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Non-separability of the Gelfand space
of measure algebras

Przemys�law Ohrysko, Micha�l Wojciechowski and Colin C. Graham

Abstract. We prove that there exists uncountably many pairwise disjoint open subsets

of the Gelfand space of the measure algebra on any locally compact non-discrete abelian group

which shows that this space is not separable (in fact, we prove this assertion for the ideal M0(G)

consisting of measures with Fourier-Stieltjes transforms vanishing at infinity which is a stronger

statement). As a corollary, we obtain that the spectras of elements in the algebra of measures

cannot be recovered from the image of one countable subset of the Gelfand space under Gelfand

transform, common for all elements in the algebra.

1. Introduction

We recall standard definitions and facts from commutative harmonic analy-

sis and Banach algebra theory (see [R], [Kan] and [Ż]). Let G denote a locally

compact abelian group with the dual group Γ and let M(G) be the algebra of

all complex-valued Borel regular measures on G equipped with a total variation

norm and convolution product. With these operations M(G) becomes a semisimple

commutative, unital Banach algebra. The spectrum of a measure μ∈M(G) will

be denoted by σ(μ). We define the Fourier-Stieljtes transform of μ∈M(G) as a

mapping μ̂:Γ→C given by the formula

μ̂(γ)=

∫
G

γ(−x)dμ(x) for γ ∈Γ.

The abbreviation �(M(G)) will stand for the Gelfand space of M(G) (the space

of all maximal ideals in M(G) or equivalently of all multiplicative linear function-

als on M(G)). �(M(G)) endowed with weak∗ topology is a compact Hausdorff
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topological space. Evaluation of the Fourier-Stieltjes transform of a measure at a

point γ∈Γ is a multiplicative linear functional which enables us to view the Fourier-

Stieltjes transform of a measure as a restriction of its Gelfand transform to the set

of uniqueness Γ. However, there are many different multiplicative linear function-

als on M(G) and Γ is not dense in M(G). The last fact is a reformulation of the

well-known Wiener-Pitt phenomenon observed in [WP] (for the first precise proof

see [S], consult also [W], [G] and [R]).

Let μ∈M(G). We say that,

1. μ is Hermitian if its Fourier-Stieltjes transform is real-valued,

2. μ has independent powers if all distinct convolution powers of μ are mutually

singular.

We will mainly work with the ideal M0(G) of measures with Fourier-Stieltjes

transforms vanishing at infinity and with its Gelfand space�(M0(G)) of all maximal

modular ideals (multiplicative linear-functionals) which is locally compact but non-

compact (because M0(G) is not unital). The spectrum of μ∈M0(G) is defined as

a spectrum of μ in a unitization of M0(G) which coincides with the spectrum of μ

in M(G) (this follows form the fact that all multiplicative linear functionals extend

from the ideal to the whole algebra, see Lemma 2.2.5 in [Kan]) and hence will also

be abbreviated by σ(μ).

2. The case of a compact group

We start with the definition of a dissociate set in a locally compact abelian

group.

Definition 1. A subset Θ of Γ is called dissociate if every element ω∈Γ may

be expressed in at most one way as a product

ω=

n∏
j=1

θ
εj
j ,

where the θi are distinct elements of Θ and εj is allowed to be 1 or −1 when θ2i �=1

but has to be equal 1 if θ2i =1. Every product of the above form will be called a

word with letters θ1, ..., θn. The set of all words using letters from Θ will be denoted

Ω(Θ).

It is obvious from the definition that any subset of a dissociate set is a dissociate

set. In the sequel we will need the following elementary lemma concerning dissociate

sets.
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Lemma 2. Let Θ⊂Γ be dissociate. If Θ1,Θ2 are subsets of Θ such that #Θ1∩
Θ2<∞ then #(Ω(Θ1)∩Ω(Θ2))<∞.

Proof. Let us take θ∈Ω(Θ1)∩Ω(Θ2). Then

θ=

n1∏
j=1

θ
εj
j =

n2∏
k=1

(
θ′k
)ε′

k

where θj∈Θ1, θ′k∈Θ2 and the restrictions imposed on εj , ε
′
k are the same as in

Definition 1. Now, let us observe that Θ1∪Θ2⊂Θ is also a dissociate set. So

n1=n2, θj=θ′j and εj=ε′j which gives θ∈Ω(Θ1∩Θ2) and of course Ω(Θ1∩Θ2) is

finite since #Θ1∩Θ2<∞. �

From now on G denotes a compact abelian group with the discrete dual

group Γ. We are going to use Riesz products and hence we recall briefly their con-

struction in the spirit of the introduction to Chapter 7 of [GM]. Let Θ⊂Γ be dissoci-

ate and let a:Θ→C be a function satisfying −1<a(θ)<1 for θ∈Θ with θ2=1 and 0≤
|a(θ)|≤ 1

2 for θ∈Θ with θ2 �=1. We also define trigonometric polynomials qθ as follows

qθ =1+a(θ)θ if θ2 =1 and qθ =1+a(θ)θ+a(θ)θ if θ2 �=1.

Our restrictions on the function a implies that qθ≥0 for every θ∈Θ. For each finite

subset Φ of Θ we define the partial product

PΦ =
∏
θ∈Φ

qθ.

We easily see that PΦ is a non-negative element of L1(G) with norm one. Since

Θ is dissociate, the formula for Fourier coefficients of PΦ is given as follows (Φ=

{θ1, ..., θn})

P̂θ(ω)=

⎧⎪⎨
⎪⎩
1 if ω=1,∏n

i=1 a(θi)
(ε) if ω=

∏n
j=1 θ

εj
j ,

0 otherwise.

Here a(θi)
(εi)=a(θi) if εi=1 and a(θi)

(εi)=a(θi) if εi=−1. By this properties it is

clear that the weak∗ limit of {PΦ} (over increasing finite subsets Φ of Θ) exists and

is a probability measure which will be called the Riesz product based on Θ and a

and will be denoted by R(a,Θ). Its Fourier-Stieltjes coefficients are given by the

similar formula to the one presented above (for simplicity we write μ:=R(a,Θ))

μ̂(ω)=

⎧⎪⎨
⎪⎩
1 if ω=1,∏n

i=1 a(θi)
(ε) if ω=

∏n
j=1 θ

εj
j ,

0 otherwise.
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The following theorem (see Corollary 7.2.3 in [GM] and [BM]) includes the easily ver-

ifiable condition on the property of having independent powers for Riesz products.

Theorem 3. Let G be an infinite compact abelian group and let μ:=R(a,Θ)

be a Riesz product based on a and Θ. Then μ has independent powers if and only if

∑{∣∣a(θ)∣∣2n : ∣∣a(θ)∣∣< 1

2

}
+
∑{

1−
∣∣a(θ)∣∣ : ∣∣a(θ)∣∣> 1

2

}
=∞

for all integers n≥ 1.

It is an exercise in calculating spectra in Banach algebras that for a probability

measure μ with independent powers we have {z∈C:|z|=1}⊂σ(μ) (consider the

subalgebra A ofM(G) generated by μ and the unit and use the fact ∂σA(μ)⊂∂σ(μ)).

However, much stronger result is true (see Theorem 6.1.1. in [GM] and [BBM]).

Theorem 4. If μ is a Hermitian and probability measure on a locally compact

abelian group G with independent powers then σ(μ)={z∈C:|z|≤1}.

Following M. Zafran (see [Z]) we introduce the definition of measures with a

natural spectrum.

Definition 5. Let μ∈M(G). We say that μ has a natural spectrum if

σ(μ)= μ̂(Γ).

From the formula of Fourier-Stietljes coefficients we see that if a is a real-valued

function satisfying the assumptions of Theorem 3 then every Riesz product R(a,Θ)

is a Hermitian measure probability measure with independent powers which, by

Theorem 4, gives

σ
(
R(a,Θ)

)
= {z ∈C : |z| ≤ 1}.

In particular, since in this case the Fourier-Stieltjes transform of R(a,Θ) is real-

valued, the Riesz product R(a,Θ) does not have a natural spectrum (for the same

conclusion restricted to G=T see Theorem 3.9 in [Z]).

We are going to use the main theorem from the Zafran’s paper (see Theorem

3.2 in [Z]).

Theorem 6. Let G be a compact abelian group. Let

C :=
{
μ∈M0(G) :σ(μ)= μ̂(Γ)= μ̂(Γ)∪{0}

}
.

Then the following hold true:
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1. If h∈�(M0(G))\Γ then h(μ)=0 for μ∈C .

2. C is a closed ideal in M0(G).

3. �(C )=Γ.

The last ingredient is an observation of Sierpiński.

Fact 7. There exists uncountably many infinite subsets of natural numbers

such that the intersection of each two is finite.

We are ready now to state and proof our main theorem

Theorem 8. Let G be a compact abelian group. Then �(M0(G)) contains

continuum pairwise disjoint open subsets. In particular, �(M0(G)) is not separable.

Proof. Let Θ be an infinite countable dissociate subset of Γ enumerated by

natural numbers. Then, by the observation of Sierpiński it contains uncountably

many infinite subsets {Θα}α∈R such that the intersection of each two is finite. For

α∈R we form an auxiliary function bα :Θα→N by the following recipe: bα(θ) is

equal to the index of θ in Θα (for example, if Θα={θ3k :k∈N} then bα(θ3k)=k).

Also, for every α∈R, let us define a function aα :Θα→R by the following formula

aα(θ)=
1

ln(bα(θ)+5)
.

Let us form a family measures μα :=R(aα,Θα). Then, for every α∈R we have

μα∈M0(G) and also

supp μ̂α = {θ∈Γ : μ̂α �=0}=Ω(Θα).

Since the intersection of every two different sets from the collection {Θα}α∈R is

finite, we have by Lemma 2, #Ω(Θα1)∩Ω(Θα2)<∞ for α1, α2∈R, α1 �=α2. On the

other hand,

supp ̂μα1 ∗μα2 =supp μ̂α1∩supp μ̂α2 =Ω(Θα1)∩Ω(Θα2)

which shows that μα1 ∗μα2 is a trigonometric polynomial. It is clear from our choice

of a function aα that for every α∈R the assumptions of Theorems 3,4 are satisfied

and so σ(μα)={z∈C:|z|≤1}. Let us take now z0∈C, |z0|<1 and z0 /∈R. Then, there
exists an open neighbourhood V of z0 in {z∈C:|z|≤1} which does not intersect

the real line. Put Uα :=μ̂α
−1

(V )⊂�(M0(G)). By the continuity of the Gelfand

transforms of elements the set Uα is open in �(M0(G)). We are going to show

that Uα1∩Uα2=∅ for α1 �=α2 which will finish the proof. First of all, Uα∩Γ=∅
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for every α∈R because the Fourier-Stieltjes transform of μα is real-valued for every

α∈R and V does not intersect the real line. Suppose on the contrary that there

exists ϕ∈Uα1∩Uα2 for some α1, α2∈R, α1 �=α2. Then μ̂α1(ϕ) �=0 and μ̂α2(ϕ) �=0

which gives

(1) ϕ(μα1 ∗μα2) �=0.

But ϕ belongs to �(M0(G))\Γ and μα1 ∗μα2 is a trigonometric polynomial and all

trigonometric polynomials are in Zafran’s ideal C . Hence (1) contradicts item 1. of

Theorem 6. �

Remark 9. In fact, an examination of the proof given above shows that we

did not use the whole strength of Theorem 6. It would be enough to refer to the

following fact: if μ∈M(G) is an absolutely continous measure then the Gelfand

transform of μ vanishes off Γ, which is true for any locally compact abelian group

(not necessary compact) because L1(G) forms the ideal in M(G) (put I=L1(G) in

the discussion following this remark).

Let A be a commutative, unital Banach algebra with closed ideal I . Then (see for

example Lemma 2.2.5 in [Kan])

�(A)=�(I)∪h(I), �(I)∩h(I)=∅

where h(I):={ϕ∈�(A):ϕ|I=0} and �(I) is open in �(A). In our case, since

M0(G) is a closed ideal in M(G) we have the following corollary from Theorem 8.

Corollary 10. Let G be a compact abelian group. Then �(M(G)) contains

continuum pairwise disjoint open subsets. In particular, �(M(G)) is not separable.

In the set-theoretical terminology we may say that the Gelfand space of a

measure algebra on a compact group (also for non-compact as will be seen in The-

orem 12) does not have ccc (countable chain condition).

3. The general case

The aim of this section is to prove the generalisation of Theorem 8.

Theorem 11. Let G be a non-discrete locally compact abelian group. Then

�(M0(G)) contains continuum pairwise disjoint open sets. In particular, this space

is not separable.
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Analogously as in the compact case (see the discussion after Remark 9 and

Corollary 10) we are able to use the last theorem to obtain the information on the

topological properties of �(M(G)).

Corollary 12. Let G be a non-discrete locally compact abelian group. Then

�(M(G)) contains continuum pairwise disjoint open sets. In particular, this space

is not separable.

We start with two lemmas.

Lemma 13. In order to prove Theorem 11 it suffices to show that M0(G) con-

tains continuum independent power Hermitian probability measures {μα}α∈R such

that μα∗μβ∈L1(G) for all α �=β.

Proof. We will give two proofs.

The first one is a simple observation that the assertion follows from an exami-

nation of the proof of Theorem 8 (instead of the use of Theorem 6 to obtain a final

contradiction we base on the fact the Gelfand transform of an absolutely continuos

measure vanishes off Γ—see Remark 9).

The second proof is more direct: since each μα is a Hermitian probability

measure with independent powers we have σ(μα)={z∈C:|z|≤1} (see Theorem 4).

Let z0=
1+i√

2
. For each α, let Uα={ϕ∈�(M0(G)):|μ̂α(ϕ)−z0|< 1

10}. We claim that

Uα∩Uβ=∅ for α �=β. Suppose to the contrary that there exists ϕ in this intersection.

Then ∣∣μ̂α∗μβ(ϕ)−i
∣∣= ∣∣μ̂α(ϕ)μ̂β(ϕ)−μ̂α(ϕ)z0+μ̂α(ϕ)z0−i

∣∣< 2

10
.

Hence, σ(μα∗μβ)∩{z :|z−i|< 2
10}�=∅. On the other hand, because μα∗μβ∈L1(G)

is a Hermitian probability measure, σ(μα∗μβ)⊂(μ̂αμ̂β)(Γ)∪{0}⊂[−1, 1]. This con-

tradiction completes the proof. �

Lemma 14. Let G be a non-discrete locally compact abelian group. Then

M0(G) contains continuum independent power Hermitian probability measures

{μα}α∈R such that μα∗μβ∈L1(G) for all α �=β in each of the following cases:

1. G is compact.

2. G=R

3. G=R
n×H , where H is a locally compact group and n≥1.

4. G has an open, compact (infinite) subgroup H .

Proof. The first part was established in Theorem 8.

By the first part there exists a set {να}α∈R of continuum independent power

Hermitian probability measures in M0(T) such that the Fourier-Stieltjes transform
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of να∗νβ has a finite support for each α �=β. For each α let μα be the measure

on R whose Fourier-Stieltjes transform agrees on Z⊂R with να and is linear in the

gaps. Then {μα}α∈R is a set of independent power Hermitian probability measures

in M0(R) (see Appendix A.7 in [GM]). We have to verify that μα∗μβ∈L1(R) for

α �=β. Let L:M(R)→M(T) be a mapping defined by the quotient homomorphism

of groups, P :R→R/2πZ=T. Then L sends positive measures to positive measures

and positive singular measures to singular measures. Let us justify the second fact.

If a positive measure ρ on the real line assigns non-zero value to a Lebesgue null

Borel set E⊂R then L(ρ)(P (E))=ρ(E)>0. Of course, P (E) is a Lebesgue null set

in T, so L does indeed take non-absolutely continous measures to non-absolutely

continous measures. On the level of Fourier-Stieltjes transforms we have L̂(ρ)=ρ̂|Z.
Therefore, the probability measure L(μα∗μβ) has the Fourier-Stieltjes transform

̂L(μα∗μβ)=μ̂αν̂β with a compact support. Thus the measure μα∗μβ , which is a

preimage of να∗νβ , is absolutely continous proving the second part of the lemma.

If n=1 we take the products of each of the continuum measures from the

second part with the Haar measure on a fixed, relatively compact, open subset

of H . If n>1, we write G=R×(Rn−1×H) and consider the products of each of the

continuum measures from the second part with a Haar measure on a fixed, relatively

compact, open subset of Rn−1×H .

The first part applied to H gives continuum measures on H with the required

properties (we treat those measures as elements in M(H)). The Fourier-Stieltjes

transforms of those measures are constant on each translate of the anihilator of

H (the group of all elements γ from Γ satisfying γ(x)=1 for all x∈H) by Theo-

rem 2.7.1 in [R]. But the anihilator of H is equal to the dual group of G/H (check

Theorem 2.1.2 in [R]) which is a discrete group showing that the anihilator of H

is a compact group. By this considerations the measures μα are in M0(G) and the

other properties of these measures as elements of M(G) are obvious. �

From the last lemma we have an immediate corollary.

Corollary 15. Let G be a non-discrete locally compact abelian group. Then

M0(G) contains continuum independent power Hermitian probability measures

{μα}α∈R such that μα∗μβ∈L1(G) for all α �=β.

Proof. By the structure theorem for locally compact abelian groups (see for

example [R]), G=R
n×H where H has a compact open subgroup. If n>0 then the

second part of Lemma 14 establishes the corollary. If n=0 then G is either compact

and we are able to apply the first part of Lemma 14 or G has a compact open

subgroup and we can use the fourth part. �
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The proof of Theorem 11 is a straightforward application of Corollary 15 and

Lemma 13.

4. An open problem

Let us start with a definition.

Definition 16. Let A be a commutative Banach algebra with unit and let

S⊂�(A). We say that S generates the spectrum in A, if for every x∈A we have

σ(x)=
{
ϕ(x) :ϕ∈S

}
.

In addition, we say that the spectrum in A is countably generated, if there exists a

countable set S⊂�(A) which generates the spectrum in A.

Using Corollary 12 we prove the following fact.

Fact 17. Let G be a non-discrete locally compact abelian group. Then the

spectrum in M(G) (also in M0(G)) is not countably generated.

Proof. Let S⊂�(M(G)) be any set which generates the spectrum in M(G) and

let us consider the uncountable family of measures {μα}α∈R⊂M(G) constructed in

the proof of Theorem 12 together with an uncountable family of pairwise disjoint

open sets {Uα}α∈R⊂�(M(G)) used in the same proof. Then it is obvious that

S∩Uα �=∅ for every α∈R (since otherwise σ(μα) �=μ̂α(S) contradicting the definition

of S) and so the set S has to be uncountable. �

It is clear that if a commutative, unital Banach algebra A has separable Gelfand

space then the spectrum in A is countably generated. However, the reverse impli-

cation seems to be an open problem.

Problem 18. Let A be commutative Banach algebra with unit and assume that

the spectrum in A is countably generated. Does it follow that �(A) is separable?

Let us add two remarks concerning the last question.

For the measure algebra on the compact group, proving that the Gelfand space

is non-separable appears to be at the same level of difficulty as proving that the

spectrum in this algebra is not countably generated. Nonetheless, it is not the case

in general, which we can realize easily considering the algebra H∞(D) of bounded

holomorphic functions on the unit disc. In this example, the spectrum is countably
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generated and the proof of this fact is trivial but quite the opposite, the separa-

bility of �(H∞(D)) is quite close to the content of the famous Corona theorem of

Carleson.

It is worth-noting that the discussed problem is solved for some important

classes of commutative Banach algebras. Indeed, let us take a commutative, uni-

tal Banach algebra A satisfying M(A)=∂(A) (the last abbreviation stands for the

Shilov boundary of A, see [Kan] or [Ż] for the definition) and assume that the spec-

trum in A is generated by a countable set S⊂M(A). Towards the contradiction

suppose that S �=M(A). Then, there exists ϕ∈M(A)=∂(A) and an open set U�ϕ
with the property U∩S=∅. Recalling that the points in ∂(A) have the following

so-called peak point property (for a proof, consult [Kan] or [Ż]) i.e. there exists

x∈A and open subset V �ϕ of U such that ‖x̂|V ‖∞>‖x̂|X\V ‖∞, we obtain a con-

tradiction because S⊂X\U⊂X\V and so ‖x̂|X\U‖∞=r(x). In particular, since

every commutative, symmetric Banach∗ algebra A satisfies M(A)=∂(A) and also

every commutative, regular Banach algebra has this property, we have a broad col-

lection of significant examples for which our problem has an affirmative answer. For

arbitrary commutative Banach algebra the above argument shows that the Shilov

boundary is included in the closure of any set which generates the spectrum in this

algebra.
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