ ~ i-F(xk), 0 < k < M ,  and  let 

Z k - -  Z k _  1 

a k - -  1 < k < M .  
2 

T h e n  Qe(a) is a 2olygon wi th  vertices on the boundary  o f  Ae(a ), and 

p(Q~(a)) _> 4(~/2 + -~(tan a - a ) ) .  (4.5.3) 
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Proof .  W e  shall denote  the  set  A2(a ) s imply  b y  A,  and  the  set  Q~(a) b y  A ' .  
We  shall  e s t ima te  lo(A'), so we wri te  

p ( A ' )  = Io(A) - -  (p (A)  - -  p ( A ' ) )  = (27~ -1- 4( tan a - -  a)) - -  4 D .  

We  shall f i r s t  m a k e  the  addi t iona l  a s sumpt ion  t h a t  

X 1 ~--- - -  c o s  5 ,  X M _  1 ~ COS a (4.5.4) 

and  we shall unde r  th is  addi t iona l  a s s u m p t i o n  p rove  t h a t  D < ( tan a - -  a)/8. 
To es t ima te  D we p a r a m e t r i z e  the  u p p e r  b o u n d a r y  of  A,  b y  using arc- length  

(to the  r ight)  f rom z = i as p a r a m e t e r .  W e  have  t h e n  

x ~ =  sins~, z ~ = s i n s ~ - ~ i c o s s k ,  1 < k  < M - -  1 .  

We  denote  fu r the r  

8 k _  1 - ~  8 k 
i n k - -  2 , d k = s k - - S k _ l ,  2 < k < M - - 1 .  

W e  have  t hen  

2D ----- ~= - -  2 sin 
k = 2  

B y  condi t ion (4.5.2), we h a v e  now 

dk 
xk - -  xk_1 = sin s~ - -  sin sk_1 = 2 sin -~ cos mk < sin a t a n  a = B ,  

(4.5.5) 

and  
t a n  a < 2a, and  therefore  

therefore  2 sin dk/2 < B/cos ink. We  have  also the  t r iv ia l  e s t ima te  dk _< 

d~ d~ 2a B a t a n  a 
- -  - -  - -  (4.5.6) dk ---- 2 sin dk/2 " 2 sin -~ < 2 sin a cos mk cos m~ 

B y  a series expans ion  and  (4.5.6), we have  now 

dk d~ l [ a t a n  a ~ ~ 
dk - -  2 sin -~ < ~-~ < ~ �9 dk" | J \  cos m----~/ - -  

a S t a n  g a d~ 

24 cos 2 mk 
(4.5.7) 

The  func t ion  
therefore  

~(t) = 1/cos ~ t is convex,  and  b y  gensen ' s  inequal i ty ,  we h a v e  

mk,+ dk]2 

f l < - -  d t  (4.5.8) 
COS 2 m k  - -  COS 2 t " 

mk--dkl2 

Combining  now (4.5.5), (4.5.7) and  (4.5.8), we have  
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~/2 - a 

2 D =  ~ d k ~ 2 s i n  < 
k=2 - -  24 cos 2 t 

a--Z/2 

a 2 t a n  s a a 2 t a n  2 a a 2 t a n  a 

- -  24 2 t a n  (z/2 - -  a) - -  1 ~  co t  a ~ 12 

% h a  - -  a t a n  a - -  a 
< a n d  so D < 
- -  4 ' - -  8 

(4.5.9) 

W e  n o w  p r o v e  (4.5.3) w i t h o u t  add i t i ona l  a s s u m p t i o n s  on  t h e  x~'s. T o w a r d s  

th is  we f i r s t  d e n o t e  b y  A" ,  t h e  p o l y g o n  t h a t  besides  t h e  ver t i ces  o f  A '  has  add i t i ona l  
ve r t i ces  a t  =J= e • a n d  we  obse rve  t h a t  b y  t he  p rev ious  ease we  h a v e  p ( A )  - -  
p ( A " )  <_ ( tan  a - -  a)/2. To c o m p l e t e  t h e  p r o o f  we  m u s t  show t h a t  4D  2 = p (A")  - -  
p ( A ' )  < ( tan  a - -  a)/2. 

To f ix  n o t a t i o n s  we a s s u m e  xM_ 2 < cos a < XM_ 1, a n d  we shal l  d e n o t e  

zM_2 --- cos (a + s) + i sin (a + s) 

ZM_I = cos a + t s in  a + i (sin a - -  t cos a) . 

W e  f u r t h e r  wr i t e  l = 2 sin (s/2). 
W e  h a v e  t h e n ,  b y  t h e  cosine t h e o r e m  

n = [ Z M _ I  - -  e~'l + re" - -  Z ~ _ 2 ]  - -  ] Z ~ _ ~  - -  Z M _ 2 [  

- - ( l + t ) - -  1 2 + t  2 + 2  cos l t =  

< ( l + t )  1 -  1 -  (l+t)~ . .  < - s "  s + t  

W e  f u r t h e r  h a v e  s + t < t a n  a, a n d  the re fo re  

( tan  a) a ( tan  a) a �9 27 
D~ < ~ 8  "0<x<lmax[x3(1--x)] ~ - -  8 .  256 

Since we  h a v e  a s s u m e d  a ~ ~/4,  we  h a v e  n o w  

( t an  a) a ( tan  ~/4) a 1 4 

3 ( tan  a - -  a) ~ 3 ( t an  ~/4 - -  ~/4) - -  3(1 - -  ~/4) - -  

a n d  the re fo re  

81 4 

D~ _<< 1024 3(4 - -  g)  

a n d  th is  p roves  t h e  l e m m a .  

3(4 - ~ )  

1 

�9 ( tan a - o1 _< ~ (tan a - a / .  
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6. Conclusions of Lemma 4.2. 

The  polygon in L e m m a  4.2 is the  Q2(v) cons t ruc ted  earlier.  Combining the 
l emma wi th  the  previous const ruct ion  we see therefore  tha t :  I f  # = ~ rk/tk, /Xk 
mutua l ly  singular real measures []#k][ ~ 1, and  if  0 < rk < 1 sin e a .  [l#l], all: k, 
where a is def ined b y  (4.4.3), t hen  the  conclusion of  the  theorem holds for  /,. 

Le t  now E be a f ini te  subset  of  K wi th  card (E) ~ N < 2/sin ~ a. We define 
a r e a l  n u m b e r  a ' > a ,  b y  sin e a ' = 2 / N ,  and  we define # C M ( E )  c M ( K )  b y  

=~ cos 

where ~(xk) is the  point  mass a t  xk, and  ~ = 1. We now cons t ruc t  as above a 
measure  v wi th  vert ices of  Q2(v) on A2(a' ). We have  then  

IL~LI >_ (~/2 + �88 a '  - a')) > (~/2 + ~ ( t an  a - a)) = (~(1 - ~))-1,  

and  there  exists t hen  g E T, such t h a t  II~(g)] > 1. Assuming as usual  
Re (I~(g)) > 0 we have  I,(g) = Re (I~(g)) > cos a' .  I f  now g(xk) = ek, 
all k, then  l , (g)  = I / co sa ' ,  otherwise,  we have  in fac t  I,(g) < I / c o s a ' - -  
2-  sin a' tan a'/2 = cos a ' ,  and  this would cont rad ic t  the  choice of g. This  proves  
thus,  t h a t  ~ [ ~ =  S=(E). 

I f  we have  q > 2, t hen  the  est imates  used in the  p roof  of  L e m m a  4.2 are still 
val id,  and  combining the  l emma wi th  our  previous  construct ion,  we have:  I f  
# = ~rk/tk,  /*k =fkl/~k[, fk a Borel  funct ion,  f~ = 1, [l~kl[-~ 1, #k mu tua l ly  

S i l l  2 a 

singular, and if  0 < rk < 2(1 --  cos a cos ~/q) "ll~lf, then  the conclusion of  the  

theorem holds for it. We have  also, by  the  above arguments ,  t h a t  if  E is f ini te  
subset  of  K, card (E) < 2(1 - -  cos a cos (z/q))/sin 2 a, t h en  ~IE = S~(E). 

We have  thus  proved,  t h a t  if  # = f l # [ ,  f a Borel  funct ion  wi th  f~ = 1, and  
i f  e i ther  the  suppor t  of  # is a small f ini te  set, or i f  /, can be decomposed into 
suff ic ient ly  small par ts ,  t h en  the  conclusion of  the  t heo rem holds for  /t. In  the  
general  case, we shall f i rs t  replace # in a suitable w ay  b y  a measure # '  for  which 
the  t heo rem holds. We  t ake  t hen  a g E ~Y, satisfying the  conclusions wi th  respect  
to # ' ,  and  we shall see t h a t  such a g satisfies the  conclusions also for the  original 
measure  g. To cons t ruc t  the  measure  /t', we shall use the  following lemma.  

C N ~L~E)IMA 4.3. Let b be a real number, 0 < b < 1, and let { k}k~ be real numbers, 
such that c k > ck+1 > O, and such that ~ ck < 1. Let M < N be the natural number 
defined by the conditions 

M M + I  

ck > Mb, ~ ck < (M + 1)b (4.6.1) 
k = l  k = l  

N 

( I f  ~, c~ > Nb, then we 19ut M = N)  
k = l  
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M 

.Finally, let t -= (1 - -  M b ) .  (1 - -  ~. ck) -1. 
k = l  

Then tcM+~ < b. 

N 

Proof. B y  the  defini t ions we have  t > 1. We  denote  R ---= 1 - -  ~ ck, and  we 
see t h a t  t is def ined  so t h a t  k=~ 

N M 

_lib -t- t(_R @ ~ ck) = Mb @ t(1 - -  ~ ck) ~ 1 .  (4.6.2) 
k = M T l  k ~ l  

I f  now, M ---- fV, t hen  there  is no th ing  to  prove,  and  if  (M ~- 1)b > 1, t hen  
N 

1 - - M b < b ,  so t h a t  t ( C M + ~ - ~ C k + R ) =  1 - - M b < b ,  and  in par t i cu la r  
k = M + 2  

tcM+~<b.  I f  ( M +  1 ) b =  1, then  b y  the  choice of  M,  we h a v e  e i ther  7 ~ > 0  
or _ ~ > M + I ,  and  in b o t h  cases do we h a v e  tcM+~<b.  

We assume now (M + 1)b < 1, and  b y  def in i t ion of M we have  t hen  

N M + I  

R+Zc = 1 -  Zc < 1 -  1)b, 
k ~ M + 2  k ~ l  

and  there fore  

N 

tc~+x = 1 - -  _]Fib - -  t(ll -~ ~ ck) < 1 --  Mb --  t(1 - -  (M -t- 1)b) 
k = M + 2  

<_ 1 - - M b - -  (1--  (M-~ 1)b) = b .  

This  p roves  the  l emma.  

End  of proof  of Theorem 4.1. 

Le t  # E M ( K ) ,  # = f [ # [ ,  f a Borel  funct ion,  f f  = 1, 
# ~ ttd ~ / ~ ,  where  /~o is cont inuous,  and  

N 

= Z eZ = 1, Ck > %1 > 0 .  
k ~ l  

[[#ll = 1. We  wri te  

We  assume t h a t  ttd has  f ini te  suppor t ,  bu t  since there  is o therwise  no th ing  
new to  prove,  we shall also assume t h a t  e i ther  /t~ # 0, or 

N >  
2(1 - -  cos a cos z/q) 

sin 2 a 

W e  now use L e m m a  4.3 on the  n u m b e r s  ck and  wi th  

sin 2 a 
b = 2(1 - -  cos a cos ~/q) " (4.6.3) 
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The l e m m a  gives us n u m b e r s  M and  t, such t h a t  wri t ing 

M N 

ix' = ix~ + tix~ = b.  ~ ~ ( x ~ )  + t( y~ c ~ ( ~ )  + ix~), 
k=l k=MA-1 

(b de f ined  b y  (4.6.3)), we h a v e  NIX'[[ = 1, and  ix' can be  decomposed  into  small  
pa r t s .  

I n  the  case q = 2, we comple te  the  p roof  as follows. We  use the  fac t  t h a t  the  

t heo rem holds for  ix', and  we choose g such t h a t  

I,,(g) = I (g) ~- tI (g) > 1 - - s i n 2 a .  (4.6.4) 

We have  n o w  g ~ =  1, and  this implies t h a t  e i ther  (i) I ,~(g)= Ilixlll or  (ii) 
l~(g) < Ilix~ll - 2b = Ilix~II - sin2 a. Since (ii) cont rad ic t s  (4.6.4) we h a v e ( i ) ,  and  
this  implies  t h a t  g ( x ~ ) -  eL(= ~k), for 1 < k < M.  We  h a v e  t h e n  

( 1 ) 
I,(g) = ~ ck -t- I~,2(g) > c~ + []/~211 - -  ~ sin~ a > 1 - -  sin ~ a ,  

k = l  k ~ l  

(4.6.5) 

and  this  f inishes the  p roof  in the  case q - ~  2. 

I f  q > 2, t h e n  th ings  are technica l ly  more  compl ica ted .  I n  this  case we canno t  
use mere ly  the  fac t  t h a t  the  t h e o r e m  holds for  # ' ,  b u t  r a t he r  the  proof.  I .e .  we 
m u s t  cons t ruc t  a measure  v as in the  cont inuous  case, a n d  choose g w i th  
Re (I~(g)) > cos a. F r o m  this  fac t  we can now conclude t h a t  Re  (I,,(g)) ~ ]]/~I]- 
Once this is known,  the  p r o o f  can be comple ted  as in the  case q ---- 2, and  we h a v e  
t hen  p r o v e d  T h e o r e m  4.1 in full general i ty .  

7. T h e o r e m  4.1 can in cer ta in  instances,  be  used as a subs t i t u t e  for  a condi t ion 
of  t y p e  (4.3.3'), b u t  never the less  we w a n t  a comple te  resul t  on n o r m  relat ions.  
To this  end  we shall  need  the  following proposi t ion.  

I~ROPOSITIO}r 4.4. Let K be a compact metrizable Hausdorff space, and let 
c Pq(K), be a family  of functions, such that for every Ix in M(K) with ix ~f[ ix l ,  

f Borel, f q ~  1, there exists a g E T ,  such that 

Ref gfdlixl > (1 ~)IlixlIM. 

Then to every ix in M(K)  there corresponds a g in 7,  such that 

i f  gd, 1 > (1 -- 2~)II~II~ (or > (~ -- ~)II,II,, ~f q= 2) 



R E r R E S E N T A T I O N S  O F  T E N S O R  AY~GEBRAS AS Q U O T I E ] ~ T S  O1~ G R O U P  A L G E B R A S  

Proof. L e t  us wri te  ] . l  -= 2 and  . = ~ ,  ]~1 -~ 1 
Borel  func t ion  f such t h a t  fq ~ 1, and  

139 

a.e. (4). There  exists  a 

II(f)i = l f f~dX[ = II.II,. (4.7.1) 

We can choose ~ real  such t h a t  e~I(f)  = [I(f)] and  replacing thus  if  necessary  
, b y  e~/~, we assume I ( f )  ~ O. W e  n e x t  wri te  f ~  = e - iv  , and  we h a v e  t hen  
b y  (4.7.1), - -  x/q ~_ ~ < x/q a.e. (4). We  h a v e  t h e n  

and  we shall  deno te  the  measure  ] .  cos ~ �9 ~ b y  v. I t  follows f rom our  assumpt ions ,  
and  f rom the  cons t ruc t ion  of  v, t h a t  

[I,l]~= f f~az = f f](cos~)a~ = f fdv = H,,HM. 

B y  the  a s sumpt ions  of  t he  t h e o r e m  we can  f ind  g C ~,  such  t h a t  

Re  

We  shall wr i te  gf = h, and  we observe  that  h e P~(K), and  we h a v e  t hen  
] I m h [  < cot  (x/q) . ( 1 - -  Re  h), i f  q < 2 ,  while I m h = 0  i f  q = 2 .  

We  can n o w  es t ima te  

~e f g a ~  = Re fgZ(cos v -  i sin ~o)d~ = Re  fgfcoswdZ + flmhsin~,dA. 
B y  the  a b o v e  we h a v e  t hen  

fad .  >_ (1 - o)It.ll, i f  q = 2 ,  
J 

and  

f f 
R e  j g ~ >_ (1 - ~)ll.llq - J 1Ira hi" Isi,. ~ldZ 

(1 - -  a)ll.llq - c o t  (a/q) t a n  (a/q) f (1 - l~e h) c o s  ~ 4 4  > (1 - -  2a)l l . l lq,  i f  q > 2 .  

This  p roves  the  proposi t ion .  

As an  i m m e d i a t e  corol la ry  of  T h e o r e m  4.1 and  Propos i t ion  4.4 we have  now 

COROZLARu 4.5. Let K c .Dq be a t t e l son- (yq(1-  ~)) set, then K is also a 
H(q, 1 --  fl) set, with fl = K < 28(~/q) 2Ia. 
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w 5 .  T e n s o r  a l g e b r a s  in  Dg 

1. We shall f i rs t  in t roduce some nota t ions .  L e t  X be a to ta l ly  d isconnected 
compact  space, and let  lg be the  iden t i ty  map  of  C(X), considered as an opera tor  
f rom C(X) into Cg(Z). B y  w 4, we h a v e  then  NIgll < y~-~ : (:~/q)/sin (z/q). Le t  
now {X~}~i be to ta l ly  disconnected compac t  spaces, we shall wri te  

v j x )  = cg(x ) c j x 2 )  . . . cg(x ). 

Let  fu r the r  Jq be the  iden t i ty  map  of  V(X) considered as a map  f rom V(X) 
into Vg(X). Since Jg = (Ig)i | (Ig)2 Q . . . | (Ig)~, we have  b y  s t andard  laroperties 
of tensor  norms [[Jgl] ~ 7~ n. Combining this  wi th  Theorem 1.2 (resp. Corol lary  
3.1) we have  under  the  assumptions of Theorem 1.2 (resp. Corol lary 3.1) t h a t  

II1 - ~ I l r g  -< y~n%(y) (resp. He - F[lrq ~ y~%(Y)).  
We can now s ta te  and prove  the  following theorem.  

T~EORE~ 5.1. Let ~, 0 < ~ < 1, be a real number. For every natural number 
q ~_ 2, and every natural number n ~_ 2, there exists a number fig. ~ > O, such that 
i f  {K~}~=~ ~ are disjoint compact subsets of Dq, and i f  U K~ is a H(q, 1 -  fl) set, 
fi < fig.n, then the map 

T : A( ~ K,) -~ Vg(K) (defined as in w 1) 

is a topological isomorphism, and [[T-1H ~ (~-i. 

Proof. Let  ~n(y) be a funct ion satisfying the  conditions of Theorem 1. We 
define a posi t ive n u m b e r  y+n b y  the  relat ion 

1 --  Y'~%(Y+n) = (1 + y+n)d �9 (5.1.1) 

and we define fig,~ b y  

1 
- -  - -  ( 5 .1 .2 )  1 /~q, n 1 @ yg, n 

Le t  now fl, 0 < fi < fig,,, be a real number ,  and let  {Ki}~=i be disjoint  compac t  
subsets of  Dg, such tha t  U K i is a H(q, 1 --  fl)-set. Fo r  convenience of  no ta t ions  
we shall write (1 - -  fl)-i = 1 -~ y. In  accordance with our  previous  no ta t ions  
we shall also wri te  K = K  1 X K  2 •  •  and  K ' =  UK~. 

To prove  the  t heo rem we shall use the same dual i ty  a rgument ,  t h a t  was used 
in the  p roof  of  Theorem 1.1. Le t  therefore  A e BMg(K), HANg = 1. 

We choose e > 0 ,  such t ha t  1 - - e - - y ~ n % ( y ) >  ( 1 - ~ y ) &  Then,  b y  the  
def ini t ion of  no rm in .BMg(K), the re  exist  funct ions gi E Sg(Ki), such t h a t  

[A(g)I  > 1 - -  e ,  ( 5 .1 .3 )  
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where g is defined by (1.1.2). Now the function g' defined by (1.1.3) belongs to 
Cq(K'), and we have ]lg'l]q--~ 1. By assumption we have therefore 

IIg'llA(~) < 1 + y .  (5.1~) 

There exists therefore a representation 

g'(Id) = ~. axz(lc'), g e Dq, ~ [azl < 1 + y .  (5.1.5) 

We shall write av(k) ---- ~ azz(lcl)Z(k2) . . . Z(k,), k : (]~1, k2 . . . .  , kn), kl e Ki. 
By Corollary 3.1 we have then 3" ~ V, IIFIIv ~ 1 + y, lift - F I I v  ~ W(Y). Since the 
functions g used in the representation of F all belong to Sq, we have in fact 
[IF[lv~ < 1 + y, and we have also Ilff -- Ftlvq < Y~"~,(Y). 

But this implies then 

IA(F)[ = IA(g + F --  g)l >-- [A(g)] -- IA(F --  g)l 
(5.1.6) 

> 1 - -  e - -  [ [ A [ I , ~  ~ �9 I I F  - -  ffI[vq >~ 1 - -  e - -  r ~ - ~ . ( y ) .  

B y  choice of e, we have therefore IA(F)] > (1 - /y )~ .  
By the usual map of K into ~K~,  we consider A ( ~ K ~ )  as a subalgebra 

of Vq(K) ( =  V(K)).  Now the function E constructed above belongs to A(K) ,  
we have a representation of F,  showing that  I]FllA(K) < 1 + y, and we have 
IA(F)I > (1 + y)(~. This implies then HA[1pM > d, and this proves the theorem. 

Finally, Theorem B follows from Theorem 5.1, combined with Corollary 4.5. 
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