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p r o c e s s e s  

By OLOF HANNER 

1. Let  x (t) be a complex-valued random process depending on a real con- 
tinuous parameter  t ,  which may  be regarded as representing time. We will 
assume that ,  for every t, the mean value E { x ( t ) l  = 0 and the variance 
E { l x ( t ) l  ~} is finite. Then, in accordance with KHINTCHINE [3], we s a y  tha t  
x (t) is a stationary random process if the function 

r (t) = E {x (s + t) x (s)} 

is independent of s. Then ~" (t) has the properties 

r (8 - t) = E {x ( s ) .  (t)} 

r (O)  - -  E {1 ,  (t)l *} > o.  

We shall also assume that  r (t) is continuous for t = 0. Then 

E {I z (t + h) - x (t)I s} = 2 r (o) - r (h) - -  r ( - -  I~) -~ o 

when h ~ 0, and 

I ,  (t) - ~ (8) I s = I E { ( .  (t) - �9 ( 8 ) ) ,  (o)}1 * __< E {1-  (t) - x (8) I s} E {1-  (o) I ~} -~ o 

when s ~ t, so that  r (t) is continuous for every t. The process will then be 
called a continuous stationary random process (KHINTCHINE [3]). 

We shall in this paper study such processes and prove a decomposition 
theorem, which says that  an arbi trary process of this type is the sum of two 
other processes of the same type ,  where one is deterministic and the other is 
completely non-deterministlc (Theorem 1), and where the completely non- 
deterministic part  can be expressed in terms of a random spectral function 
(Theorem 2). 

The corresponding decomposition theorem for a stationary process depending 
on an integral parameter  or, in other words, for a stat ionary sequence, has 
been stated by  WOLD [5] in 1938. I t  has later been simplified and completed 
by KOLMOGOROFF [4] using the technique of Hilbert  space. In  a more syste- 
matic way KARHU~EN [2] introduced Hilbert  space methods into the theory of 
probability. Using his results we shall be able to prove our' theorems. 
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2. Consider a continuous stationary process x (t). I t  may  be interpreted as 
a curve in the Hilbert  space L.~ (x) which consists of random variables of the type 

c~ x (t~,) 

c, being constants, and of random variables which are limits of sequences of 
such sums in the sense of mean convergence. The scalar product of two random 
variables x and y is defined as E {xp} and the norm ix I is defined by 

ilxli~ = E / I ~ I ' } .  

Hence, two random variables in L o (x) are orthogonal if and only if they are 
uneorrelated. 

That  the process is continuous means that  the curve is continuous, that  is 

[': x ( t )  - ~ (s)II - ~  0 

when s - ,  t. As a consequence of the continuity we get tha t  L., (x) is separable. 
For the set Ix (r); r rational} is a countable complete set in L~ (x). 

I f  A and B are closed linear subspaces of L~ (x), orthogonal to each other, 
we denote by A ~ B  the direct sum of A and B, and, if A ~ B ,  we denote 
by  A o B the orthogonal complement of B with respect to A. Further  let PA 
be the projection of L~ (x) onto A. 

Let  Th be the unitary linear transformation defined by  

Ta z (t) - :  x (t + h) 

(KARHUNEN [2], p. 55). The transformations Th constitute an abelian group: 
ThTI: ~ Tj,+t.. The existence of such a unitary transformation is equivalent to 
the process being stntionary. 

We denote by Ls (x; a) the closed linear manifold in L~ (x) determined by  
the set {x(t); t _--< a}, tha t  is the least closed linear manifold containing all the 
x(t) when t < a .  If  z E L s ( x ; a )  then T h z E L ~ ( x ; a + h )  and conversely, so 
that  we write 

(2.1) ThL.z (x; a ) =  L 2 (x; a + h). 

From the definition of L2 (x; a) follows 

(2.2) L~ (x; a ) ~  L~ (x; b) a < b. 

Since x (t) is continuous, L.2 (x; a) is contimlous in a, that  is 

lira L 2 (x; b) - -  lira L~ (x; b) ---- L~ (x; a). 
b~a4-O b ~ a - O  

Then also the projection PL~(x;,,) is continuous in a~ that  is for every element, 
z, PL~(x;a)z is continuous in a. 

162 



ARKIV FOR MATEMATIK. B d  1 nr 14 

Now let us t ake  a fixed t and an a rb i t ra ry  a and consider 

Xt  (a) = PL.. (x; a) X (t) 

t ha t  is the  project ion of x ( t ) i n  L~(x; a). X t ( a ) m a y  be considered as t h a t  
pa r t  of x(t)  t ha t  is determined by  the process a t  the t ime a. We want  to 
s tudy  iiXt (a)i!. This is a continuous function of a, which in consequence of 
(2.2) is non decreasing and constant  for a ~ t. Since 

(2.3) Yh Xt (a) = Xt+h (a + It) 

we have 

I!Xt (a)l I = l[Xt+,, (a + h)i I. 

Thus it will be sufficient to t ake  t = 0. Ins tead  of X 0 (a) we then write X (a). 

There wiI1 be two ext reme cases. 
1) [!X(a)[[ is constant .  Then ][X(a)ll=]lX(O)][=i]x(O)i I for every a so t ha t  

X ( a ) =  x (0). This m a y  be wr i t ten  

(2.4) x (0) e L.~ (x; a) 

for every a. Then also 

(2.5) x (h) = Thx(O) e ThL~ (x; a - -  h) = Le (x; a) 

for every h so t ha t  

L.~ (x) := L~ (x; a). 

DEFINITION. A s ta t ionary  process for which L 2 (x; a)== Le (x) will be called 
deterministic.  

Thus we have  proved 

PROPOSlTIO~ A. I f  fiX(a)! I is constant ,  then  x(t) is determil,istie. 

The converse is obvious. 
RE~UA:aK. I t  would be sufficient to know tha t  (2.4) holds f(,r some negat ive 

number  a. For then, in consequence of (2.2), (2.5) holds for every h _--<_ 0, so 
t ha t  L~ (x; 0) =:: L~ (x; a). Hence  

L~ (x; na) = L.~ (x; (n - -  1) a) . . . . .  Le (x; O) 

for everv integer n, posit ive or negatiw,,  so t h a t  the process is deterministic.  
2) i lx : ( ( , ) i l -~  o w h e n .  ~ - -  ~ .  ~ '~ t  

Then 

M = ] ~ L ~ ( x ;  a)== Iim L.)(x; a). 

Pj~ x (0) .... 0 
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and, since (2.1) implies T h M ~  M, we have for every t 

PM x (t) ~--- 0 

SO that  M tL~ (x). But  M c L~ (x), hence M-----O, that  is M contains only the 
zero element. 

DEFINITION. A stationary process for which H L2(x; a)=0  will be called 
a 

completely non-deterministic. 
Thus we have proved 

PROPOSITION B. If  IIX (a)II ~ 0 when a -+ - -  0% then the process is completely 
non-deterministic. 

Conversely if the process is completely non-deterministic, then [IX(a)l]-+ O, 
for if X(a)-~ z, IIzIl~=0, then zeL~(x; a) for every a, and thus z e M ,  which 
is a contradiction. 

We now shall prove that  an arbitrary stationary process is the stun of two 
uncorrelated components, one deterministic and the other completely non- 
deterministic, or more precisely 

THEOREM 1. x(t) is a stationary process. Then there exist two other sta- 
t ionary processes y (t) and z (t) such that  

a) �9 (t) = y (t) + z (t) 

b) y (t) e L~ (x), z (t) e L~ (x) 

c) y ( s ) . t z ( t )  for every s and t 

d) y (t) is deterministic 

e) z (t) is completely non-deterministic. 

PROOF. Take 

M = I I L s ( x ; a )  and N=L.~(x)  e M .  

From (2.1), we have ThM = M, and hence, since Th is unitary, TaN ~ N. P u t  

y (t) --~ P~: x (t) and z (t) = P~- x (t). 

Then a), b) and c) are satisfied. From 

y ( t + h )  + z ( t  + h ) = x ( t + h ) - - - - T h x ( t ) = T h [ y ' ( t ) + z ( t ) ] ~ - - T h y ( t ) + T h z ( t )  

we obtain 

y ( t + h ) = T h y ( t )  and z ( t + h ) = T a z ( t ) .  

Thus y (t) and z (t) are stationary processes. I t  remains to prove d) and e). 
From a) and Item 

L m(y) c M  and L ~ ( z ) ~ N  
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w e  h a v e  

so tha t  

(2.6) L~ (y) ---- M 

When t < a we have 

y ( t ) e M c L ~ ( x ;  a) and 

and hence 

Bu t  from a) 

so tha t  

ARKIV FOR MATEMATIK. B d  1 a r  14 

L~ (x) ~ L~ (y) ~ L~ (z) c M r N = L2 (x) 

and L~(z) = N. 

z (t) -~- x (t) - -  y (t) eL .  z (x; a) 

L2(y ; a)C L~(x; a) and L~(z; a)~L~(x;a). 

L~ (x; a)cL~ (y; a) �9 L.~ (z; a) 

L~ (x; a) ~ L~ (y; a) ~ L.~ (z; a) 

or, with the aid of (2.6), 

L.~(y; a ) ~  ML~(x; a) and L~(z; a)~-- NL~(x; a). 

Now we get 

L., (y; a) -- ML.~ (x; a) ---- M ----- L~ (y). 

Hence y (t) is deterministic. Fur the r  

Mz : ~IL~. (z; a) : H N L t  (x; a) : N H L t  (x; a) : N M  : 0. 
a a a 

Hence z (t) is completely non-deterministic.  This completes the proof of the 
theorem. 

3. Now we will s tudy the completely non-deterministic processes. Therefore 
we assume tha t  y ( t ) :  0, so t ha t  x (t)----z (t) is a completely non-deterministic 
process. 

For  every  pair (a, b) of real numbers,  a < b, we construct  

and 
L~ (x; a, b) = L~ (x; b) e Z~ (x; a) 

x (a, b) : PL, (x; a, b) x (b). 

Then x(a, b)J.Lt(x; a), and x(a, b) may  be interpreted as tha t  par t  of x(b) 
t ha t  is not  determined of the process a t  the t ime a. 

F rom the Remark  to Proposit ion A, we conclude 

x (b) r L~ (x; a) 
o r  

(3.1) ~ (a, b) 4= 0. 
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Hence L~ (x; a, b) always contains elements with posit ive norm. I t  is clear t ha t  

T h x ( a ,  b) = x ( a  + h, b + h). 

The element  x(a, b) is continuous in (a, b), for take,  for instance, a t < a 
and b~ > b, then  

x(a,, bl)--x(a, b)= x(a,, b,)-- z(a,, b) + x(a,, b)--x(a, b) 

= PI._~ (~;<,b, / [x (bj) - -  x (b)] + P*~,(.~;,,.< x (b). 

Here the last  two te rms  tend to zero when a~ ~ a and b , -~  b because 

! P~., (~;~.,~,~ [ .  (b,) - -  �9 (b)] i~ =< ilx (b,) - x (b)i[ - -  0 

independent ly  of a~, when b , -+  b and 

w h e n  a I --> a .  

We are now going to define a r andom spectral  function Z (S) (KARttUNEN [2], 
p. 36). This means in this case, tha t  for every measurable  set S on the t-axis, 
with finite measure  m (S), there shall be a r andom variable  Z (S)ELe (x)sa t i s -  
fying 

1) I f  S~ and S o are disjoint sets 

z ( s ,  + s '~) - -  z (8 , )  + z (s~).  

2) I f  S~ and S~ are disjoint sets 

3) i lz  (s)!i ~ --- ~ (,~). 

z ( s , )  • z 6%). 

2) and 3) m a y  be combined in 

E {z (s , ) z (&)}  = . ,  (s~ s~) 

for a rb i t ra ry  $1 and S~. 
I f  Z(S) is defined and satisfies 1), 2) and 3), when S is an interval ,  then  

there is a unique extension to all measurable  sets. Thus we have  t:o define 
Z (If;) for every interval  If; = (a, b). 

Le t  u be a fixed posit ive number  and take  a zEL~(x; O, v). For every 
interval  Ia  ~ we take  

B 

( 3 . 2 )  Z ( I 2 )  = P.~..i~;.,,,)frhzdh 
A 

where A < a- - -~ /  and B > b. (The integral  is defined as a R iemann  integral, 
CRASheR [1], p. 21.9.) Z(II') is independent  of A and B, since the  variat ions 
of the integral, when A and B vary,  are or thogonal  to L. a (x; a, b). 
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When a <: b < c we have 

(3.3) 

(3.4) 

and for arbi t rary  h 

(3.5) 
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z (I~) + z (I~) = z (I~) 

z (I~) • z (I~i) 

Yh Z (I~) = z tlb+~,~ 
\ a + h ] "  

From these three properties we get 

i ! z  (I~)l'-'  = �9 (b - ~) 

where T ~ O. ~ depends on z, and we shall prove 

PROPOSITION C. One can find a z, such tha t  ~ = 1. 

t)Roor. I t  will be sufficient to find z so tha t  ~ > O, 
corresponds r = 1. 

Suppose the contrary  so tha t  for every z ELz (x; O, u) 

i! Z (If'),i il i:2 ~ O. 

Then for every z'EL~ (x) 

E {Z (X~I) ~'1 = 0. (3.6) 

We take 

for then to z,/V~ 

z : y ( s t ,  tl) and z ' : y ( s ~ , t . z )  
where 

(3.7) 0 : ~ s l  < ~ t ~ u  and 0 ~ s , ~ < t ~ u  

and where we have writte~l 

y (s~ t) : x (s, u) - -  x (t, u) : PL.,(~; ~,t)X (u). 

Thus z and z' are certain projections of x (u), and they  satisfy (3.6) for arbi t rary 
(s~, t~) and (s~, t2) satisfying (3.7). But  we know from (3.1) t ha t  

y (0, u) = x (0, u) --  PL,(~; 0.~ ) x (u) =4= 0 

and we shall show tha t  this leads to a contradiction. 
First  we have zEL2(x;  0, u) and z ' E L , ( x ;  O, u). We  then obtain 

J u 

I t  

= {frhzdh:} 
y~ 

= ( E { T ~ z ~ ' l d h  
J 
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t h a t  is 
?t 

(3.8) f E  {T~u (s,, t , )u ( s .  t_~)} = 0. 

Let  (~ be a posit ive number  < �89 u, and consider 

E {Thu (0, u) U (~, u - ~)}. 

This expression is a continuous function of h, which when h = 0 takes  the  
value IlY (5, u -  5)tl ~, which is continuous in ~, and when ~ -~  0 we obta in  

flu (5, u - 5 ) ?  ~ Ilu (o, ~)11 ~ = lt~ (o, u ) ?  > o. 

Then it  is possible to choose 5, such t ha t  ][y (6, u - -  5)1] 3 > 0 and 7 < ~ such t h a t  

X 
L = J E  {Thy (0, u) y (5, u - -  (5)} dh fi= O. 

I f  we make  a subdivision to ~ (~, t~, t~, . . .  t,~ -= u -- 5 of the in terval  (5, u - - / t )  
by  a finite number  of points,  then  we have  

L=- ~ f E{Thy(O,u)y(ti_l ,  ti)}dh 
i = l  - - 7  

= ~ f E { T h y ( t i - l - - 7 ,  t i+7)  y(ti-l , t ' )}dh. 
i = 1  - - 7  

Let  us compare  this with 

?+(ti-tl_ 1) 
M= ~ f E{Thy( t i_ l - -7 ,  t i+7)y( t i_ l ,  ti)}dh 

i = l  - -7 - - ( t i - - t i _ l )  

= ~ fg{Yhy(t~-~--r,t,+r)y(t~-~,t3}dh 
i = 1  - - u  

~ 0  

as a consequence of (3.8). 
M and L are independent  of the division of ((~, u -  5). Since L =~ 0 and 

M--~ 0, if we can show M-- - -L ,  we have  the  contradiction.  

n --? 7 + ( t i - - t i _ l )  

M - - L =  Z f + f E{Thy ( t i - l - -7 ,  t i+ 7) Y(ti-i,t,)} dh" 
i = 1  - -~- - ( t i - - t i_ l )  7 

(3.9) ] M -- L I ~ 2 ~ (ti --  t,-1)]1Y (0, u)]1" ]1Y (ti-1, ti)H 
i = 1  

= 2 ~ liy (o, u)II" sup t! y (t~_l, ~,)II. 
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But  

and 

Hence  

y (ti-1, ti) + x (t~, u) = x (ti-1, u) 

y (ti-1,  t~) I x (t~, u). 

l[ Y (ti-1, ti)H 2 ~- l] x ( t i - , ,  u)]i 2 " -  ]1 x (ti, u)[[~. 

Since fix(t,  u)[r ~ is a continuous function of t, we can make  sup ![y(t ,_l ,  t/)] I 
as small as we please, b y  making  the  division fine enough. Hence  (3.9)yields  

[ / - -5 [=0  
and we have  got the contradiction.  

Then we can take  some z for which v = 1. The corresponding Z (la b) defined 
by  (3.2) will be the sought-for  r andom spectral  function. 

4. Le t  L.2 (Z) be the closed linear manifold determined by  the set {Z (I~)}. 
Tha t  L 2 ( Z ) =  L.z (x) will be shown in Proposi t ion D. 

Le t  us write 

Z ( a )  ---- - -  Z ( I a  ~ a < 0 

z (o) = o 

Z (a) = Z (Io a) a > O. 
Then  

This m a y  be wri t ten  

Thus we have  defined 

Z I b ( a) = Z (b) - -  Z (a)" 

Z ( ~ ) = I  b f d Z (u). 
a 

(4.1) ~ --  f a (u) d g  (u) 
--oo 

when g ( u ) =  1 in a finite interval  and = 0 elsewhere. We will define it for 
every complex-valued funct ion g (u) such t ha t  

f lg(u)l~du 
- - o o  

is finite. I f  
g ( u ) = c ,  in (a, ,  b,) 

= 0 elsewhere 

where (a, ,  b,) are  a finite number  of finite intervals,  we define 

oo 

f g (u) d Z  (u) = Y,c, [Z (b,) - -  Z (a,)].  
--OO 
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In  the general case the integral is defined as the limit of a sequence of inte- 
grals of functions g, (u), such t h a t  

(I g (~)-g,~(~*)l~du -~ o 

tha t  is 

g (u) ~- l. i. m. g,, (u) 

where g, (u) are functions taking a constant  value in each of a finite number  
of finite intervals. For  a complete discussion of this kind of integral  see 
KARnUNEN [2], p. 37. 

We have 

o o  o o  o~  

and hence 
or r162 

f g (~)dz  (~):i ~ I ~ 
- -~  --r 

I t  is clear t ha t  g in (4.1) is in L 2 (Z). Conversely, for every ~eL2  (Z), there 
is a function g (u) such tha t  (4.1) holds. For  this is obvious if ~ = Z (Ill) and 

then also if ~ = 5c, Z ( I  ~') To prove the general case, we only have to take 
, ( i v 1 "  

a sequence ~,, ~ , -+  ~, such tha t  the ~-, ~re sums of this type. Then the cor- 
responding functions g,, (u) converge in the mean to a funct ion g (u). And such 
a sequence always exists since ~EL2(Z ). The function g(u) is uniquely deter- 
mined ahnost  everywhere, for suppose 

a~ c~ 

j" ,q (U) (~ Z (gt) = :  . f  gl (~) d Z (u.). 

Then 

(4.3) 0 := ~ j [g (u) - g~ (u)] d z  ( ~ ) ~  = j I~ ( ' . )  - g~ (~)1 ~ d u  

so tha t  g ( u ) =  g, (u) almost  everywhere. 
Now put  

x l  (t) = PL~/z :  x (t). 

Then Th xl (t) : xl (t + h), and hence xl (t) is a s ta t ionary process. 

L 2 ( Z ) - - L o [ Z ( I t ~  �9 a < b = s  2[Z(Ill  ) �9 t < a <  b]. 

For  every t 

F rom the definition of Z (I2) we conclude 

x (t) J_ L2 [Z (If;); t ~_~; a < b] 

Z(I~)EL2(x; a ,b )c  L,(x; b). 
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we c(mclude 

(4.;)  

We now have proved tha t  

y (t) • L2 (Z). 

x ( t ) = x  l(t)  + y(t)  

is a decomposit ion of x ( t )  into two orthogonal completely non-deterministic 
processes, where xl (t) @ 0 (4.5). We shall prove tha t  then we have y (t) ::-- 0. 

Suppose the contrary.  Then we construct  Yl (t)=~ 0 from y (8 i~ the same 
manner  as x 1 (t) from x( / ) :  

y (t) = .~j~ (,) + z (t). 

Here z ( t ) •  (t) m a y  be ~ 0 or # 0. 

x (t) = x 1 (t) + Yl (t) A- z (t). 

171 

Hence 

(4.4) x 1 (t) E L2 [Z I b �9 t] c L2 ( , ) ,  a<b_- -<  (x ; t )  

and hence L2(Xl; a ) c  L2 (x; a), so tha t  

II  L. (Xl; a) c II  L. (.; a)  ~-  0 

tha t  is, xl (t) is completely non-deterministic. 
i! ]ix1 (t) ji is independent  of t. We mus t  have 

(4.5) i! xl  (t)~ # 0. 

For  if xl (t) = 0 then x (t) s L2 (Z), and hence Le (x) s L2 (Z). Bu t  as L~ (Z) c L 2 (x) 
and contains elements with positive norm, this is a contradiction. 

PROPOSITIO~ D. L 2 (Z) - -  s (x), or wha t  is equivalent, xl (t) - -  x (t). 
PROOF. Le t  

y (t) = x (t) - -  x x (t). 
Then 

so tha t  y (t) is a s ta t ionary process. F rom (4.4) we have 

y (t) C L2 (x; t). 
Hence 

(4.6) L~ (y; a) ~ L 2 (x; a) 

so tha t  y (t) is also completely non-deterministic.  F rom 

y (t) -~- x (t) - -  x l  (t) = P r . , ( v ) e ~ . , ( z ) x  (t) 
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~Now x 1 (0) e L2 (Z) so that  
ao 

xl (0) =- f g (u) d Z (u) 
- - o o  

for some function g (u), for which 

oo 

(4s) f[ g (u)]3 d u is finite. 

From (4.4) we conclude that  

(4.9) 

that  is 

g(u)----0 for almost every u > 0 ,  

0 

X 1 ( 0 )  = f a (u) d z (u). 
- -oo  

Then we get from (3.5) 
t 

(4.10) Xl (t) = f g (u --  t) d Z (u). 

Similarly there is a random spectral function Z' (Ia b) E L~ (y) and a complex- 
valued function g' (u), such that  

t 

Yl (t) = f g' (u - -  t) d Z'  (u). 

From (4.7) and from 

it follows that  

We also have 

and analogously to (4.7) 

From (4.6) we conclude 

L~ (Z') c L2 (y) 

L~ (Z') .1. L2 (Z). 

z (t) 6 L2 (y) l L~ (Z) 

z (t) l L2 (Z'). '-, 

Z' ( !~ )c  L2 (y; b ) c  L2 (x; b) 

so that  we have 

(4.11) L~[Z'  (I~); a < b < t ] c  L~(x;  t). 

Now take the element 

0 0 

,7 = f g' (3 - u) d z (u) - f g (8 - u ) e  z '  (~/ 
$ 8 
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where s is some negative number. We assert tha t  for a convenient s 

In fact 

a) I[~ II # 0 
b) y e L ~  (x; 0) 

c) ~•  t<=O. 

0 0 

[l~li ~ :  f l g ' ( ~ - ~ ) l : a ~  + f l g ( ~ - u )  l : d u  > o 
$ $ 

for some s since 

0 0 

llm f l g ( ~  - ~)I ~ d,~ ----- f I g (~)I ~ d u  = I1~1(0)1i ~ > O. 

Thus a) holds, b) is an immediate consequence of (4.4) and (4.11), and to 
prove c) we write 

t t 

:~ (t) = f g (u - t) d Z (u) + f g' iu - -  t) d Z' (u) + ~ (0. 
~ o o  --oo 

Then c) is trivial when t < s, and when s < t < 0, it  follows from 

t t 

E {x(t) i?} = f g (u - - t )  g' ( s - - u ) d u - -  f g" (u - - t )  g ( s - - u ) d u = O :  
$ $ 

But' it  is a contradiction that  a), b), and c) all hold. Hence y (t)~-~ 0. 
completes the proof of Proposition D. 

This 

5. We denote by L ~ (a, b) the class of complex-valued functions/(~t) defined 
for a ~ u N b, for which 

b 

f ll(u)l~ du 

is finite. Let  us make the convention that,  for every / (u )E  L 2 (a, b), we write 
] ( u ) = 0  when u < a  or u > b .  Then 

/ (u) E L ~ ( - -  co, co) and L ~ (a, b) c L ~ ( - -  co, co). 

Take the function g (u) defined in the previous section. (4.8) and (4.9) yield that  

(5.1) g (u) e L ~ ( - -  co, 0). 

Hence a(u--t)eL2(--oo, O) for every t < 0 .  Denote by L2{g(u-- t ) ;  t < 0 }  
the closed linear manifold in L ~ ( - - c o ,  0) determined by  these elements. 
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Now we may sum up the results in 
TrIEORE~t 2. For every completely non-deterministic stationary process x (t) 

we have an integral representation 

t 

(5.2) x (t) = f a (u - t) d Z (u) 
--oo 

where 

a) Z ( I~ )=  Z ( b ) -  Z (a) is a random spectral function satisfying 

(5.3) Th Z (I~) = Z r 
a + h l  

b) g (u) fi L 2 (-- cx~, 0) 

c) L 2 { g ( u - t ) ; t < 0 } - ~ L  2 ( - o % 0 ) .  

If 
t 

(5.4) x (t) ~- f gl (u --  t) d Z 1 (u) 
--oo 

is another representation, gl (u) and Z 1 (I~) satisfying a), b), and c), then there 
is a complex number o~, [ e o ] :  1, such that  

g l  ( U ) =  cO g (U) for almost every a 

Z 1 (lab) = co Z (I~), 

and conversely, for every co, [co l-=--1, g~ (u) and Z~ (I~) determined by these 
formulas satisfy a), b), c), and (5.4). 

PROOF. The existence of the integral representation is an immediate con- 
sequence of 1)roposition D and (4.10). a) is (3.5) and b) is (5.1). We obtain 
from (5.2) 

L2 (x; 0 ) ~  L2[Z(I~); a < b < 0]. 

But (4.4) yields 

so that  

(5.5) 

Now let us prove c). Suppose that  c) is false. 
/ (u) E L" (-- oo, 0), such that  

0 

f l / ( u ) l ' d ~  > O  

0 

(5.~) f ~ (~: - ,) / (.~,.1 e ~ : o t < o. 
- -  o o  

L2[Z(I~); a < b < 0]~  L2(x; 0) 

L2(x; 0) = L2[Z(I~); a < b < 0]. 

Then there is a funcbion 
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Take the corresponding element in L2 [Z (I~); a < b ~ 0] 

0 

r = f / (u) d Z (u). 
- - o o  

Then 
0 

I1r ~ : f l/(u) l~d~ > o 
- - o o  

and from (5.6) 

(5.7) 
in contradiction to (5.5). 

.L L2 (x; O) 

Conversely c) implies (5.5). For the falseness of (5.5) yields the existence of 
a $ 4= 0 satisfying (5.7), and then we obtain from (5.6) the falseness of c). 

From (5.5) we get 

(5.8) L 2(x; a, b) = L 2[Z( I~  a); a g c < d ~ b]. 

Now let gl (u) and Z1 (I~) satisfy the conditions in the theorem. Then Z1 (I~) 
satisfies (5.5) and then (5.8). Hence we obtain 

Lz[Z(I~);  a ~ c < d ~ b] = L2[ZI( I  d); a ~ c < d_--< b]. 

In particular for every finite interval (a, b) there is a function / ( u ) eL  2 (a, b), 
such that  

b 

(5.9) Z1 I b ( ~ = f l ( ~ )  dg (u ) .  

By virtue of (4.3) /(u) is uniquely determined almost everywhere. This function 
/(u), defined by (5.9) for the interval (a, b), will satisfy the same relation for 
every sub-interval. For since Z (I~o) and Z1 (I~) satisfy (3.3), we have (a < c < b) 

c b 

zl  (I~) + zl  (II;) = f / (~) d Z (u) + f / (4) d z (~) 
(t c 

and from (3.4) we then get 

e l) 

(5.10) gl(I~, ) = : f / ( u ) d Z ( u )  and Z ~ ( I ~ ) : f / ( u ) d Z ( u ) .  
C 

Conversely, if ] (u) satisfies (5.10) then also (5.9) holds for this function. There- 
fore, if we define a function /(u) for every real u, such that  (5.9) holds for 
every interval of the type (n, n + ]) where n is an arbitrary integer, then this 
function satisfies (5.9) for every interval (a, b). 

Now we shall prove that  this function /(u) is constant ahnost everywhere. 
Since Z (I~) and Z 1 (I~) satisfy (5.3), we have from (5.9) 

b - -  h b 

Ib [Ib-h~ z ,  (o)  = r~ z , ,  o_,,, = r,, f / (u) d z (u) = f / ( u .  a) d g (u). 
a - - h  a 
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Hence for every h 

/ (u) = / (u - h) 

for almost every u. Then it  is a simple consequence that  ] (u) is constant 
almost everywhere, that  is there exists a number to such that  

1 (u) = o~ 

almost everywhere. Then (5.9) yields 

ZI ( I ~ ) =  ~o Z (I~) 

I z b 2 and from II 1 (Ia)[t ----]l Z (I~)Ii ~ we conclude that  I r [ = 1. Hence 

t t 

x (t) = f  g (u - t) d z (u) = f ~ g (,, - -  t) d Z , ( u )  

and from (5.4) we obtain 

gl (u - t) = ~ g (u - t) 

for almost every u. 
Finally, i f [ t o [ =  1, then it is evident that  gl(U) and Z1 (I~) satisfy a), b), 

c), and (5.4). This completes the proof of Theorem 2. 

6. We may express Theorem 2 in another way. We obtain from (4.2) 

(6.1) r (s - -  t) = E { x (s) x(t)} ~-- / g (u  - -  s) g (u  - -  t) d u.  
- - r 1 6 2  �9 

The integral formula in Theorem 2 then establishes an isomorphism between 
Lg. (x) and L 2 (--o% c~), where the element x (t) e L 2 (x) corresponds to g (u --  t) e 
e L  ~ ( - -  0% cr {x (t)} is a complete set in L2 (x) on account of the definition 
of L2 (x), and { g ( u  - -  t); t a rb i t rary}  is a complete set in L2 (-- cx), c~), which 
follows from c) in Theorem 2. We also conclude from c) that  L 2 (x; a) cor- 
responds to L 2 (--cx), a) and hence that  L2 (x; a, b) corresponds to L ~ (a, b). 

To prove Theorem 2 we have constructed Z ( I ~ )  and then obtained g (u) 
with the properties b) and c). Now we see, that  if we h a w  found g (u)satis- 
fying b), c) and (6.1), then we are able to establish the isomorphism and denote 
by Z (I~) the element in L~ (x) tha t  corresponds to the function 

in L 2 (-- 0% oo). 

[(u) = 1 a < u < b  

-~- 0 elsewhere 

REMARK. This construction of Z (I~) is possible even if g (u) does not satisfy c). 
Then the following example shows that  the uniqueness pronounced at  the end 
of Theorem 2, is false if we omit c). For take 
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Then 

g (u) ~ 0 u ~ 0 and gl (U) ---- 0 ~1 ~ 0 

--~:e" u ~ 0  ---= e 2[tr]-" "~1 U -:: O. 

.t 'g(?2 - -  8) ~ ( u - -  t) d U  : j ' g l  ( U - -  b') g l  (U - -  t )  ( t u .  

Here c) holds for g (u) bu t  is false for al(U). 

7. A simple consequence of Theorem 2 is 

THEOREM 3. Let  y (t) ~ 0 and z (t) 4= 0 be two uncorrelated completely non- 
deterministic processes and x (t) ~ y (t) + z (t). Then 

L~ (x) 4= L2 (y) ~9 L~ (z). 

PROOF. From Theorem 2 we have 

t 

y(t) =.i'g(u--t) dZ(u) and z(t) ~--.fg' (u--t) dZ'(u). 
- ~  -or  

Pu t  

- -  / g '  ( u )  d Z --  . /g  ( - -  u) Z' 
0 0 

Obviously E { x ( t )  i~l--~0 for every t, so tha t  ~ •  Since ~ > 0  this 
proves the theorem. 
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