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The dual of Brown representability for some
derived categories

George Ciprian Modoi

Abstract. Consider a complete abelian category which has an injective cogenerator. If its

derived category is left-complete we show that the dual of this derived category satisfies Brown

representability. In particular, this is true for the derived category of an abelian AB4∗-n category

and for the derived category of quasi-coherent sheaves over a nice enough scheme, including the

projective finitely dimensional space.

Introduction

The relevance of derived categories in algebraic geometry has been understood

since the time of Grothendieck and his school. When one works with derived cate-

gories, an important problem is to construct adjoints. The main formal tool used

for doing this is the celebrated Brown Representablity Theorem. This theorem is

formulated in a general abstract setting, namely for a triangulated category with

coproducts, by Neeman in [16]. A main problem which remained open in Nee-

man’s book is whether the dual of a well-generated triangulated category satisfies

Brown representability. In order to fix our notions, let us say that Brown repre-

sentability holds for a triangulated category with coproducts if every cohomological

functor which sends coproducts to products is representable (by a contravariant

hom-functor). For the dual statement, the triangulated category which we work in

should have products and every homological product preserving functor has to be

representable (by a covariant hom-functor). In this paper, we show that Brown rep-

resentability is satisfied by the dual of some well-generated triangulated categories.

Note that the derived category of quasi-coherent sheaves over a nice enough scheme

(including the projective space of finite dimension over a commutative ring with

one) fulfills our hypotheses, hence its dual must satisfy Brown representability.
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This paper continues the work from [11]–[14] and [3]. First, in [11] we gener-

alize the idea of [17] by showing that Brown representability hold for triangulated

categories with coproducts which are deconstructible in the sense of Lemma 2.1

below. Next in [14] it was observed that if the homotopy category of complexes

K(A) over an additive category A satisfies Brown representability, then every ob-

ject in A must be a direct factor of an arbitrary direct product of a fixed object. To

prove the converse, in the paper [12] it is dualized the approach in [11]. One of the

main results in [12] says that a triangulated category T with products satisfies the

dual of Brown representability, provided that there is a set of objects S , such that

every object in T is S-cofiltered, that is it can be written as a homotopy limit of an

inverse tower with the property that the mapping cone of all connecting morphisms

are direct factors of direct products of objects in S . This result is applied in [13] to

the homotopy category of projective modules over a ring. Here we show that, under

suitable hypotheses on an abelian category A, every complex has a homotopically

injective resolution, therefore the derived category of A is equivalent to the cat-

egory of these homotopically injective complexes. Moreover, these homotopically

injective resolutions are constructed in such a way that the mapping cone of all

connecting morphisms have vanishing differentials, allowing us to deduce Brown

representability for the dual category D(A)o.

Remark that examples provided in this article do not follow from the previous

known results in the literature. Indeed, neither [9, Theorem B] nor

[16, Theorem 8.6.1] do not directly apply, because the categories D(A) which occur

in Corollaries 1.2, 1.4 and 1.5 are not necessary compactly generated, and it is not

clear whether there is a regular cardinal α such that the category of α-exact con-

travariant functors (T α)o→Ab has enough injectives. One of the referees suggested

that it would be an interesting problem to clarify this last point. Another interest-

ing open problem is to clarify the relationship between Brown representability for

T and T o. Although they seem to be independent, to the best of our knowledge,

there is no example for fixing that fact. On the other hand, under some appropriate

set theoretic axioms, in [2] it is shown that, for any ring R, Brown representability

for K(Mod-R) and K(Mod-R)o are equivalent.

1. The main results

We start by recalling some classical facts and notations concerning derived

categories, which are necessary in order to formulate our main result. Let A be an

abelian category. Then its derived category D(A) is constructed in three steps as

follows: First, we consider the category C(A) of complexes with entries in A, whose
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objects are diagrams of the form

X˝=
(
...→Xn−1 dn−1

−→ Xn dn

−→Xn+1 → ...
)t

in A where n∈Z and dndn−1=0. The superscript ()t means the transpose, that

is we view a complex as a column, for reasons which will be explained later. As

usual, we call the maps dnX=dn differentials; we remove the subscript whenever it

is clear from the context. Morphisms in C(A) are collections of maps f ˝=(fn)n∈Z

in A commuting with differentials. For a complex X˝∈C(A) and an n∈Z, denote
Zn(X˝)=ker dn and Bn(X˝)=im dn−1, and call them the object of n-th cocycles and

the object of n-th boundaries respectively. It is clear that Bn(X˝)≤Zn(X˝)≤Xn,

thus we are allowed to consider Hn(X˝)=Zn(X˝)/Bn(X˝), the n-th cohomology

of X˝. A complex X˝ is called acyclic if Hn(X˝)=0 for all n∈Z.
In the second step we construct the homotopy category of complexes over A as a

quotient of C(A). Namely, K(A) has the same objects asC(A) andK(A)(X˝, Y ˝)=

C(A)(X˝, Y ˝)/∼, where ∼ is an equivalence relation called homotopy, defined as

follows: Two maps of complexes f ˝, g˝ :X˝→Y ˝ are homotopically equivalent if there

are sn :Xn→Y n−1, for all n∈Z such that fn−gn=dn−1
Y sn+sn+1dnX . This category

is triangulated, see [23, Theorem 10.2.4]. The suspension functor, denoted by [1],

is an automorphism of C(A) or K(A) and it is defined as follows: X˝[1]n=Xn+1,

dnX[1]=−dn+1
X and f ˝[1]=(fn+1)n∈Z.

Note that two complexesX˝ and Y ˝ are isomorphic inK(A) if there are maps of

complexes f ˝ :X˝→Y ˝ and g˝ :Y ˝→X˝ such that both compositions g˝f ˝ and f ˝g˝ are

homotopically equivalent to the respective identities. If this is the case, it is not hard

to see that X˝ and Y ˝ have the same cohomology, so the functors Hn :C(A)→A,

n∈Z, induce well defined functors K(A)→A. Therefore the full subcategory of

acyclic complexes is a triangulated subcategory of K(A). The derived category

D(A) is obtained as the Verdier quotient (see [16, Section 2.1]) of K(A) modulo

the triangulated subcategory of all acyclic complexes. A map f ˝ :X˝→Y ˝ in K(A)

which induces isomorphisms in cohomology is called quasi-isomorphism. ThenD(A)

is the category of fractions of K(A) with respect to all quasi-isomorphisms. A priori

there is no reason to expect that D(A) has small hom-sets. Note that all categories

we consider in this paper have small hom-sets, with the unique possible exception

of a (Verdier) quotient. The statement “D(A) has small hom-sets” says precisely

that D(A) lives in the universe we work in.

We shall see every object of A as a complex concentrated in degree zero, provid-

ing embeddings of A in any of the categories C(A), K(A) or D(A). Note also that,

if A has (co)products then C(A) and K(A) have (co)products and the canonical

functor C(A)→K(A) preserves them. If, in addition, these (co)products are exact
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then the full subcategory of acyclic complexes is closed under (co)products, there-

fore D(A) has also (co)products and the quotient functor K(A)→D(A) preserves

them, by [10, Theorem 3.5.1]. Note that, the exactness of (co)products in A is only

a sufficient condition, and not a necessary one, for the existence of (co)products

in D(A).

Let T be a triangulated category with products, and denote by [1] its suspen-

sion functor. Recall that if

X0 ←−X1 ←−X2 ←− ...

is an inverse tower (indexed over N) of objects in T , then its homotopy limit is

defined (up to a non-canonical isomorphism) by the triangle

holim←−−−Xn −→
∏

n∈N

Xn
1-shift
−→

∏

n∈N

Xn →holim←−−−Xn[1],

see [16, dual of Definition 1.6.4].

Now consider T =D(A), where A is an abelian category. For a complex X˝

and a positive integer n∈N, consider the truncation

X≥−n =
(
0→B−n

(
X˝

)
→X−n →X−n+1 → ...

)t
.

There is a map of complexes X≥−(n+1)→X≥−n which is the identity Xi→Xi in

degrees i≥−n, the zero map in degrees i<−(n+1) and the canonical epimorphism

X−(n+1)→B−n(X˝) in degree −(n+1). In this way, we obtain an inverse tower

X≥0 ←−X≥−1 ←−X≥−2 ←− ....

Then D(A) it is called left-complete (see [18]), provided that it has products and

X˝∼=holim←−−−X≥−n. An example of a non-left-complete derived category may be found

in [18]. In counterpart, some examples of left-complete will be provided later.

Let T be a triangulated category and let A be an abelian category. We call

a covariant functor F :T →A homological if it sends triangles into long exact se-

quences. Dually a contravariant functor F :T →A which sends triangles into long

exact sequences is called cohomological. Denote by Ab the category of abelian

groups. Following [17], we say that T satisfies Brown representability, if it has co-

products and every cohomological functor F :T →Ab which sends coproducts into

products is representable, that is of the form F∼=T (−, X) for some X∈T . Dually

T o satisfies Brown representability if T has products and every homological product

preserving functor F :T →Ab is of the form F∼=T (X,−) for some X∈T . Recall that

an injective cogenerator for A is an object Q∈A such that there is a monomorphism

from every other object to a direct product of copies of Q, see [21, Chapter IV, §6].
In the sequel we shall formulate our main results:
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Theorem 1.1. Let A be a complete abelian category possessing an injective

cogenerator, and let D(A) be its derived category. If D(A) is left-complete, then

D(A) has small hom-sets and D(A)o satisfies Brown representability.

Before we prove Theorem 1.1 we state some immediate consequences. Recall

that a complete abelian category A is said to be AB4∗-n, with n∈N, if the i-th

derived functor of the direct product functor is zero, for all i>n (see also [19]

or [6]). Clearly AB4∗-0 categories are the same as AB4∗ categories, that is abelian

categories with exact products.

Corollary 1.2. Let A be an abelian complete category possessing an injective

cogenerator. If A is AB4∗-n, for some n∈N and D(A) has products, then D(A)

has small hom-sets and D(A)o satisfies Brown representability.

Proof. We know by [6, Theorem 1.3], that D(A) is left-complete, hence Theo-

rem 1.1 applies. �

Let A be an abelian category with enough injectives. An injective resolution

of X∈A is a complex of injectives E˝ which is zero in negative degrees, together

with an augmentation map X→E˝, such that the complex 0→X→E0→E1→... is

acyclic. The injective dimension of an object X∈A is defined to be the smallest

n∈N for which X has an injective resolution of the form

0→X→E0 →E1 → ...→En−1 →En → 0,

or ∞ if such an injective resolution does not exist. Equivalently, X has injective

dimension n if it is the smallest non-negative integer for which Extn+1(−, X)=0.

The global injective dimension of A is defined to be the supremum of all injective

dimensions of its objects.

Remark 1.3. Products in module categories are exact, that is Mod-R is AB4∗

for every ring R (with or without one), hence Corollary 1.2 applies. But in this case

the derived category is known to be compactly generated, hence both D(A) and

D(A)o satisfy Brown representability, for example by [9, Theorem A and The-

orem B]. An example of a Grothendieck AB4∗ category which has no nonzero

projectives, hence it is not equivalent to a module category, may be found in

[19, Section 4]. Note also that in [6, Theorem 1.1] there are other examples of

abelian categories A which are AB4∗-n, for some n∈N, that is categories for which
D(A)o satisfies Brown representability, by Corollary 1.2 above.
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Corollary 1.4. Let A be an abelian complete category possessing an injective

cogenerator. If A is of finite global injective dimension and D(A) has products, then

D(A) has small hom-sets and D(A)o satisfies Brown representability.

Proof. We want to apply Corollary 1.2, so we will to show that A is AB4∗-n,

where n is the global injective dimension of A. Fix an index set I . The k-th

derived functor of the product
∏(k)

:AI→A can be computed as follows: Consider

arbitrary objects Xi∈A with i∈I . For every i choose an injective resolution Xi→E˝

i

of length less than or equal to n. Then
∏(k)

Xi=Hk(
∏

E˝

i), therefore
∏(k)

Xi=0

for k>n. �

Corollary 1.5. If A is the category of quasi-coherent sheaves over a quasi-

compact and separated scheme then D(A) has small hom-sets and D(A)o satisfies

Brown representability. In particular, if Pd
R is the projective d-space, d∈N∗, over

an arbitrary commutative ring with one R and A is the category of quasi-coherent

sheaves over P
d
R, then D(A) has small hom-sets and D(A)o satisfies Brown repre-

sentability.

Proof. The category of quasi-coherent sheaves is Grothendieck, hence D(A)

satisfies Brown representability (see for example [1, Theorem 5.8]). Consequently,

D(A) has products, by [16, Proposition 8.4.6]. Moreover, according to

[6, Remark 3.3], the category of quasi-coherent sheaves over a quasi-compact, sep-

arated scheme is AB4∗-n, for some n∈N.
Finally, Pd

R is obtained by gluing together d+1 affine open sets (see [22, 4.4.9]).

Hence, it is quasi-compact (see also exercise [22, 5.1.D]). Moreover, Pd
R is separated

by [22, Proposition 10.1.5]. �

In the following Corollary we point out that homotopically injective resolu-

tions exist in K(A), provided that the abelian category A satisfies the hypothesis

of Theorem 1.1. For technical reasons its proof is postponed after the proof of

Theorem 1.1.

Corollary 1.6. The following statements hold for a complete abelian category

A possessing an injective cogenerator for which the derived category D(A) is left-

complete:

(1) Every object in K(A) has a homotopically injective resolution.

(2) There is an equivalence of categories Ki(A)
∼
−→D(A).

(3) Every additive functor F :A→B to another abelian category B has a total

right derived functor RF :D(A)→D(B) (for details see [8, 1.4]).
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Remark 1.7. Notice that the conclusions of Corollary 1.6 are already known

for Grothendieck categories (see [1]). Even if the category A is not necessary

Grothendieck, but it satisfies the hypotheses of Theorem 1.1, we can easily prove (1),

but it is not clear if Brown representability for D(A)o can be deduced from this

shortest argument.

2. Proof of Theorem 1.1

The first ingredient in the proof of Theorem 1.1 is a refinement of the technique

used by Neeman in [17] and it is contained in [12]. Here we recall it shortly. Let

T be a triangulated category with products, and let S⊆T be a set of objects.

We denote by Prod(S) the full subcategory of T consisting of all direct factors of

products of objects in S . We define inductively Prod1(S)=Prod(S) and Prodn+1(S)
to be the full subcategory of T which consists of all objects Y lying in a triangle

X→Y →Z→X[1] with X∈Prod1(S) and Z∈Prodn(S). Clearly the construction

leads to an ascending chain Prod1(S)⊆Prod2(S)⊆.... If we suppose that S=S[1],
then Prodn(S)=Prodn(S)[1], by [17, Remark 1.7]. The same [17, Remark 1.7]

says, in addition, that if X→Y →Z→X[1] is a triangle with X∈Prodn(S) and

Z∈Prodm(S) then Y ∈Prodn+m(S). An object X∈T will be called S-cofiltered
if it may be written as a homotopy limit X∼=holim←−−−Xn of an inverse tower, with

X0=0, andXn+1 lying in a triangle Pn→Xn+1→Xn→Pn[1], for some Pn∈Prod(S).
Inductively, we have Xn∈Prodn(S), for all n∈N∗. Notice that X is S-cofiltered if

and only if X is in Prodω(S)∗Prodω(S) in the sense of [17]. The dual notion is

called filtered. The terminology comes from the analogy with the filtered objects in

an abelian category (see [5, Definition 3.1.1]). Using further the same analogy, we

say that T (respectively T o) is deconstructible if there is a set (and not a proper

class) of objects S=S[1], such that every object X∈T is S-filtered (cofiltered).

Note that we may define deconstructibility without closure under shifts. Indeed, if

every X∈T is S-(co)filtered, then it is also S-(co)filtered, where S is the closure of

S under all shifts.

Lemma 2.1. [12, Theorem 8] If T o is deconstructible, then T o satisfies Brown

representability.

The second ingredient of our proof is an adaptation of the argument in

[8, Appendix]. Fix a complete abelian category A, which has an injective cogener-

ator.

Recall that a complex X˝∈K(A) is called homotopically injective if

K(A)(N ˝, X˝)=0, for any acyclic complex N ˝. Denote by Ki(A) the full sub-
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category of K(A) consisting of homotopically injective complexes. It follows imme-

diately, that Ki(A) is a triangulated subcategory of A closed under products and

direct summands. Dually, we can define the homotopically projective complexes

and we write Kp(A) for the full subcategory of K(A) consisting of such complexes.

A homotopically injective resolution of a complex X˝∈K(A) is by definition a quasi-

isomorphism X˝→E˝, with E˝ homotopically injective. Homotopically injective and

projective complexes and resolutions were first defined by Spaltenstein in [20], but

we follow the approach in [8]. If every complex in K(A) has a homotopically in-

jective (projective) resolution, then this resolution yields a left (right) adjoint of

the inclusion functor Ki(A)→K(A) (respectively Kp(A)→K(A)); the argument

in [8, 1.2] generalizes with no change in this more general case. For example, if R

is a ring and A=Mod-R is the category of all right modules over R, then A has

enough projective and enough injective objects, and by [8, 1.1. and 1.2] we have

equivalences of categories

Kp(Mod-R)
∼
−→D(Mod-R)

∼
←−Ki(Mod-R).

More generally, if A is a Grothendieck category, it may not have enough projec-

tives, and the left-side functor might not be an equivalence. But it must have

enough injectives, and the right-side equivalence must hold as it can be seen from

[1, Section 5]. Another proof of this fact is contained in [4, Section 3].

We consider double complexes with entries in A, whose differentials go from

bottom to top and from left to right. That is, a double complex is a commutative

diagram of the form:

X˝,˝=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Xi+1,j
di+1,j
h

�� Xi+1,j+1

Xi,j

di,j
v

��

di,j
h

�� Xi,j+1

di,j+1
v

��

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

i,j∈Z

such that d2v=0=d2h. We denote by X˝,j the columns and by Xi,˝ the rows of X˝,˝.

LetX˝∈C(A) be a complex. We identify it with a double complex concentrated

in the 0-th column, making explicit the reason for which simple complexes are

columns. A Cartan–Eilenberg injective resolution for X˝ (CE injective resolution

for short) is a right half-plane double complex E˝,˝ (that is Ei,j=0 for j<0), together

with an augmentation map (of double complexes) X˝→E˝,˝ (with the identification

above) such that Ei,˝=0 provided that Xi=0 and the induced sequences
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0→ Hi
(
X˝

)
→Hi

(
E˝,0

)
→Hi

(
E˝,1

)
→ ...,

0→ Bi
(
X˝

)
→Bi

(
E˝,0

)
→Bi

(
E˝,1

)
→ ...

are injective resolutions for all i∈Z (see [23, Definition 5.7.1]). If X˝→E˝,˝ is a CE

injective resolution, then the induced sequences

0→ Zi
(
X˝

)
→Zi

(
E˝,0

)
→Zi

(
E˝,1

)
→ ...,

0→Xi →Ei,0 →Ei,1 → ...

are injective resolutions for all i∈Z (see [23, Exercise 5.7.1]). For constructing a

CE injective resolution for a given complex X˝ we start with injective resolutions

for Hi(X˝) and Bi(X˝), for all i∈Z. Since the sequences 0→Bi(X˝)→Zi(X˝)→
Hi(X˝)→0 and 0→Zi(X˝)→Xi→Bi+1(X˝)→0 are short exact, we use horseshoe

lemma in order to construct injective resolutions for Zi(X˝) and Xi. Assembling

together these data we obtain the desired CE injective resolution X˝→E˝,˝ (see also

[23, Lemma 5.7.1]). If E≥−n,˝ is the truncated double complex having the columns

E≥−n,j =
(
0→B−n

(
E˝,j

)
→E−n.j →E−n+1,j → ...

)t

then by the very definition of a CE injective resolution we infer that X≥−n→E≥−n,˝

is a CE injective resolution for the truncated complex.

Remark 2.2. The sequences 0→Bi(E˝,j)→Zi(E˝,j)→Hi(E˝,j)→0 and 0→
Zi(E˝,j)→Ei,j→Bi+1(E˝,j)→0 have injective components, hence they are split ex-

act for all i, j∈Z, j≥0.

Next we define the cototalization of a double complex X˝,˝ with Xi,j∈A as the

simple complex Cot(X˝,˝) having entries:

Cot
(
X˝,˝

)n
=

∏

i+j=n

Xi,j

and whose differentials are induced by using the universal property of the product

by the maps

∏

i+j=n

Xi,j →Xp,q−1×Xp−1,q
(dp,q−1

h ,dp−1,q
v )

−→ Xp,q

for all p, q∈Z with p+q=n+1.

Lemma 2.3. Consider a complete abelian category A, which has an injective

cogenerator. If X˝→E˝,˝ is a CE injective resolution of the complex X˝∈C(A) then

Cot(E˝,˝)∼=holim←−−−Cot(E≥−n,˝) is homotopically injective.
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Proof. For every n∈N we observe that there is a map of double complexes

E≥−(n+1),˝→E≥−n,˝ which is the identity Ei,˝→Ei,˝ for i≥−n, the zero map for

i<−(n+1) and the epimorphism E−(n+1),˝→B−n(E˝,˝) for i=−(n+1). Hence Re-

mark 2.2 tells us that E≥−(n+1),˝→E≥−n,˝ are split epimorphisms in each degree,

for every n∈N. According to [15, Lemma 2.17] they induce degree-wise split epi-

morphisms

Cot
(
E≥−(n+1),˝

)
→Cot

(
E≥−n,˝

)
,

for all n∈N. Thus there is a degree-wise split short exact sequence in C(A)

0→ lim←−Cot
(
E≥−n,˝

)
→

∏

n∈N

Cot
(
E≥−n,˝

) 1-shift
−→

∏

n∈N

Cot
(
E≥−n,˝

)
→ 0

which induces a triangle in K(A). On the other hand, we have

lim←−Cot
(
E≥−n,˝

)∼=Cot
(
E˝,˝

)

in C(A), and the induced triangle leads to an isomorphism

holim←−−−Cot
(
E≥−n,˝

)∼=Cot
(
E˝,˝

)

in K(A) (see also [7, Lemma 2.6]). As we noticed, Ki(A) is a triangulated subcat-

egory closed under products, hence it is also closed under homotopy limits. Finally

it remains to show that Cot(E≥−n,˝) is homotopically injective for all n∈N. But

this property holds for bounded below complexes having injective entries (see for

example [23, Corollary 10.4.7]), in particular it is true for Cot(E≥−n,˝) too. �

For every complexX˝∈C(A) having a CE injective resolutionX˝→E˝,˝ we have

an obvious map X˝→Cot(E˝,˝). Sometimes it happens that this map is a quasi-

isomorphism, in which case Lemma 2.3 above tells us that it is a homotopically

injective resolution. The following lemma shows that this is always the case for

bounded below complexes, that is complexes X˝ for which Xn=0 for n
0.

Lemma 2.4. Consider a complete abelian category A, which has an injective

cogenerator. Let X˝∈C(A) be a bounded below complex and let X˝→E˝,˝ be a CE

injective resolution. Then X˝→Cot(E˝,˝) is a homotopically injective resolution.

Proof. Without losing the generality, we may suppose that Xj=0 for all j<0,

so Ei,j=0 for i<0 or j<0. Consider the bicomplex

A˝,˝=0→X˝→E˝,0 →E˝,1 → ...,
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that is the bicomplex whose first column is X˝ followed by the columns of E˝,˝

shifted by −1. The sequence of bicomplexes A˝,˝→X˝→E˝,˝ induces a triangle

Cot
(
A˝,˝

)
→X˝→Cot

(
E˝,˝

)
→Cot

(
A˝,˝

)
[1]

in K(A), since Cot(A˝,˝)[1] is the mapping cone of X˝→Cot(E˝,˝). Now A˝,˝ is a

first quadrant bicomplex (that is Ai,j=0 for i<0 or j<0) with acyclic rows. We

claim its cototalization is acyclic, and the triangle above proves our lemma.

Because A˝,˝ lies in the first quadrant, it follows that Cot(A˝,˝)n=0 for n<0.

Fix n≥0, and let A≤n+1,˝ be the truncation of A obtained by deleting the rows in

degree >n+1, and replacing the (n+1)-th row with

...→Zn+1
(
Ai,˝

)
→Zn+1

(
Ai+1,˝

)
→ ....

Since, for 0≤m≤n+1, the computation of Cot(A˝,˝)m involves only the rows Ai,˝

with 0≤i≤m, therefore Cot(A˝,˝)k=Cot(A≤n,˝)k, for all 0≤k≤n. But A≤n,˝ is

a first quadrant bicomplex with acyclic rows which has only finitely many non-

zero rows, therefore we can obtain Cot(A≤n,˝) in finitely many steps by forming

triangles whose cones are the rows. This shows that Cot(A≤n,˝) is acyclic, hence

Cot(A˝,˝) is acyclic in degree n. Because n is arbitrary our claim is proved (see also

[15, Lemma 2.19]). �

Proposition 2.5. Consider a complete abelian category A, which has an in-

jective cogenerator, such that D(A) has products. Suppose also that for any complex

in X˝∈C(A) the cototalization of any CE injective resolution X˝→E˝,˝ provides a

homotopically injective resolution X˝→Cot(E˝,˝). Then D(A) has small hom-sets,

D(A)o is deconstructible and D(A)o satisfies Brown representability.

Proof. By hypothesis, X˝→Cot(E˝,˝) is a homotopically injective resolution,

for every X˝∈K(A). Completing it to a triangle

N ˝→X˝→Cot
(
E˝,˝

)
→N ˝[1]

we deduce that N ˝ is acyclic, that isK(A)(N ˝, I˝)=0 for all I˝∈Ki(A). By standard

arguments concerning Bousfield localizations, see [16, dual of Theorems 9.1.16 and

Theorem 9.1.13], we obtain an equivalence of categories Ki(A)
∼
−→D(A), so D(A)

has small hom-sets.

Note that every complex X˝ is isomorphic in D(A) to Cot(E˝,˝). Moreover,

Lemma 2.3 implies Cot(E˝,˝)∼=holim←−−−Cot(E≥−n,˝). But, for every n∈N, the kernel

of the degree-wise split epimorphism of complexes (see the proof of Lemma 2.3)

Cot(E≥−(n+1),˝)→Cot(E≥−n,˝) is the complex

0→B−(n+1)
(
E˝,0

)
→Z−(n+1)

(
E˝,0

)
×B−(n+1)

(
E˝,1

)
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→Z−(n+1)
(
E˝,1

)
×B−(n+1)

(
E˝,2

)
→ ...

with differentials being represented as matrices whose components are the inclusions

B−(n+1)(E˝,j)→Z−(n+1)(E˝,j) and 0 otherwise. Computing the cohomology of this

complex we can see that it is quasi-isomorphic, therefore isomorphic in Ki(A), to

the complex:

0→H−(n+1)
(
E˝,0

)
→H−(n+1)

(
E˝,1

)
→H−(n+1)

(
E˝,2

)
→ ...,

with vanishing differentials. But this last complex is the product of its subcom-

plexes concentrated in each degree and all entries are injective, hence they are

direct summands of a product of copies of Q, where Q is an injective cogenerator

of A. Therefore, every object in Ki(A) is S-cofiltered, for S={Q[n]|n∈Z}, and
Lemma 2.1 applies. �

Proof of Theorem 1.1. We want to apply Proposition 2.5, hence we have

to show that, if D(A) is left-complete, then the cototalization of a CE injec-

tive resolution X˝→E˝,˝ provides a homotopically injective resolution for the com-

plex X˝∈C(A). This is true for the truncated complexes X≥−n for all n∈N, by
Lemma 2.4 above, since X≥−n→E≥−n,˝ is also a CE injective resolution. Therefore,

X≥−n∼=Cot(E≥−n,˝) in D(A). Taking homotopy limits and using the hypothesis

and Lemma 2.3 we obtain:

X ∼=holim←−−−X≥−n ∼=holim←−−−Cot
(
E≥−n,˝

)∼=Cot
(
E˝,˝

)

and the proof is complete. �

Remark 2.6. For complexes of R-modules, where R is a ring, it is showed

in [8] that the cototalization of a CE injective resolution provides a homotopically

injective resolution. The technique used there for doing this stresses the so called

Mittag-Leffler condition, which says that limits of inverse towers whose connecting

maps are surjective are exact. Amnon Neeman pointed out that Mittag-Leffler

condition doesn’t work in the more general case of Grothendieck categories, as it

may be seen from [19, Corollary 1.6]. Consequently the argument of Keller in [8]

may not be used without changes in the case of Grothendieck categories. The fact

detailed in this Remark was learned from Amnon Neeman.

Proof of Corollary 1.6. As we have already seen the hypotheses of Proposi-

tion 2.5 are satisfied, hence (1) and (2) hold as it is established in the proof of this

Proposition. From here the statement (3) is straightforward. �
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