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1. Introduetion

In the first part of this paper we show that the capacity of a compact subset of
the n-dimensional Fuclidean space can be characterized by means of distributions
(in the sense of L. Schwartz) which are carried by the set and which have bounded
potentials.

In the second part we consider compact subsets of the real line with the property
that no non-trivial function can locally be in the class of Fourier transforms of
IM-functions and yet be constant on the intervals of the complement of the set.

Using the result from the first part we shall show that a sufficient condition
for a set to have this property is that it has logarithmic capacity zero. This improves
a result by Kahane and Katznelson [4, p. 21] concerning Cantor sets.

It will also be shown that a necessary condition is that the set has capacity zero
with respect to all kernels (log* 1/]z])**9, & > 0.

The author is very grateful to prof. L. Carleson for his many valuable suggestions.

2. Notations and definitions

We denote the n-dimensional Euclidean space by R®, its points by z =
(@, ...,2%) and we write |z] = (2] + ...+ 22)"

By A" we mean the space of all functions f on R" with the property that for
each z € R* there exists a neighbourhood ¥V of z and a function g, whose
Fourier transform is an integrable function, so that f=g¢ in V.

The Fourier transform of a function, measure or tempered distribution § is

denoted by S.
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By a kernel we mean, in the case when #» > 2, an integrable function on R",
with compact support, of the form K(z) = H{p(z)), where H is a non-negative,
continuous, increasing and convex function on R and where ¢ is a fundamental
solution of Laplace’s equation, i.e.

1
log — , n =2
pla) =1 ° |l

lzf*", n>3

When n =1 we mean by a kernel an even, integrable and positive function
with compact support on R which is convex on (0, o).

We shall throughout this paper let K, be a kernel which in a neighbourhood
of the origin equals [z|™* when « > 0 or log 1/|z| when « = 0 and which more-
over is infinitely differentiable for « = 0.

We define as usual the capacity Cx(E) of a compact set E with respect to a
kernel K by

(Cx(E))™ = inf (sup U*(2))
u RrR"

where the infimum is taken over all positive measures on E of mass 1. For the
other basic concepts of classical potential theory we refer the reader to [2].

3. Distributions with bounded potentials

Let S be a distribution (in the sense of L. Schwartz) on R". We define the
potential of § with respect to the kernel K as the convolution of § and K
and denote it by U° =8 K.

Deny [3] has in great detail studied potentials of distributions with finite energy
and has e.g. shown that a set of capacity zero with respect to some kernel cannot
carry a non-zero distribution with finite energy with respect to the same kernel.
In the special case when n» = 1 and for kernels K, this was also proved for &« = 0
in an Uppsala lecture by Beurling in 1940 and later by Broman [1] for 0 <& < 1.

Our aim is to study distributions whose potentials are bounded functions and
we shall obtain some analogous results.

THEOREM 1. Let E be a compact subset of R™ and let S be a distribution with
support on B. If the potential of S with respect to o kernel K is a function U®
and if furthermore S(1) =1 then

ess sup |US(x)| > (Cx(E))™

*€R™



DISTRIBUTIONS WITH BOUNDED POTENTIALS AND ABSOLUTELY CONVERGENT FOURIER SERIES 51

Proof. Let ¢ > 0 be given and let o, be the equilibrium measure of the set
E = {xz € R dist (v, ) <e&}. Let furthermore k € Oy be a positive function
with support in the n-dimensional unit ball and assume f kdx = 1. Write k(x) =
e k(wyfe, . .., xafe) and let S = S=k,.

We now easily obtain the following inequalities by using wellknown properties
of the equilibrium measure.

ess sup | US| > sup (US| * k) > sup |U® + k,| = sup |U":] 2/ |US:|do, >

> l f USedo,

But Cx(E,) > Cy(E) as ¢—0 and from S(1) = 1 it follows that [ S,de —1
which proves the theorem.

We are later on going to use this theorem in the classical cases of logarithmic
capacity and «-capacity, i.e. capacity with respect to the kernels K,. For these
kernels we can prove the following corollary.

— (8, % K % 0)(0) = (S, % (K # 0))(0) = (Cy(B)™ / S da .

CorOLLARY. A compact set B ¢ R* has positive x-capacity (if « = 0: logarithmic
capacity) for max (0,n — 2) < & << n if and only if it carries @ non-zero distribution
whose potential with respect to K, is a bounded function.

Proof. Assume that § % 0 is carried by the set E and that § % K, is a bounded
function.

It is by the theorem sufficient to find a distribution S, which satisfies the
same assumptions as § and which in addition has the property that Sy(1) % 0.

If § is non-vanishing there must exist y, € R* such that S(¢(*?7) £ 0. We
shall prove that the distribution S, = ¢'*?)S has the required properties. This
follows immediately if we can show that »§(y)(1§a(y — 1Y) — I%a(y)) is the Fourier
transform of a bounded function.

We claim that we can write

Koy — v — K y) = K, )/ Pw) + Q) + R(y) (1)

where P, Q € L(R"), R € IX(R").
Since K, (y) = Oly|* ™ + O(ly|™™) for any N as |y|— co we have that

Eoly — o) — K,fy) = K (9) (@'_y—'%\f — 140 |yr”>)
[

. o -lg-1
= Ku(y)(zpk(y)!yl + O(ly|

)

where p: are certain polynomials of degree k.
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We can without loss of generality assume that y, = (1,0,...,0) and write
A A A [g] k 1 - [2] -1
Koy — o) — Kaly) = K o) 2, 2.0 yI7* -0yl T )

We claim that we can find an Z'-function such that the behaviour of its Fourier
transform at infinity is close to the behaviour of the sum in the last member above.

Consider therefore one term, #ily|™* and let Py € C°(R™\J0}) be some
function with compact support which in a neighbourhood of the origin equals
(— 1 8/0xy)jz[* ™ when n# 2k or (—id/0x) logl/jx] when n = 2k. Then
Puly) = Clyl~#4 4 O(ly)™™) for all N as |y|— o and Py € LY(RY).

By adding constant multiples of such functions Py, we finally obtain a function
P € IM(R") which satisfies ﬁ(y) — > oY) ly| =% = O(ly|~") forall N as |y|— o
and it is easily seen that ¢ and R can be chosen so that (1) holds.

Since SAIE“ and 8= K, are bounded functions and since § x K, € L*R") it
now follows that S« K, = (P 4+ @ 4 R) is a bounded function which proves the
sufficiency part of the corollary. The necessity follows direcily from the definition
of capacity.

It seems probable that the corollary also holds for general kernels K although
we have not been able to prove this.

Let us now end this section by showing how the corollary could be used to prove
the classical result (see e.g. [1, ch. VII]) that a set is »removabley for bounded
harmonic functions if it has capacity zero with respect to K,_,.

Let therefore D c R*, n > 2, be a bounded region whose boundary I' is
a smooth surface and let B ¢ D be a closed set strictly contained inside I'. Assume
that X has capacity zero with respect to K,_, andlet « be a bounded and harmonic
function on D\ E. We claim that % can be extended to the whole of D.

Choose a function » with compact support which coincides with # on some
neighbourhood of E and which is infinitely differentiable outside Z.

Then Av = 8§ - ¢, where S is a distribution carried by E and where ¢ € C7.

But the potential of § with respect to K, , is

S«K, ,=2M+K, ,—¢#xK, j=v+AK, —¢xK, s=v+vxp—oxK, ,

where € CF.
We thus have that U® = § % K,,_, is a bounded function which by the corollary
implies that § = 0 and hence that % can be extended as claimed.

4. A class of thin sets

Let E be a compact subset of the real line and assume that f € A is constant
on each interval of the complement of E.
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Our aim is to try to characterize the sets E for which no nontrivial function f
can have the properties just stated.

Kahane and Katznelson [4, p. 21] have given an example of a Cantor set with
the above property. The following theorem contains their result.

TreorEM 2. Let E c R be a compact set of logarithmic capacity zero. If f € A
is constanl on each interval of the complement of E then [ equals a consiant.

Proof. Let f be an arbitrary function that fulfills the hypothesis. Then there

exists a function g which satisfies:
(i) § € IA(R).

(il) ¢ = f on some interval I D K.

(iii) ¢ = 0 outside some neighbourhood of I.

(iv) g is infinitely differentiable outside I.

Let 8 be the derivative of f in the sense of distributions and let U be the
logarithmic potential of 8.

Then S = dg/de + ¢ where ¢ €Cy and U = U¥ 4 U°.

But (U¥)" (x) = szg(x)K,(x) € LN(R) since K,(x) = 1/|z| 4 O(|z|~Y) for any
N as x— o and hence Uf is a bounded function. This is also true for U? and
S is thus a distribution on F with bounded logarithmic potential.

By the corollary this leads to a contradiction unless § = 0 and hence the
theorem follows.

Our next theorem shows that this result is the best possible in the sense that
logarithmic capacity cannot be replaced by capacity with respect to any larger
kernel.

Before we state the theorem we give the following lemma.

I

Lemma 2. Let E={x€R; z= z:o & & ,
and {m;}y° are some given sequences. Write I, = ;:_1 myr, and assume that
(m, + 1, <11, for n=1,2,....

Then E has capacity zero with respect to a kernel K if

1,...,m} where {r}7

TT (ms + 1)K (L) = oo

1

N8

1 X
If = f K@t)dt < CK(z), £ 0 then the condition is also necessary.
0

Proof. The proof of the lemma is, apart from minor modifications, identical to
the proof given in e.g. [2] of the corresponding theorem. concerning the ordinary
Cantor set (i.e. the case when m; = 1, ¢ = 1,2, ...) and is therefore omitted here.

The last condition in the lemma is clearly satisfied for all kernels K, 0 <« < 1.
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TaEOREM 3. Let K be a kernel such that lim, o K(x)(log 1/lx|)™ = oo. Then
there exists a compact subset of R with capacity zero with respect to K and a non-
zero measure carried by the set whose primitive function is in A

Proof. Let E be a set of the form {z= Zf er;, € =0,1,...,m} and
assume that E has positive logarithmic capacity and choose a measure g on E

with finite energy with respect to the logarithmic kernel. Let » = u % u and let
) = / dv. The support of » is obviously a subset of
0

F:E_’_E:{f:'y]iri’ nizo,l,...,Qmi}.
4 .

That the energy of u is finite implies that

y 2 iy_
()] ] < ®

lyl=z1

But fly) = (y)iy = (i(y)?}iy and hence fe€ 4.
We now claim that we can choose {r;} and {m,} in such a way that

n

5 (Tt 4+ 1) log 1, < 0 (2)

1

n

?(T{ (2m; + 1) K(2L,) = oo (3)

1

where 7, = >

n41
Both these relations are satisfied if we e.g. choose {r;} and {m;} so that

(i) log 1/l, = n~2 -|_|: (m;+1), n=1,2,...

(i) K(2l) > 3"logl/l,, n=1,2,...

(iit) m; — o0, i —

iv) (2mn -+ 1), <1, 42, n=1,2,...

Since 1,,, =1, — m, 1,y it is clear that this choice can be done.

Using Lemmas 2 and 3 it now follows from (2) and (3) that £ (and thus F)
has positive logarithmic capacity and that F has capacity zero with respect to
K which proves our theorem.

The next theorem gives a necessary condition in terms of capacity for a set
to be in our class of thin sets.

mr;.

TrEorREM 4. Let E c R be a compact set of positive capacity with respect to the
kernel (log* 1/|z])**® for some 8 > 0. Then E carries a (positive) measure p whose
primitive function is in A",
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Proof. Put K(z) = (log* 1/|z[)*"® and let u be a measure on E with finite
energy with respect to K.

It is easy to show that (log |y|)'™°ly| YK (y))~ tends to a constant as |y| — oo
and it therefore follows that

|ty 2
ly|

yl=1

(log ly1)'*°dy < o

By Schwarz’s inequality this implies that f lu(y)|ly|dy < o and hence

fyiz1

that f(z) = f du € A" which proves the theorem.
0

It is possible that any set E of positive logarithmic capacity carries a non-zero
distribution with a primitive function in A'°. The following result shows that such
a distribution could not always be chosen as a positive measure and the necessary
construction would therefore probably have to be complicated.

THEOREM 5. There exists a 6 > 0 and a compact set E; c R of positive capacity
with respect to the kernel K(x) = (log*+ 1/|ax})*+® such that if f € A" is non-decreasing
and constant on each interval of the complement of E; then f equals a constant.

Proof. Let E; be the Cantor set {x €R; z = Z:o er;, & =10 or 1} where
Z:Ll r;=exp (— 2”09, n=1,2,... and where 8 >0 is a number to be fixed
later. E; has positive capacity with respect to a kernel (log*+ 1/jz|)'** if and only
if 0<t<a.

Assume that f is a function that fulfills the hypothesis. Its derivative in the
sense of distributions is a positive measure p with support in E;. Consider the
convolution » = g * u which is a measure on F; = E; + E, and suppose we know
that » has bounded energy with respect to the kernel (log*1/|z|)!**" for some
number ¢ > 6.

This assumption is equivalent to

() 1#
ly|

ylz1

(log ly)* dy < oo

and, since / du € A, we also know that
0

()| dy < o

% ly|
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From these two inequalities it follows by means of Holder’s inequality that

lu(y)[?
ly|

[¥]=1

(log ly)* dy < oo

i.e. that u has finite energy with respect to the kernel (log* 1/|z])*** where &' > 4.
But this is impossible unless © = 0 and hence the theorem follows as soon as
we have proved the following lemma.

Lrvmma 3. Let B, be a Cantor set as above and let Fy = K, + E,. Let u bea
positive measure on E; with bounded logarithmic potential. Then, if 6 > 0 is suffi-
ctently small, there exists & > 0 such that the measure v = u * u has finite energy
with respect to the kernel (log* 1[|x])**+3.

Proof. By means of a simple estimate we see that u(l) << C(log 1/|I{)7* for all
intervals I of length |I| less than 1.

We also observe that F; = N F, where each set F, is the union of 3" intervals
I of length 1, = 2:04,1 2r, and with left endpoints a{¥, k=1,...,3"

Each point a{) can be written af) = >° (¢, + & )r;, with &, & =0 or 1,
in N{ different ways. Let ¢ be the number of indices ¢ for which
7; = & -+ & = 1. It then follows that z{” can be obtained in N{ — 2¢ different
ways as a sum of two points in K. For a fixed ¢ there are (7)2"7? such points
o) in F, We find that > (N{")? = Z:=o ()21 - 2% = 6",

Let »™ be the measure whose restriction to any interval I{? is uniformly
distributed and whose mass on any interval I{¥ equals »(I{"). It is easy to see
that »™ converges weakly to » as n—> oo and it is therefore sufficient to prove
that the energy of »™ is bounded uniformly in =.

The energy of »™ with respect to the kernel (log* 1/]z|)'**" is by definition

) 1+36”
Ep™) :; f f <log+ ! > ™ (2)dv™(y) . (4)

x R—
i l Yl

Let us define

1 143687
D, = ; f / (Iog+ . ?/i) dv™(x)dv™(y)

We claim that
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To prove this, let @,,, 1 <m <, denote the sum of all terms in the right
hand member of (4) that correspond to pairs of intervals with a mutual distance
less than 1, ; and greater than 11, ;.

In other words, ), is the sum over the set 7,, consisting of all indices (k, I)
such that #® =y for 0 <<i<m —1 and #% 2 4 (where 2{? = 37 ().

Then

1438

Qun < O(Iog l—;) S vONIPROI) <

1 \1+36"
<0log - S 0 < om,
m—1 k

It is obvious that we get all terms in (4) by summing over m and adding D,
and hence (5) follows.
But since (1) < CN{(log 1/1,)2 and since

e In
1 ‘/ f (1 1 >1+36’ ( 1 )1+3’)’
E ) og m dedy < C\log I

we have that
1\ —3+38° —3+38
D.<(C (log —l—> SNPR=C (log l_> 6" < Oy
n I3 n

where y = 6+ 2763V (4ince 7, = 2 exp (— 270+)),
Choose now & > 0 so that 3(1 — d)/(L 4 6) > 2log 6 (i.e. § < 0.074...) and
choose ¢’ > 6 so that y < 1. Since B(™) < C > »" the lemma follows.
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