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Deterministic and non-deterministic stationary random
processes

By Oror HANNER

1. Let z(f) be a complex-valued random process depending on a real con-
tinuous parameter f, which may be regarded as representing time. We will
assume that, for every ¢, the mean value E{z(!)} =0 and the variance
E{|z )]’} is finite. Then, in accordance with KHINTCHINE [3], we say that
z (t) is a stationary random process if the function

r(t)=E {z(s + t)x(s)}
is independent of s. Then 7 () has the properties

r(s—1t) =E{z(s) 2 ()}
7(0)==E{|z(@®)|*} > 0.
We shall also assume that 7 (¢) is continuous for ¢ = 0. Then
Eflz¢t+2) —z@®)?} =2r0)—r(R)—r(—h) >0

when A ~ 0, and
lr@) —r )P =1E{@® —2@)zO)I* = E{lz() —= ()"} E{|=(0)]"} > 0

when s -, so that r(¢) is continuous for every ¢{. The process will then be
called a continuous stationary random process (KHINTCHINE [3]).

We shall in this paper study such processes and prove a decomposition
theorem, which says that an arbitrary process of this type is the sum of two
other processes of the same type, where one is deterministic and the other is
completely non-deterministic (Theorem 1), and where the completely non-
deterministic part can be expressed in terms of a random spectral function
(Theorem 2).

The corresponding decomposition theorem for a stationary process depending
on an integral parameter or, in other words, for a stationary sequence, has
been stated by Worp [5] in 1938. It has later been simplified and completed
by Kormocororr [4] using the technique of Hilbert space. In a more syste-
matic way KARHUNEN {2] introduced Hilbert space methods into the theory of
probability. Using his results we shall be able to prove our theorems.

15 161



0. HANNER, Determinisiic and non-determinisiic stationary random processes

2. Consider a continuous stationary process z(t). It may be interpreted as
a curve in the Hilbert space L, (x) which consists of random variables of the type

n
Dleva(ty)
r=1

¢, being constants, and of random variables which are limits of sequences of
such sums in the sense of mean convergence. The scalar product of two random
variables x and y is defined as E {zjj} and the norm |z, is defined by

lof? = E{|a[*}.

Hence, two random variables in L, (z) are orthogonal if and only if they are
uncorrelated.
That the process is continuous means that the curve is continuous, that 18

'z (t) — @ (s)] - 0

when s -~ {. As a consequence of the continuity we get that L, (x) is separable.
For the set {x(r); r rational} is a countable complete set in L, (z).

If 4 and B are closed linear subspaces of L, (x), orthogonal to each other,
we denote by A & B the direct sum of 4 and B, and, if 4 > B, we denote
by A & B the orthogonal complement of B with respect to 4. Further let P,
be the projection of L, (x) onto A.

Let T, be the unitary linear transformation defined by

Twa(t) =z (t + h)

(KARHUNEN [2], p. 55). The transformations T, constitute an abelian group:
T,T:.=Tyr. The existence of such a unitary transformation is equivalent to
the process being stationary.

We denote by L,(x;a) the closed linear manifold in L, (x) determined by
the set {z (¢); t = a}, that is the least closed linear manifold containing all the
x(t) when t<a. If z€L,(x;a) then Trz€L,(x; a + #) and conversely, so
that we write

2.1) ThLy(z; a) = L, (z; a + k).

From the definition of L, (z; a) follows

(2.2) L,(z;a)< Ly(z; ) - a<b.
Since  (t) is continuous, L, (r; ¢) is continuous in @, that is

lim L, (z; b) = lim L, (z; b) = L, (x; a).

b—>a+0 b—+a—0

Then also the projection Py, is continuous in a, that is for every element
" i . 9l a) ¥
2, P1,2;0)2 18 continuous in a.
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ARKIV FOR MATEMATIK. Bd 1 nr 14
Now let us take a fixed ¢ and an arbitrary @ and consider
Xi(a) = Pr, ;02 (t)

that is the projection of z(f) in L, (2; a). X:(a) may be considered as that
part of x(f) that is determined by the process at the time a. We want to
study | X;(a)]. This is a continuous function of @, which in consequence of
(2.2) 1s non decreasing and constant for a = t. Since

(23) Th Xt (d) = XH.h (a + }L)

we have
1 Xe(@)] = Xesn (@ + B
Thus it will be sufficient to take ¢ = 0. Instead of X, (a) we then write X (a).

There will be two extreme cases.
1) /X (a)| is constant. Then |X (a)] =X (0)] = [z (0)| for every a so that
X (@) = x(0). This may be written
(2.4) z(0)€L,(z; a)
for every a. Then also
(2.5) z(h)=T,z(0)€T, L, (z; a — h)= L, (x; a)

for every 4 so that
Ly (z) = L, (z; a).

DerinrtioN. A stationary process for which L, (z; @) = L, (r) will be called
deterministic.

Thus we have proved ,

Proposirion A. If | X (a)! is constant, then « () is deterministic.

The converse is obvious.

Remark. It would be sufficient to know that (2.4) holds for some negative
number ¢. For then, in consequence of (2.2), (2.5) holds for every A =0, so
that L, (z; 0) == L, (z; a). Hence

L, (e; na) =L, (e; (n— 1)a) == L, (2; 0)

for every integer n, positive or negative, so that the process is deterministic.
2) X {a); -0 when a - —oco. Put

M= II]Z2 (x; a) = lim L,(z; a).

a->—o0

Then
Pyx (0)=20

163



0. HANNER, Deterministic and non-deterministic stationary random processes

and, since (2.1) implies T, M = M, we have for every ¢
P MT (t) = 0

so that M L L, (x). But M < L, (z), hence M =0, that is M contains only the
zero element.

DEFINITION. A stationary process for which H Ly (x; a) =0 will be called
a
completely non-deterministic.
Thus we have proved

ProrosiTion B. If | X (a)| -~ 0 when a -~ — oo, then the process is completely
non-deterministic.

Conversely if the process is completely non-deterministic, then | X (a)| - 0,
for if X (a) -z, 2] +0, then z€L,(x; a) for every ¢, and thus z €M, which
s a contradlctlon

We now shall prove that an arbitrary stationary process is the sum of two
uncorrelated components, one deterministic and the other completely non-
deterministic, or more precisely

THEOREM 1. x(f) is a stationary process. Then there exist two other sta-
tionary processes y (£) and z(f) such that

a) z() =y () +2(t)

b) y () €Ly (z), 2(t) €Ly (x)

c) y(s)Lz(t) for every s and ¢

d) y (t) is deterministic

e) z(t) is completely non-deterministic.

Proor. Take .
M='HL3(1;; a) and N=L,(z)o M.
Q

From (2.1), we have T, M = M, and hence, since T is unitary, T, N = N. Put
y(t)=Pxz) and z(f)=Pxrz().
Then a), b) and c¢) are satisfied. From
yE+h) +zt+h)=z@t+h)=Ta@®) =Talyt) + z()] = Try(t) + Thz(t)

we obtain
yt+h)=Thy(@) and 2@+ h)=Th2(t).

Thus y(t) and 2(¢) are stationary processes. It remains to prove d) and e).
From a) and from

) Lyyy« M and L,2)< N
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we have

L,(@)< Ly(y) ® Ly (2)= M & N = L, (x)
so that
(2.6) L,wy)=M and L,(z)=N.

When ¢ = a we have

y(t)€EM<L,(x;a) and z()=2x(@)—y(t)EL,(z; a)

and hence
L,(y; a)= Ly (z; ) and L, (z; a)< L, (z; a).
But from a)
L, (z; a)< Ly (y; a) ® L, (2; a)
so that

L, (z; a) = L, (y; 0) ® L, (2; )
or, with the aid of (2.6), ‘
L,y;a)=ML,(x;a) and L,(z; a) = NL,(z; a).
Now we get
L,(y; a) = ML, (2; o) = M = L, (y)-
Hence y (t) is deterministic. Further

MZ=HL2(Z; a)=HNL2(x; a)=NHLg(w;a)=NM=O.

Hence z(t) is completely non-deterministic. This completes the proof of the
theorem.

3. Now we will study the completely non-deterministic processes. Therefore
we assume that y (¢{) =0, so that z(f) =2(f) is a completely non-deterministic
process.

For every pair (a, b) of real numbers, @ < b, we construct

L, (x; a, b) = L, (z; b) © L, (z; a)
and

x(a, b) = PL. (r;0,0) T (b).

Then z(a, b) L L, (x; a), and z(a, b) may be interpreted as that part of x(b)
that is not determined of the process at the time a.
From the Remark to Proposition A, we conclude

z (0) ¢ L, (z; a)

or

(3.1) z (a, b) + 0.
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0. HANNER, Deterministic and non-deterministic stationary random processes
Hence L, (z; a, b) always contains elements with positive norm. It is clear that
Tha(a, b)=x(a + kh b+ k).

The element z(a, b) is continucus in (e, b), for take, for instance, o, < a
and b, > b, then

z{a,, b)—x(a, b) =z (a,, b)) —x(a, b) + x(a, b) —x(a, b)
= Proian) [2(0) — 2 (B)] + Prysa, a2 (0).
Here the last two terms tend to zero when a, - ¢ and b, — b because
Protay o () — 2 O] = e (b,) —2(®) >0
independently of a«,, when b, - b and
© Prza,az(®) =0

when a, — a.

We are now going to define a random spectral function Z (S) (KARHUNEN [2],
p. 36). This means in this case, that for every measurable set S on the ¢-axis,
with finite measure m (S), there shall be a random variable Z (S)€ L, (x) satis-
fying

1) If 8, and S, are disjoint sets

Z(S; + 8,)=Z(8,) + Z(S,).
2) 1 8§, and S, are disjoint sets
Z(S) LZ(S,).
3) 12.(8)1 == m (S).
2) and 3) may be combined in
E{Z(8))Z(S5)} = m (S;8.)

for arbitrary S, and S,.

If Z(8) is defined and satisfies 1), 2) and 3), when S is an interval, then
there is a unique extension to all measurable sets. Thus we have to define
Z(I}) for every interval I" = (a, b).

Let u be a fixed positive number and take a z€L,(z; 0, #). For every
interval I? we take

B
3.2) Z(I) ZPL?(I;{:,L)foLde
1

where 4 <@ —u and B >b. (The integral is defined as a Riemann integral,
Cramir {1], p. 219.) Z(I?) is independent of A4 and B, since the variations
of the integral, when 4 and B vary, are orthogonal to L, (z; a, b).
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When ¢ < b < ¢ we have

(3.3) Z(I + Z (1) = Z (L)
(3.4) Z(I%) 1 Z(I5)

and for arbitrary A

(3.5) TWZ(I%) = Z(IV3)).

From these three properties we get
ZI)F=10—a)
where 7 = 0. 7 depends on 2, and we shall prove
Prorosition C. One can find a 2z, such that 7= 1.

Proor. It will be sufficient to find z so that 7> 0, for then to V'
corresponds 7 = 1.
Suppose the contrary so that for every z€ L, (x; 0, u)

!JZ(ZZ)“Z =0
Then for every 2’ € L, (2)
(3.6) E{Z(I")7) =o0.
We take
z=y(s,t) and 2" =y(s,, 1)
where
(3.7) 0=s <t =u and 0=, <, =u

and where we have written
y(s. t)=x(s, u) —x{t, u) = Pr,ize 0o (1)

Thus z and 2’ are certain projections of z (1), and they satisfy (3.6) for arbitrary
(s:, t,) and (s,, ;) satisfying (3.7). But we know from (3.1) that

Y (0’ u) = 't(()’ M) = PLg(x;O‘u)x (u) == 0
and we shall show that this leads to a contradiction.

First we have z€L, (z; 0, u) and 2" € L, (z; 0, u). We then obtain

u .
0 =E{Z(I})7'} = E{Pryiwom [ Thzdh?)

—u

:E{f"T,,zdhz_’}

—

— [EB{T427') dh

-
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0. HANNER, Deterministic and non-deterministic stationary random processes
that is

"
(3.8) JE{Try (51, )y (s, )} = 0.

Let 6 be a positive number < 4%, and consider
E{Tny (0,u)y (6, u— 0)}.

This expression is a continuous function of %, which when 2 =0 takes the
value |ly (8, w — )|, which is continuous in &, and when 0 ~ 0 we obtain

ly (8, u — 8)F -y (0, w)* =2 (0, w){* > 0.

Then it is possible to choose 8, such that ||y (8, » — 8)[* > 0 and y < J such that

L=fE{Thy(o,u)y(a,u—a)}dH:o.

-

If we make a subdivision t, =34, ¢, ¢,, ... t, = u — & of the interval (6, u — J)
by a finite number of points, then we have

X —
L= 2 [E{Thy(0,w)y (s, t)} dh

i=1—y
= fE’ {Try(tic1—p, ti + ) y (tim1, t:)} d b
i=1—y

Let us compare this with

n  YHt—ti_3)

=Z f E{Thy(ti-1— 1, fi+y)?/(ti—1,ti)}dh

=1 ~y—(f—t;_q)

E{Tvy(tica—y, i +p)y{ti-1, t)} db

as a consequence of (3.8).
M and L are independent of the division of (8, v —4d). Since L 4= 0 and
M =0, if we can show M = L, we have the contradiction.

n -y 7=t 1) §
M_L:Z f + f E{Tvy@tia—y,ti+y) y(ti-1,t)} db.
i=1 —y={t;—t;_q) T :
(3.9) |M — LI <2 2 (6 — ti-1)ly (0, w)] -y (6, )]

= 2ully (0, w)] - sup [y (t:ia, 2.
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But
Yy (i1, ) + x (&, w) =z (i1, u)
and
Y (o1, &) Lx(l, u).
Hence

Iy (tm1, &) P =l (t1, W — |z (t:, w) [

Since ||z (¢, )|? is a continuous function of £, we can make sup ly (61, ) |
as small as we please, by making the division fine enough. Hence (3.9) yields

|M—L|=0

and we have got the contradiction. ) _
Then we can take some z for which v = 1. The corresponding Z (I?) defined

by (3.2) will be the sought-for random spectral function.

4. Let L,(Z) be the closed linear manifold determined by the set {Z (I')}.
That L,(Z) = L, (z) will be shown in Proposition D.
Let us write

Z(a)=—2Z ) a<0
Z(©0)=0
Z(a)=Z (9 a>0.
Then
Z(IY) = Z (b) — Z (a).
This may be written ,
Z(I) = [dZ @)

Thus we have defined

(4.1) , t=fg(w)azw)

when g(u)=1 in a finite interval and = 0 elsewhere. We will define it for
every complex-valued function g (u) such that

@

flg(u)[zdu

is finite. If "
gw)=c in (4, b)

=0 elsewhere

where (a,, b,) are a finite number of finite intervals, we define
Jo)aZw) =3 lZ({)—Z (@)
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In the general case the integral is defined as the limit of a sequence of inte-
grals of functions g, (u), such that

=

[1a ()= gu(w)|?du ~0

that is
q (’I/L) =L1m. gn (u)

n— 00

where ¢, (1) are functions taking a constant value in each of a fiqite number
of finite intervals. For a complete discussion of this kind of integral see
Karnungn [2], p. 37.

‘We have
(+2) E{ [g,(u)d j% dZ}>fmwi@wu
and hence
;fg@0d2&0f=:Ji ) du.

It is clear that ¢ in (4.1) is In L, (Z). Conversely, for every (€ L, (Z) there
is a function g (u) such that (4.1) holds. For this is obvious if { = Z (I") and

then also if {=Z¢, Z(1 b"v). To prove the general case, we only have to take

a
a sequence Z,, £, - {, such that the {, are sums of this type. Then the cor-
responding functions ¢, (u) converge in the mean to a {unction ¢ (#). And such
a sequence always exists since { € L, (Z). The function g (u) is uniquely deter-
mined almost everywhere, for suppose

’w g ) dZ(u) = fyl (w) d Z (u).
Then ” \
(4.3) 0="[1g(w) — g1 ()] d Z (u) ng ) — 01 ()] du

so that ¢ («) == gy (u) almost everywhere.
Now put
2y (8) = Prz = (1).
Then T'yz, (t) =, (t + k), and hence z, (¢) is a stationary process. For every ¢
Ly(Z) =L{Z(I"); a<b=t]®L,[Z(I); t=a<b]
From the definition of Z(I!) we conclude
)L Ly [Z(10); txa<?]
Z " €Ly(z; a,b) < L,(z; b).
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Hence

(4.4) @ () €L [Z (1) a <b=t]<=L,(x;t)
and hence L, (x;; a)< Ly{z; a), so that

Lz @5 a) =[] La(@; @) =0

that is, #; (t) 1s completely non-deterministic.
|z, ()] 1s independent of . We must have

(4.5) L ()] + 0.

For if z; () = 0 then x (t) L L, (Z), and hence L, (z) L L, (Z). But as Ly(Z)< Ly (x)
and contains elements with positive norm, this is a contradiction.

Prorosition D. I, (Z) = L,(x), or what is equivalent, z; (f) = z (¢).
Proor. Let

y(@)y ==z @) —z. ().
Then

Twy(ty=y(t -+ h)

so that y () is a stationary process. From (4.4) we have

y(¢) €Ly (5 0).
Hence

(4.6) L (y; a) < Ly (z; a)
so that y(t) is also completely non-deterministic. From

yO)=z) — 2 () = Pr.mor.mz()
we conclude

(.7 v () 1Ly (Z).
We now have proved that
() =z () +y ()
is a decomposition of z(f) into two orthogonal completely non-deterministic
processes, where x; (¢) = 0 (4.5). We shall prove that then we have y (2) = 0.
Suppose the contrary. Then we construct 9, (¢} == 0 from y (#} in the same
manner as xy (¢) from z (¢):
y () =y (&) + 2 ().
Here 2 (¢) Ly, (¢) may be =0 or = 0.
z(t)=w () + o () +20).
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Now z, (0) € Ly (Z) so that
0=z
for some function ¢ (u), for which
(4.8) flg(u) [*d % is finite.

From (4.4) we conclude that
(4.9) g (u) =0 for almost every u >0,
that is

2y (0) = [0 (w) d Z (u).

Then we get from (3.5)
t

(4.10) 2 ()= [g(u—1)dZ (w).

—00

Similarly there is a random spectral function Z'(I%)€ L, (y) and a complex-
valued function ¢ (), such that

u ()= [ o (u—8)dZ (u).

From (4.7) and from
L, (Z')= Ly (y)
it follows that

Ly(Z) L Ly (Z).
We also have
2(t) €Ly (y) L Ly (2)
and analogously to (4.7)
' z(t) LLy(Z)). -

From (4.6) we conclude
Z ()< Ly (y; b) < Ly (a3 )
so that we have

(4.11) Ly[Z (IY); a < b < t]< Ly (3; 8).

Now take the element
0 0
n=[dG—wdZw— [g(s—wdZ ()
& &
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where s is some negative number. We assert that for a convenient s

a) [n|+0

b) 7 € Ly (z; 0)

c) pixz(t), t=0.
In fact

0 0
”77|i2=f|g'(s—u)|2du +f|g(s—u)|’du>0
8 8
for some s since

0 0
lim []g(s—w) | du = [|g()[*du= |z ©) >0.

Thus a) holds. b) is an immediate consequence of (4.4) and (4.11), and to
prove c) we write

t t

)= [gw—0dZ(w) + [¢u—1)dZ @)+ 2().

- 00

Then c¢) is trivial when ¢ < s, and when s <t < 0, it follows from
t t .
E {z (t) 7} =fg(u—t) g'(s—u)du—fg'(u—t) g(s—u)du=0.

But it is a contradiction that a), b), and ¢) all hold. Hence é/(t) = 0. This
completes the proof of Proposition D.

5. We denote by L*(a,b) the class of complex-valued functions f (%) defined
for ¢ < w = b, for which
b

[1f @] du

a

is finite. Let us make the convention that, for every f(u)€ L?(a,b), we write
f(u)=0 when u <a or w>b. Then

f(u)€ L? (— o0, 00) and LZ?(a,b)< LE(— oo, o0).
Take the function g (u) defined in the previous section. (4.8) and (4.9) yield that
1) g (u) € L* (— o0, 0).

Hence g(u —t)€L%(— 00,0) for every t = 0. Denote by L, {g(u—1t); t =0}
the closed linear manifold in L*(— oo, 0) determined by these elements.
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Now we may sum up the results in

TuroreM 2. For every completely non-deterministic stationary process x (t)
we have an integral representation

t

(5.2) z(t)=[g(u—1t)dZ(u)

where

a) Z(I’)=Z(b) — Z (a) is a random spectral function satisfying

(5.3) TvZ(I)y=ZI2+)
b) g (u) € L* (— o0, 0)
¢) Ly {g(u—1t); t < 0} == L*(— o0, 0).
If

t
(5.4) (t) = [ gy (u— 1) d Zy (u)

is another representation, g; (v) and Z, (I) satisfying a), b), and c), then there
is a complex number w, |w|=1, such that
g1 (v) = @ g (u) for almost every a
Zy (I}) = w Z(I)),
and conversely, for every w, |w|=1, g; () and Z, (I?) determined by these
formulas satisfy a), b), ¢), and (5.4).

Proor. The existence of the integral representation is an Immediate con-
sequence of Proposition D and (4.10). a) is (3.5) and b) is (5.1). We obtain
from (5.2)

Ly (x; 0)= Ly [Z (I%); a < b= 0]
But (4.4) yields

Ly [Z(I'); a <b=0]< Ly(x; 0)
so that
(5.5) Ly(x; 0) = Ly [Z(I%); a <b = 0].

Now let us prove c). Suppose that c) is false. Then there is a function
f(u) € L* (— 00, 0), such that

0
[lf@[du=0

JAaeT

gl —fHa)de 0 150

.\
1
(=]
=

[
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Take the corresponding element in L,[Z (I%); a < b = 0]

0
t=[1(u)dZ@u).
Then o

0
Ielt= [1f@)|Pdu>0
and from (5.6) -
(6.7) £1Ly(; 0)

in contradiction to (5.5).
Conversely ¢) implies (5.5). For the falseness of (5.5) yields the existence of
a { = 0 satisfying (5.7), and then we obtain from (5.6) the falseness of c).
From (5.5) we get

(5.8) Ly(z;0,b) =Ly [Z(I%);a=c<d =D].

Now let g, (w) and Z, (I) satisfy the conditions in the theorem. Then Z, (I?)
satisfies (5.5) and then (5.8). Hence we obtain

LiZIYase<d=bl=L[Z,(I);a=c<d=b]

In particular for every finite interval (a,b) there is a function f(u)€ L?(a, b),
such that

(5.9) Zu) = [fw) dZ(u

By virtue of (4.3) f () is uniquely determined almost everywhere. This function
f (u), defined by (5.9) for the interval (a, b), will satisfy the same relation for
every sub-interval. For since Z(I’) and Z, (I°) satisfy (3.3), we have (a < ¢ < b)

¢ b

Zi (L) + Zy (D) = [fw)d Z(u) + [ () dZ(u)

a 4

and from (3.4) we then get
(5.10) L(I9) ~ff ydZ(u) and Z,(I") = ff () d Z (u )

Conversely, if f(u) satisfies (5.10) then also (5.9) holds for this function. There-
fore, if we define a function f(u) for every real w, such that (5.9) holds for
every interval of the type (n,n + 1) where n is an arbitrary integer, then this
function satisfies (5.9) for every interval (a, b).

Now we shall prove that this function /{u) is constant almost everywhere.
Since Z (I1°) and Z; (I°) satisfy (5.3), we have from (5.9)

b—h

b
Zy( ) =T Zy () =Th [ ) d Z(w) = [ f(u—~ D) d Z (w).
a—h a
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Hence for every %
f(u)=[(u—k)

for almost every w. Then it is a simple consequence that f(u) is constant
almost everywhere, that is there exists a number w such that

fw)=o
almost everywhere. Then (5.9) yields
Z, (%)= wZ(I})
and from | Z, (I%)|*=|Z (I*)|* we conclude that |w|=1. Hence

x(t)—fg(u—t)dzw fwg(u—t)dzuu)

and from (5.4) we obtain
(u—1t)=wog(u—1t)
for almost every w.
Finally, if |w| =1, then it is evident that g; (u) and Z, (I') satisfy a), b),
c), and (5.4). This completes the proof of Theorem 2.

6. We may express Theorem 2 in another way. We obtain from (4.2)

oo

(6.1) rs—t)=E{a®)z@)} = [gw—s)gu—1)du

-— 00

The integral formula in Theorem 2 then establishes an isomorphism between
Ly (z) and L?(—o0, c0), where the element x (t) € L, (x) corresponds to g (v —t) €
€ L*>(— 00, 00). {z(t)} is a complete set in L, (x) on account of the definition
of L, (z), and {g (u—t) ¢t arbitrary} is a complete set in L, (— oo, 00), which
follows. from c¢) in Theorem 2. We also conclude from c) that L2 (x; a) cor-
responds to L?(— oo, a) and hence that L, (x; a, b) corresponds to L2 (a, b).

To prove Theorem 2 we have constructed Z(I’) and then obtained g (u)
with the properties b) and ¢). Now we see, that if we have lound g (w) satis-
fying b), ¢) and (6.1), then we are able to establish the isomorphism and denote
by Z(I') the element in L, (z) that corresponds to the function

fuy=1 a<u<bd
=0 elsewhere
in L?(— oo, o0).
ReMark. This construction of Z (I%) is possible even if g (u) does not satisfy c).

Then the following example shows that the uniqueness pronounced at the end
of Theorem 2, is false if we omit c). For take
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gu)=0 u=0 and g u)=0 u=0

=" u<0 — 62["1"" + 1 u < 0.
Then
fg(u —s)g(u—1t)du :fgl (u—s) gy (u—1)du.

Here ¢) holds for g (u) but is false for ¢, (u).

7. A simple consequence of Theorem 2 is

TureorEM 3. Let y (1) + 0 and 2z (¢) = 0 be two uncorrelated completely non-
deterministic processes and z{f) =y (¢) + z{¢). Then

Ly(x) + Ly () ® L, (2).

Proor. From Theorem 2 we have

H H

y@O=[o(uw—-0dZw) and 2()=[g (u—t)dZ ()

Put
1= [0 (—wdZm)— [g(—w) dZ (u).
¢ o

Obviously E{z(t)i} =0 for every ¢, so that #1Ly(z). Since # >0 this
proves the theorem.
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