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Let  G be a locally compact  abelian group wi th  character  group / ' ,  and let 
M(G) be the convolution algebra consisting of all bounded regular measures on 
G. The l%urier t ransform of a measure /~ in M(G) is defined by  

z(r) = f (x. - .)d,(x) (,  e . )  
Q J  

G 

We shall regard the group algebra LI(G) as a closed ideal in M(G) (see [9, p. 16]). 
For  a given closed subset E of F, let us denote by: 

I(E) = {f e L~(G) : f -= O on E}; 

Io(E ) {f e LI(G) : 0 on some neighborhood of E}; 

J(E) = the closure of I0(E), 

and,  for any  measure t ~ in M(G), define 

II/~ItE = sup {]If,  #]1 : f  e I0(E), I[fll -~ 1}. 

In  other words, II#[IE is the operator norm of the mapping: f---->f,tt  (from Io(E ) 
into LI(G)). 

Definition 1. (cf. [10] and [8]). We say tha t  a closed subset E of F is a Wik 
set if  there exists a fami ly  {#~ E M(G)}~e A of measures which is directed, i n  the 
sense t ha t  the index set A is a directed set, such that :  

(a) sup  {ll~ll~ :~  e A }  < ~ ; 

(b) ~ ( y ) ~ - ~ * 0  if F E E ,  and ~ ( y ) ~  1 if  y E E  c. 

Definition 2. (cf. [10]). E is called a strong Ditkin set if there exists a directed 
family  {#~ E M(G)}~e A of measures such that :  
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(e) s u p  {II/~IIE : ~ e A }  < so ; 

(d) ~ ~ 0 on some neighborhood of E depending on /~ (a E A); 

(e) l~or each f in I(E), f , # ~ f  in the norm of M(G). 

I t  is then triviM that  every strong Ditkin set is a Wik set, and we can Mso show 
that  our definition of a strong Ditkin set coincides with the original one given by  
Wik ff I(E) is separable (see Theorem 2). Note that  this last condition on I(E) 
is always satisfied if G is both a-compact and metrizable. 

In this paper we shall be concerned with the problem of determining all strong 
Ditkin sets without interior. We shall solve this problem entirely, and thus complete 
a line of investigation by  Wik [I0], I~osenthai [7], [8], and Gilbert [4]. 

THEORE~I 1. Let K be a closed subset of I ~, let u + A be a coset of an algebraic 
subgroup A of _P such that K fl (u + A ) - ~  O, and let {71}~ be any finite subset 
of A. Then for every e > O, there exists a function lc in LI(G) such that: 

(i) ~ :  1 on the set {u @ y~}~, and ~-~ 0 on some neighborhood of K;  

(ii) flkll ~ 1  + s .  

Pro@ By translating the sets under consideration, we may assume that  u = 0. 
We shall also assume that  the set {y~}~ algebraically generates the group A, since 
this assumption has no effect on the hypothesis and the conclusion of our theorem. 
Titus A has the form A = ZN• D as algebraic groups, where Z is the group of 
integers, 2V a non-negative integer, and D a finite group [5, (A. 27)]. For every 
positive integer n, denote by  

A , = { ( z l , . . . , z ~ , d )  EA: Iz j l  <__n 

I t  is then easy to see that  

Card (A~) = (2n ~- 1) N Card (D), 

( j = l  . . . . .  N), d e D } .  

and Am =t= A~ ~- A~+n (1.1) 

for all m and n, where, in general, Card (A) denotes the cardinal number of 
a s e t  A. 

Fix now an arbitrary positive integer m so that  {y~}~ ~ Am. Then for every 
n, there is a symmetric compact neighborhood Vn such that: 

The sets A d- V~, )L E Am+n, are pairwise disjoint; (1.2) 

K is disjoint from Am+2n d- V~-t- V~. (1.3) 

Setting C ~ Am and V = A, d- V, in [9, 2.6.1], we can find a function k~ in 
LI(G) such that: 
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k , =  1 on A~, and ~cn = 0 outside Am+2,-t-V,  + V, ;  (1.4) 

[Ik.II ~ {h(Am+, + V,)/h(A. + V,)}�89 (1.5) 

where h denotes the I-Iaar measure on F. I t  then follows from (1.1), (1.2), and 
(1.5) that  

[[k,,H _< {(2m + 2n + 1)N/(2n + x)N}�89 . (1.6) 

Thus, for every e > 0 ,  we can take n so that  IIk,lI< l + e .  Put t ing k = k ,  
for such an n, we see from (1.3) and (1.4) that  k satisfies the desired conditions. 

T ~ E 0 ~  2. (cf. [6]). Let E be any closecl subset of F, and F the closure of 
the interior of E, then we have 

I[#[E = sup {[if* ,ull : f  e I(F), llflI <~ 1} ~ [[#II~ 

for every ~ in M(G). Thus, in particular, if  E has no interior point, we have [1/~l[~ = 
II#I[ for all # in M(G). 

Proof. Fix /~ in M(G) and let e > 0 be arbitrary. We can choose f in I (F)  

so that  #II _< 1, f has compact support, and 

I[f*/~II > II/*ll~- e .  (2.1) 

There exists then a trigonometric polynomial P on G such that: 

rt 

IIPII~ _< 1; P(x) = ~, c~(x, - yi) (x E G) ; (2.2) 
i = l  

c~f(T,)~(T,) > IIf * # 1 -  e .  (2.3) 
f = l  

Let K be the intersection of the (compact) support of f and the boundary of E ,  
and let A be the subgroup of / '  generated by  the set {y~}~. Then K does not 
contain any interior point, and A is countable; therefore Baire's theorem assures 
that  K + A has no interior point. Thus, every neighborhood U of 0 in F contains 
an element u with (u + A) [3 K = O. Theorem 1 applies, and we can find k 

in Io(K ) such that  [lkI[ < 1 + e and k = 1 on the set {u + y~}~. I t  is easy to 
see that  

k . f E I o ( E  ), and H k * f l l _ < l + e ,  (2.4) 

which, combined with (2.2), shows 

[ c~f(u + yO#(u + Y~)I = (x, -- u)P(x)d(k * f *  
i ~ l  

G (2.5)  

II/c * f * # l  ~ (1 -I- E)II,UEIE �9 
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Since U is an arbitrary neighborhood of 0, and since u belongs to U, (2.3) and 
(2.5) show that  

(1 + e)II#NE ~ llf*/~]1 -- e .  (2.6) 

(Note that  the Fourier transform of a measure is continuous.) Combining (2.1) 
and (2.6), we have 

(] + e)ll~ll~ _> ll~il~ - 2 e .  

Since e > 0 was arbitrary, this yields the inequality ]1~1f~ >--1I~11~. But, since 
Io(E) C I(F),  the converse inequality I1~11~ _< ll/~II~ is obvious, and we have proved 
thag ll/~ll~ = If/~ll~ -. This completes the proof. 

We now introduce some notations. Let C, AS,  and CS be the families of all 
closed subsets, algebraic subgroups, and closed subgroups of /7, respectively. For 
any family ~ of subsets of /~, let us denote by ~?~(~1 the smallest Boolean algebra 
that  contains ~ and is translation-invariant. 

We then have: 

THEORE~ 3. c2~(CS) = ~4(C) N ~ ( A S ) .  

We need two lemmas. The first one is due to Cohen [2], and the second one is 
also essentially contained in [2, p. 225]. We shall prove here only the second one. 

LE~M~ 4 ([2, p. 223]). Let Aij be a finite collection of cosets of subgroups A~ 
in AS.  Then i f  

f(7) = ~ c,j J'(A,j, y) 
q 

for some constants cii (f(A, y) denotes the characteristic function of a set A), and 
Bk are the disjoint sets on which f(y) takes its finite number of values, then there are 
finitely many subgroups A[ such that ~ ( { B k } ~ ) :  cP4({A;},). 

LEMMA 5. Every coset in O~(C) is closed. 

Proof. Let A be any coset in ~ (C) .  To prove that  A is closed, we may assume 
that A is a subgroup, and also, by  replacing /~ by  ~ ,  that  A is dense in /~. 
Since A is in ~ ( C ) ,  there are finitely many closed sets F~ and open sets G~ in 
/ '  such that  

A = U (Fi n Gi). 
i 

Since A is dense in /', there is an index i such that the closure of the set S~ 
F~ fl Gi contains a non-empty open set U. Note then that  U c S~ c F,. I t  is 
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also trivial that  U I 7 S ~ r  O, and so O r  U f l G ~ c S ~ c A  which implies that  
A is an open subgroup. Since every open subgroup is closed, this completes the proof. 

Proof of Theorem 3. Let  E be any set in tN(C) 17 c~(AS). Applying Lemma 
4 to the function f(7) ~ f (E,  y), we see that  there are finitely many subgroups 
A~ such that  ~)~((E})~ ~({A~}~). Since E is in ~ it follows that  every 
A~ is in ~?~(C), and so Lemma 5 assures that  every A~ is closed. Therefore we 
have E C Q,~({A~}~) C ,~(CS), and this clearly establishes Theorem 3. 

COROLLARY 6 (due to Gilbert [4, Theorem 3.1]). Every closed set E in q)~(AS) 
has the form 

E : [J [A, 17 ((J A,/)~], (6.1) 

where A~ and A~ i are finitely many closed cosets in 1" such that every Aq is con- 
tained and open in A~ with ress to the relative topology of A~. 

Proof. Let E be any closed set in ~ ( A S ) .  I t  then follows from Theorem 3 
that  E has the form (6.1), where A~ and A~ i are finitely many closed cosets in 
/~ such that  A~D A~ i. Since E is closed, E is the union of the closures of 
A~ fl((.J A~i) c. But all A~ and A~ i are closed cosets, and so that  it is easy to 

i 
check that  the closure of A, 17 ( [J A~i) c is A~ n ( (.j' A~i) ~, where [J '  A~ i denotes 

J J J 
the anion of those A~i tha t  are open in the relative topology of A, (cf. the argument 
in [9, p. 86]). This establishes the proof. 

THEOREM 7. For every closed set E 
statements are equivalent: 

(i) E 
(ii) E 

(iii) E 

is a strong Ditlcin set; 
is a Wik set; 
is of the form (6.1). 

in 1" without interior, the following three 

Proof. The implication ~)(i) implies (ii))) is trivial. Suppose that  E is a Wik set, 
There exists then a directed family {#~ E M(G)}~eA having the properties (a) and 
(b) in Definition 1. Since E has no interior point, the property (a), together with 
Theorem 2, yields 

sup  (11~11 : ~ e A} < c o .  (7.1) 

Regarding each /z~ as a measure on the Bohr compactification ~ of G, we can 
conclude from (7.1) and (b) that  f (E,  7) is the Fourier transform of a measure in 
M(G). I t  follows from Cohen's theorem [1] that  E is a member of ~ ( A S ) .  (Note 
that  the dual group of G is /" with the discrete topology.) Therefore Corollary 6 
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guarantees t ha t  E has the form (6.1), which establishes the implication ~)(ii) 
(iii)~). 

F inal ly  suppose t h a t  (iii) is the  case. I t  is tr ivial  t h a t  a f ini te  union of strong 
Di tk in  sets and  a t ranslate  of a strong Di tkin  set are strong Di tkin  sets, too. Thus, 
to prove (i), it  suffices to verify t h a t  every closed set E of the  form 

n 

E = A n ( E l  ( 7 . 2 )  

is a strong Ditkin set, where A is a closed subgroup of /" and each A i is a closed 
coset in /1 which is open in the  relat ive topology of A. Observe then  tha t ,  for 
each j ,  Aj corresponds to a point in the quotient  group s i - -  Ai), and t h a t  
the subset [A/(A~ --  Aj)] rl {&}~ of this  group is a closed set which does no t  
contain the  )>point)> Aj, since A s is both  open and closed in A. I t  follows t h a t  
there is a m e a s u r e  1:i in M(G) such t h a t  ~ i =  1 on Aj, 3 i ~ 0  on s o m e o p e n  
set Uj containing A [3 Af.  Define 

I :  = (~ - -  1 : 1 )  * . . . .  * (~ - -  ~ : n ) ,  

where ~ denotes the Dirae measure at  0 in G. Then ~ ~ - 0  on [ J A j  and ~ = 1 

on U = U 1 fl . . .  [3 U , ,  which is an open set containing E. Suppose now t h a t  
{fi}~ is a n y  finite subset of I (E)  and e > 0, then  f i*1:  belongs to I ( A )  for 
every i. I t  follows from a theorem of Calderon [9, 2.7.2] t h a t  there is a measure 
#'  = #,({fi},, e) in M(G) such t h a t  ~' = 1 on some neighborhood of A, IlYll < 2, 
and lift * v * #'11 < e. Setting 

= = - �9 

we see t ha t  II#ll --< 1 ~- 2111:ll, ~ = 0 on some neighborhood of E,  and tha t  
tlf~ --  f~ * NI < ~ for all i. Therefore the family  {:~({fd~, el} has all the required 
properties (el, (d), and (el in Defini t ion 2. This proves t ha t  E is a strong Di tkin  
set, and hence (iii) implies (i). The proof is now established. 

Remark. The par t  ~)(iii) ~ (i))) of Theorem 7 is (essentially) due to Gilbert [3], 
a l though our proof seems to be simpler t han  his. 
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