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Let G be a locally compact abelian group with character group I, and let
M(@) be the convolution algebra consisting of all bounded regular measures on
(. The Fourier transform of a measure g in M(GF) is defined by

Ay = f (@, — p)u) (v € 1)

G

We shall regard the group algebra (@) as a closed ideal in M(G) (see [9, p. 16]).
For a given closed subset E of I', let us denote by:

IE) ={f€I}G):f=0 on E}

IE) = {f € LYG) : f = 0 on some neighborhood of E};
J(E) = the closure of I(%),

and, for any measure p in M(G), define

lullg = sup {If = ull : f € I(E), [Ifl <1}.

In other words, |julg is the operator norm of the mapping: f— f* u (from I (E)
into LY@)).

Definition 1. (cf. [10] and [8]). We say that a closed subset F of I' is a Wik
set if there exists a family {x, € M(G)},c4 of measures which is directed, in the
sense that the index set A is a directed set, such that:

(a) sup{llullp:a €A} < ©;
(b) Hu(y)zea= 0 if y €E, and H,(y)zex> 1 if y €.

Definition 2. (cf. [10]). E is called a strong Ditkin set if there exists a directed
family {u, € M(3)}es of measures such that:
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(¢) sup {lpjr:x €A} < w;
(d) #,=0 on some neighborhood of E depending on pu, (x € A);
(e) For each f in I(H), f=*u,zez>f in the norm of M(G).

It is then trivial that every strong Ditkin set is a Wik set, and we can also show
that our definition of a strong Ditkin set coincides with the original one given by
Wik if I(#) is separable (see Theorem 2). Note that this last condition on I(E)
is always satisfied if @ is both o-compact and metrizable.

In this paper we shall be concerned with the problem of determining all strong
Ditkin sets without interior. We shall solve this problem entirely, and thus complete
a line of investigation by Wik [10], Rosenthal [7], [8], and Gilbert [4].

THEOREM 1. Let K be a closed subset of I', let u 1+ A be a coset of an algebraic
subgroup A of I' such that KN (u + A) = O, and let {y:}; be any finite subset
of A. Then for every &> 0, there exists a function L in LMG) such that:

(1) E=1 on the set {w+ v}, and F=0 on some neighborhood of K;

() Bl <1+e.

Proof. By translating the sets under consideration, we may assume that « = 0.
We shall also assume that the set {y:}; algebraically generates the group A, since
this assumption has no effect on the hypothesis and the conclusion of our theorem.
Thus A has the foorm A = ZVX D as algebraic groups, where Z is the group of

integers, N a non-negative integer, and D a f{inite group [5, (A. 27)]. For every
positive integer n, denote by

An={(z ..., 2, d) €A 5] <m (j=1,...,N), d€D}.
It is then easy to see that
Card (4,) = 2n + 1)V Card (D), and A4, 4+ A4, = 4,,,, (1.1)

for all m and n, where, in general, Card (4) denotes the cardinal number of

a set 4.
Fix now an arbitrary positive integer m so that {y:}i € Am. Then for every
n, there iz a symmetric compact neighborhood V., such that:

The sets A+ V,, 1€4,,,, are pairwise disjoint; (1.2)
K is disjoint from A, .., + V,+ V,. (1.3)

Setting € = A and V = 4.+ V. in [9, 2.6.1], we can find a function £. in
LMG) such that:
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k=1 on Am and k,= 0 outside Apon+ Vot Vas (1.4)
Weall < {(Appyn + Va)[R(An + Va3 (1.5)

where % denotes the Haar measure on I. It then follows from (1.1), (1.2), and
(1.5) that
all < {2m + 20 + DY/ (2n + 1)V} (1.6)

Thus, for every &> 0, we can take n so that [k, <14 e Putting &k = k.
for such an #», we see from (1.3) and (1.4) that k satisfies the desired conditions.

TaeoreEM 2. (cf. [61). Let E be any closed subset of I', and F the closure of
the interior of E, then we have

lully = sup {If = ull : f € I(F), [fIl <1} = |lully
for every u in M(G). Thus, in particulor, if E has no inferior point, we have |yl =
llull for all p in M(G).
Proof. Fix u in M(G) and let £ > 0 be arbitrary. We can choose f in I(F)
so that ||fl] <1, f has compact support, and

If o wll > [lullz — & (2.1)

There exists then a trigonometric polynomial P on G such that:

Pl <15 Pe) = Sow, — ) @€6); 2.2)
3 altpir) > I el — . (2.3)

Let K be the intersection of the (compact) support of f and the boundary of E,
and let /A be the subgroup of I' generated by the set {y;};. Then K does not
contain any interior point, and 4 is countable; therefore Baire’s theorem assures
that K + A has no interior point. Thus, every neighborhood U of 0in I contains
an element » with (w4 A)N K = @. Theorem 1 applies, and we can find %
in Iy(K) such that [k <1+ & and k=1 on the set {u 4+ y;}1. It is easy to
see that

k+fE€IE), and [k+f] <1+, (2.4)
which, combined with (2.2), shows

| gcf(u R 4 ) =

f (@, — wP@)Ak * f * u)(2)

¢ (2.5)
<k s frepl < (14 &)lulig -
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Since U is an arbitrary neighborhood of 0, and since % belongs to U, (2.3) and
(2.5) show that

(1 + &)lils = IIf = pull — e - 2.6)

(Note that the Fourier transform of a measure is continuous.) Combining (2.1)
and (2.6), we have

(1 + &)ullz > ully — 2¢ .

Since &> 0 was arbitrary, this yields the inequality |ullz > sy But, since
I(E) c I(F), the converse inequality |jullz < [ulr is obvious, and we have proved
that |jullz = lully. This completes the proof.

We now introduce some notations. Let €, A48, and CS be the families of all
closed subsets, algebraic subgroups, and closed subgroups of I', respectively. For
any family 7 of subsets of I', let us denote by “R(7) the smallest Boolean algebra
that contains 7 and is translation-invariant.

We then have:

THEOREM 3. “R(OS) = R(0) N K(4S8).

We need two lemmas. The first one is due to Cohen [2], and the second one is
also essentially contained in [2, p. 225]. We shall prove here only the second one.

LemMaA 4 ([2, p. 223]). Let A be a finite collection of cosets of subgroups A;
m AS. Then if

J@) = 2 63 f(Aij» 7)

for some constants cy (f(A, y) denoles the characteristic function of a set A), and
By, are the disjoint sets on which f(y) takes its finite number of values, then there are
finitely many subgroups A such that R{Bij) = REA}).

LeMMA 5. Every coset in “R(C) 1is closed.

Proof. Let A be any coset in “K(C). To prove that A is closed, we may assume
that A is a subgroup, and also, by replacing I' by A. that A is dense in I
Since A is in R(C), there are finitely many closed sets F; and open sets G: in
I" such that

A=Y (FENG).

Since A is dense in I', there is an index ¢ such that the closure of the set §; =
F;N G contains a non-empty open set U. Note then that U c Sic Fi. It is
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also trivial that UNS; £ O, and so O # U NG c S: c A which implies that
A is an open subgroup. Since every open subgroup is closed, this completes the proof.

Proof of Theorem 3. Let E be any set in “K(C) N “R(AS). Applying Lemma
4 to the function f(y) = f(&,y), we see that there are finitely many subgroups
A; such that R{E}) = R{A}). Since E is in R(C), it follows that every
A; is in “R(0), and so Lemma 5 assures that every A; is closed. Therefore we
have E € R({A}) c R(CS), and this clearly establishes Theorem 3.

COROLLARY 6 (due to Gilbert [4, Theorem 3.1]). Every closed set E in “R(AS)
has the form

E=U[4N U 457, (6.1)

where A; and Ay are finitely many closed cosets in I' such that every Ay s con-
tained and open in Ai with respect to the relative topology of A;.

Proof. Let E be any closed set in “R(A4S8). It then follows from Theorem 3
that & has the form (6.1), where 4; and A; are finitely many closed cosets in
I' such that 4;D A;. Since E is closed, E is the union of the closures of
A:0 (U 4y)°. But all A; and Ay are closed cosets, and so that it is easy to

7
check that the closure of A, N (U 4y5)° is AN (U’ 4y)°, where U’ A; denotes

] j J
the union of those A; that are open in the relative topology of A; (ef. the argument
in {9, p. 86]). This establishes the proof.

THEOREM 7. For every closed set E in I' without interior, the following three
statements are equivalent:

(i) E s a strong Ditkin set;
(i) E is a Wik set;
(iil) E s of the form (6.1).

Proof. The implication »(i) implies (ii)» is trivial. Suppose that E is a Wik set.
There exists then a directed family {u, € M(G)},c4 having the properties (a) and
(b) in Definition 1. Since £ has no interior point, the property (a), together with
Theorem 2, yields

sup {lig i €4} < 0. (7.1)

Regarding each u, as a measure on the Bohr compactification G of &, we can
conclude from (7.1) and (b) that f(Z,y) is the Fourier transform of a measure in
M(G). Tt follows from Cohen’s theorem [1] that E is a member of K(AS). (Note
that the dual group of G is I' with the discrete topology.) Therefore Corollary 6
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guarantees that E has the form (6.1), which establishes the implication »(ii) =
(.

Finally suppose that (iii) is the case. It is trivial that a finite union of strong
Ditkin sets and a translate of a strong Ditkin set are strong Ditkin sets, too. Thus,
to prove (i), it suffices to verify that every closed set E of the form

E = A0 (Y 4y (7.2)
j=1
is a strong Ditkin set, where A is a closed subgroup of I' and each /; is a closed
coset in I" which is open in the relative topology of 4. Observe then that, for
each j, 4; corresponds to a point in the quotient group I(4; — 4;), and that
the subset [A/(4; — 4;)]N {4;}° of this group is a closed set which does not
contain the »pointy A;, since A; is both open and closed in 4. It follows that
there is a measure » in M(G) such that ;=1 on 4; »;=0 on some open
set U; containing A0 A7, Define
y={(0 — ) k....%(0— ),
where & denotes the Dirac measure at 0 in G. Then » =0 on |J 4; and ¥ =1
j=1

on U=U,N...NU,, which is an open set containing E. Suppose now that
{f is any finite subset of I(E) and &> 0, then fix» belongs to I(A4) for
every ¢. It follows from a theorem of Calderon [9, 2.7.2] that there is a measure
W = ' {f}, &) in M(G) such that p’ =1 on some neighborhood of A, [|ju'll < 2,
and |fixv*p) <e Setting

p=pl{fili,e) =0 —vxp
we see that |ju] <14 2, =0 on some neighborhood of E, and that
Ifi — fi % ull < & for all 4. Therefore the family {u({fi}:,¢)} has all the required
properties (¢), (d), and (e) in Definition 2. This proves that E is a strong Ditkin
set, and hence (ili) implies (i). The proof is now established.

Remark. The part »(iii) = (i)» of Theorem 7 is (essentially) due to Gilbert [3],
although our proof seems to be simpler than his.
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