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Fourier dimension of random images

Fredrik Ekström

Abstract. Given a compact set of real numbers, a random Cm+α-diffeomorphism is con-

structed such that the image of any measure concentrated on the set and satisfying a certain

condition involving a real number s, almost surely has Fourier dimension greater than or equal

to s/(m+α). This is used to show that every Borel subset of the real numbers of Hausdorff di-

mension s is Cm+α-equivalent to a set of Fourier dimension greater than or equal to s/(m+α).

In particular every Borel set is diffeomorphic to a Salem set, and the Fourier dimension is not

invariant under Cm-diffeomorphisms for any m.

1. Introduction

The Fourier dimension of a Borel probability measure on Rd measures the

polynomial rate of decay of the Fourier transform of μ, and is defined to be the

supremum of all s in [0, d] such that |μ̂(ξ)||ξ|s/2 is bounded. The Fourier dimension

of a Borel set F is the supremum of the Fourier dimensions of all probability mea-

sures that give full measure to F . It can be shown that if the Fourier dimension of

μ is greater than s then

∫∫
|y−x|−s dμ(x) dμ(y)<∞

(see [12, Lemma 12.12]), and it follows that the Hausdorff dimension of F is always

greater than or equal to the Fourier dimension of F . If the Fourier and Hausdorff

dimensions of F are equal, then F is called a Salem set. An example of a set that

is not a Salem set is the ternary Cantor set, which has Fourier dimension 0. (More

generally, a compact proper subset of [0, 1] that is invariant under multiplication

mod 1 by an integer greater than or equal to 2 cannot support a measure whose

Fourier transform tends to 0 at infinity.)

This paper gives a construction of a random Cm+α-diffeomorphism fω :R→R,

given a compact subset E of R. If λ is a probability measure on E such that the
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number of connected components of Ec that are included in any given interval J and

have length at least x−1 is bounded below (up to constants) by log λ(J)+s log x,

then the image of λ under fω almost surely has Fourier dimension greater than or

equal to s/(m+α). The mentioned condition is satisfied for example if E is the

attractor of a “nice” iterated function system and λ is a probability measure on E

such that λ(I)≤A|I|s for every interval I .

Taking E=C in the construction of fω , where C is a certain fat Cantor set, it

is shown that for any Borel set F of positive s-dimensional Hausdorff measure there

is a real number t such that almost surely dimF fω(C∩(F+t))≥s/(m+α). This

is used to prove that for any Borel set F there is a Cm+α-diffeomorphism f such

that dimF f(F )≥s/(m+α), where s is the Hausdorff dimension of F (even if the

s-dimensional Hausdorff measure of F is 0). In particular, every Borel subset of R

is diffeomorphic to a Salem set, and the Fourier dimension is not Cm-invariant for

any m.

A remaining question is whether there exists a Borel set F such that

dimF f(F )≤dimH F/(m+α) for every Cm+α-diffeomorphism f . One might also

ask whether the Fourier dimension is invariant under C∞-diffeomorphisms, since

the statements that are proved here become empty when m→∞. It follows from

previous work (see below) that this is not the case for subsets of R2, and not for

subsets of R if non-invertible C∞-functions are considered.

1.1. Related work

It was shown by Salem in [14] that there exist Salem subsets of R of any dimen-

sion between 0 and 1, using a construction of a Cantor set where the contraction

ratios are chosen randomly.

The one-dimensional Brownian motion is almost surely Hölder continuous with

any exponent less than 1/2, and more generally the fractional Brownian motion with

Hurst index α is Hölder continuous with any exponent less than α for α∈(0, 1). It
was shown by Kahane that if E is any compact subset of R of Hausdorff dimension

s≤α, then the image of E under fractional Brownian motion with Hurst index α is

almost surely a Salem set of dimension s/α. (See [9, Chapters 17 and 18]. In fact

Kahane proved a more general statement, which allows both E and the image of E

to lie in higher-dimensional Euclidean spaces.)

In [3], Bluhm gave a method for randomly perturbing a class of self-similar

measures on Rd, such that the perturbed measure almost surely has Fourier dimen-

sion equal to the similarity dimension of the original measure. For d=1, the uniform

measures on Cantor sets with constant contraction ratio are among the measures

considered by Bluhm, and if the parameters in the construction are chosen suitably
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then the perturbation is a bi-Lipschitz map. Thus it follows from Bluhm’s result

that such Cantor sets are bi-Lipschitz equivalent to Salem sets.

An explicit example of a Salem set is given by the set of α-well approximable

numbers, that is, the set

E(α)=

∞⋂
n=1

∞⋃
k=n

{
x∈ [0, 1] ; ‖kx‖≤ k−(1+α)

}
,

where ‖·‖ denotes the distance to the nearest integer. By a theorem of Jarńık [8]

and Besicovitch [1] the set E(α) has Hausdorff dimension 2/(2+α) for α>0, and

Kaufman [11] showed that there is a probability measure on E(α) with Fourier

dimension 2/(2+α) (see also Bluhm’s paper [2]).

It follows from a result of Kaufman [10] that any C2-curve in R2 with non-

zero curvature has Fourier dimension 1. Since line segments in R2 have Fourier

dimension 0 this shows that the Fourier dimension in R2 is not in general invariant

under C∞-diffeomorphisms.

In [4], subsets A and B of R were constructed such that

max(dimF A, dimF B)< 1 and dimF A∪B=1,

and they can be taken to be included in [1, 2]. If f(x)=x2 then

dimF f
(√

A∪(−
√
B)

)
=dimF A∪B=1

and

dimF

(√
A∪(−

√
B)

)
=max(dimF

√
A, dimF

√
B)

since
√
A and −

√
B are separated (see [5, Theorem 2]). Thus f changes the Fourier

dimension of at least one of
√
A,

√
B and

√
A∪(−

√
B), showing that the Fourier

dimension in R is not in general invariant under C∞-functions.

1.2. Some definitions and notation

The Fourier transform of a probability measure μ on Rd is defined for ξ∈Rd

by

μ̂(ξ)=

∫
e(−ξ ·x) dμ(x),

where e(y)=e2πiy and · is the Euclidean inner product. If f and g are complex-

valued functions with the same domain, then

f(ξ)� g(ξ)



458 Fredrik Ekström

means that there is a constant C such that∣∣f(ξ)∣∣≤C
∣∣g(ξ)∣∣

for all ξ in the domain. The Fourier dimension of μ is then defined by

dimF μ=sup
{
s∈ [0, d] ; μ̂(ξ)� |ξ|−s/2

}
,

and the Fourier dimension of a Borel set F is defined by

dimF F =sup
{
dimF μ ;μ is a probability measure on Rd and μ(F )= 1

}
.

If μ is a measure on a measurable space X and f :X→Y is a measurable

function, then fμ denotes the transportation of μ by f , namely, the measure on Y

defined by

(fμ)(A)=μ
(
f−1(A)

)
.

The formula for change of variable in Lebesgue integrals thus reads∫
Y

g d(fμ)=

∫
X

g◦f dμ,

where g is a real- or complex-valued function on Y .

Any increasing function ε:[0,∞)→[0,∞) such that

ε(0)= lim
t→0

ε(t)= 0

is called a modulus of continuity. A function g :R→R is uniformly continuous with

modulus ε if ∣∣g(y)−g(x)
∣∣≤ ε

(
|y−x|

)
for all x, y∈R, and a set G of functions R→R is uniformly equicontinuous with

modulus ε if every g∈G is uniformly continuous with modulus ε. A function is

Hölder continuous with exponent α∈(0, 1] if it is uniformly continuous with modulus

ε(t)=Ctα for some constant C.

2. Constructions and main results

This section contains the main constructions and the statements of the main

results. Proofs are given in later sections.

Theorem 1. Let F be a Borel subset of R. Then there exists a Cm+α-

diffeomorphism f :R→R such that

dimF f(F )≥ dimH F

m+α
.

The proof of Theorem 1 is based on Theorem 3 and Theorem 5 below, and is

given at the end of Section 6.
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2.1. The random map fω on a compact set E

Given a compact subset E of R, let D be the set of bounded connected com-

ponents of Ec. Choose non-negative numbers {δU}U∈D whose sum is finite and let

Ω=
∏

U∈D[0, δU ]. For ω∈Ω, define fω on E by

fω(x)=x+
∑

U⊂(−∞,x)

ωU ,

where the sum is over those U∈D that lie to the left of x (thus fω can be thought of

as increasing the size of each hole U in E by an additive amount of ωU ). Fix some

probability measure ν on [0, 1] such that lim|ξ|→∞ ν̂(ξ)=0 and let νU be the image

of ν under the map x �→δUx. Let P be the product measure on Ω that projects to

νU on the U -coordinate.
If J is an interval and x>0, let

ψ(J, x)=#
{
U ∈D ;U ⊂J and δU ≥x−1

}
.

Theorem 2. Let s∈[0, 1] and let λ be a probability measure on E. Suppose

that there are constants a and b>0 and some x0 such that

ψ(J, x)≥ a+b
(
log λ(J)+s log x

)

for every interval J and every x≥x0. Then almost surely dimF fωλ≥s.

2.2. Extending fω to R

Let ϕ be an increasing C∞-function on R that is 0 on (−∞, 0] and 1 on [1,∞).

Then

fω(x)=x+
∑
U∈D

ωUϕ

(
x−inf U

|U|

)

is an extension of fω to all of R. Let m be a positive integer and let α∈[0, 1]. From
now on choose δU=|U|mδ(|U|), where

δ(t)=

{
1

max(− log t,log 2) if α=0

tα if α∈(0, 1].

Theorem 3. The function fω is a Cm+α-diffeomorphism for every ω∈Ω, and
{f (m)

ω }ω∈Ω is uniformly equicontinuous with modulus 2‖ϕ(m+1)‖∞ δ.
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2.3. Consequences of Theorem 2

Theorem 4. Let Φ={F1, ..., FN} be an iterated function system on R con-

sisting of contracting C1+β-diffeomorphisms. Take E to be the attractor of Φ and

assume that the interiors of the convex hulls of Fi(E) and Fj(E) are disjoint when-

ever i =j. Let λ be a probability measure on E such that λ(I)≤A|I|s for every

interval I . Then almost surely dimF fωλ≥s/(m+α).

If s=dimH E then there is a probability measure λ on E such that λ(I)≤A|I|s
for every interval I (see [7, Theorem 5.3]), and thus dimF fωE≥dimH E/(m+α)

almost surely. By using a particular set C in the construction of fω , similar results

can be obtained for general Borel sets.

Let {ck}∞k=1 be an increasing sequence of positive numbers that converges to

1/2 and satisfies
∞∏
k=1

2ck > 0 and lim
k→∞

log(1−2ck)

k
=0

(for example ck=1/2−1/k2). Let C0=[0, 1] and for k≥1 let Ck be the set obtained

by removing from every connected component I of Ck−1 the open interval that

is concentric with I and has length (1−2ck)|I|. (Thus Ck consists of 2k closed

intervals of length
∏k

i=1 ci.) Let

C =

∞⋂
k=0

Ck ;

this is a compact set of positive Lebesgue measure.

Theorem 5. Take E=C and let F be a Borel subset of R such that Hs(F )>0.

Then there is some t∈R such that almost surely

dimF fω
(
C∩(F+t)

)
≥ s

m+α
.

3. Proof of Theorem 2

The following lemma says that an almost sure bound for the Fourier dimension

of a random measure can be proved by estimating the decay rate of E|μ̂(ξ)|2q for

large q. This idea was used in the works of Salem, Kahane and Bluhm mentioned

in the introduction. The proof of Theorem 2 is also much inspired by Kahane’s and

Bluhm’s proofs.
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Lemma 6. Let (Ω, P ) be a probability space and let Ω�ω �→μω be a random

probability measure on R such that | suppμω|<M almost surely, for some con-

stant M . Suppose that

E
(∣∣μ̂ω(ξ)

∣∣2q)� |ξ|−sq+1

for q=1, 2, .... Then almost surely

μ̂ω(ξ)� |ξ|−s/2+ε

for every ε>0.

Proof. The assumption on the decay of E|μ̂ω(ξ)|2q implies that
∫ ∑

ξ∈Z/M

|ξ|sq−3
∣∣μ̂ω(ξ)

∣∣2q dP (ω)=
∑

ξ∈Z/M

|ξ|sq−3E
∣∣μ̂ω(ξ)

∣∣2q

≤ const.×
∑

ξ∈Z/M

|ξ|−2 <∞.

Thus for a.e. ω the sum in the first expression is finite, so

lim
|ξ|→∞
ξ∈Z/M

|ξ|sq−3
∣∣μ̂ω(ξ)

∣∣2q =0,

and in particular ∣∣μ̂(ξ)∣∣� |ξ|−s/2+3/(2q), ξ ∈Z/M.

It follows from a lemma of Kahane [9, p. 252] that μ̂ω(ξ)�|ξ|−s/2+3/(2q) for ξ∈R as

well. Letting q→∞ establishes the conclusion for any fixed ε>0, and letting ε→0

along a countable set then proves the lemma. �

Proof of Theorem 2. Let μω=fωλ. By Lemma 6 it suffices to show that

E
(∣∣μ̂ω(ξ)

∣∣2q)� |ξ|−sq+1 for q=1, 2, ....

Now,

∣∣μ̂ω(ξ)
∣∣2q =

(∫
e
(
ξ(y−x)

)
dμ2

ω(x, y)

)q

=

(∫
e
(
ξ
(
fω(y)−fω(x)

))
dλ2(x, y)

)q

=

∫
e

(
ξ

q∑
i=1

(
fω(yi)−fω(xi)

))
dλ2q(x̄, ȳ),
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where x̄=(x1, ..., xq) and ȳ=(y1, ..., yq). Let

dx̄,ȳ =

q∑
i=1

(yi−xi)

and

hx̄,ȳ(z)=#{i ; z <yi}−#{i ; z <xi}.

If (x̄, ȳ)∈E2q then hx̄,ȳ is constant on each U in D, and

q∑
i=1

(
fω(yi)−fω(xi)

)
= dx̄,ȳ+

∑
U∈D

hx̄,ȳ(U)ωU .

Thus ∣∣μ̂ω(ξ)
∣∣2q =

∫
e(ξdx̄,ȳ)e

(
ξ
∑
U∈D

hx̄,ȳ(U)ωU

)
dλ2q(x̄, ȳ),

and integrating over ω gives

E
∣∣μ̂ω(ξ)

∣∣2q ≤
∫ ∣∣∣∣

∫ ∏
U∈D

e
(
hx̄,ȳ(U)ξωU

)
dP (ω)

∣∣∣∣ dλ2q(x̄, ȳ)

=

∫ ∣∣∣∣
∏
U∈D

∫
e
(
hx̄,ȳ(U)ξωU

)
dνU (ωU )

∣∣∣∣ dλ2q(x̄, ȳ)

=

∫ ∏
U∈D

∣∣ν̂(hx̄,ȳ(U)δUξ
)∣∣ dλ2q(x̄, ȳ).

Let Br be the set of (x̄, ȳ) such that λ(J)≤r whenever J is an interval and

hx̄,ȳ is non-zero everywhere on J . If (x̄, ȳ)∈Br then for each xi there must be some

yj such that the open interval between xi and yj has λ-measure less than or equal

to r, since either xi=yj for some j or hx̄,ȳ increases by 1 at xi. Thus for each fixed

ȳ there is a set of λ-measure 2qr that contains all the xi:s whenever (x̄, ȳ)∈Br.

Hence

λ2q(Br)=

∫
λq

({
x̄ ; (x̄, ȳ)∈Br

})
dλq(ȳ)≤ (2qr)q.

If on the other hand (x̄, ȳ) /∈Br then there is an interval J such that λ(J)≥r and

hx̄,ȳ =0 on J . Then for any K>0 and for |ξ|≥Kx0,

∏
U∈D

∣∣ν̂(hx̄,ȳ(U)δUξ
)∣∣≤ ∏

U∈D
U⊂J

g
(
δU |ξ|

)
≤ g(K)ψ(J,K−1|ξ|)

≤ g(K)a+b(log r+s log(K−1|ξ|)),
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where

g(x)= sup
|ξ|≥x

∣∣ν̂(ξ)∣∣.
Thus for any positive r and K, and |ξ|≥Kx0,

E
∣∣μ̂ω(ξ)

∣∣2q ≤ (2qr)q+g(K)a+b(log r+s log(K−1|ξ|)).

In particular this holds if r is chosen such that

g(K)a+b(log r+s log(K−1|ξ|)) = rq,

or equivalently,

log r=−s log |ξ|
(

a

bs log |ξ|+
(
1− logK

log |ξ|

))
b log g(K)

b log g(K)−q
.

For a fixed K the factor in the middle converges to 1 when |ξ|→∞, and hence

E
∣∣μ̂ω(ξ)

∣∣2q � |ξ|−sq
b log g(K)

b log g(K)−q
+ 1

2

for any K. Taking K large enough shows that E|μ̂ω(ξ)|2q�|ξ|−sq+1. �

4. Lemma 7 and the proof of Theorem 3

The following lemma is used in the proof of Theorem 3 at the end of this

section, and also in the proof of Theorem 1.

Lemma 7. Let {Vk}∞k=1 be disjoint open intervals such that V =
⋃

k Vk is

bounded and let {gk}∞k=1 be increasing functions R→R that are m times differ-

entiable (m≥1), such that {g(m)
k } is uniformly equicontinuous with modulus ε and

(1) gk(inf Vk)= 0 and g′k = ...= g
(m)
k =0 on V c

k

for all k. Define g :R→R by

g(x)=

∞∑
k=1

gk(x).

Then g is m times continuously differentiable with

g(inf V )= 0 and g′ = ...= g(m) =0 on V c,

and g(m) is uniformly continuous with modulus 2ε.
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Proof. It follows from (1) that

(2)
∣∣g(m)

k (x)
∣∣≤ ε

(
dist

(
x, V c

))

and

(3) gk(inf Vk+t)≤ ε(t)

m!
tm for t≥ 0

for all k. In particular,

g(x)≤
∑
k

∣∣gk(Vk)
∣∣≤ ε(supk |Vk|)

m!

∑
k

|Vk|m <∞,

so that g is well-defined.

It is clear that g(m) exists and is continuous on V , and by (2),

lim
x→V c

x∈V

g(m)(x)= 0.

To prove that g is m times continuously differentiable it will be shown that g(m)

exists and is 0 on V c. For this it suffices to consider limits from the right, since

x �→−g(−x)+|g(V )| has the same form as g, with x �→−gk(−x)+|gk(Vk)| instead
of gk. So take any x∈V c and any h≥0. Then

g(x+h)−g(h)=
∑

Vk⊂(x,x+h)

∣∣gk(Vk)
∣∣+ ∑

x+h∈Vn

gn(x+h)

(the second sum has one term if x+h∈V and is empty otherwise). By (3),

∑
Vk⊂(x,x+h)

∣∣gk(Vk)
∣∣≤ ε(h)

m!

∑
Vk⊂(x,x+h)

|Vk|m

≤ ε(h)

m!

( ∑
Vk⊂(x,x+h)

|Vk|
)m

≤ ε(h)

m!
hm

and ∑
x+h∈Vn

g(x+h)≤ ε(h)

m!
hm,

and thus

g(x+h)−g(x)≤ 2ε(h)

m!
hm.

Hence g is m times differentiable at x, and

g′(x)= ...= g(m)(x)= 0.
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Finally, it will be shown that g(m) is uniformly continuous with modulus 2ε.

If there is some n such that x and y both lie in ˙Vn then
∣∣g(m)(y)−g(m)(x)

∣∣= ∣∣g(m)
n (y)−g(m)

n (x)
∣∣≤ ε

(
|y−x|

)
.

Otherwise the open interval between x and y intersects V c, so
∣∣g(m)(y)−g(m)(x)

∣∣≤ ∣∣g(m)(y)
∣∣+∣∣g(m)(x)

∣∣
≤ ε

(
dist

(
y, V c

))
+ε

(
dist

(
x, V c

))
≤ 2ε

(
|y−x|

)
. �

Proof of Theorem 3. Note that δ(t)/t is decreasing for t>0. Let

gU (x)=ωUϕ

(
x−inf U

|U|

)
.

Then

g
(k)
U =

ωU
|U|kϕ

(k)

(
x−inf U

|U|

)

for all k, and thus for all x, y∈¯U ,
∣∣g(m)

U (y)−g
(m)
U (x)

∣∣≤∥∥ϕ(m+1)
∥∥
∞

δU
|U|m+1

|y−x|=
∥∥ϕ(m+1)

∥∥
∞
δ(|U|)
|U| |y−x|

≤
∥∥ϕ(m+1)

∥∥
∞
δ(|y−x|)
|y−x| |y−x|=

∥∥ϕ(m+1)
∥∥
∞δ

(
|y−x|

)
.

Since g
(m)
U is constant on Uc the inequality

∣∣g(m)
U (y)−g

(m)
U (x)

∣∣≤∥∥ϕ(m+1)
∥∥
∞δ

(
|y−x|

)

then holds for all x, y∈R, and the conclusion follows by Lemma 7 since

fω(x)=x+
∑
U∈D

gU (x). �

5. Proof of Theorem 4

Recall that Φ={F1, ..., FN} is an iterated function system where each Fi is a

contracting C1+β diffeomorphism, that E is the attractor of Φ and that the interiors

of the convex hulls of Fi(E) and Fj(E) are assumed to be disjoint when i =j. If

ρ=ρ1...ρn is a finite string over {1, ..., N}, let Fρ=Fρ1 ◦...◦Fρn and Eρ=Fρ(E). By

the principle of bounded distortion there is a constant B such that

B−1|Eρ||x−y| ≤
∣∣Fρ(x)−Fρ(y)

∣∣≤B|Eρ||x−y|
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for every ρ and every x, y in a compact ball that includes E (this is proved in

[7, Proposition 4.2] for iterated function systems consisting of contracting C2-

diffeomorphisms, and the proof goes through with a small modification for con-

tracting C1+β-diffeomorphisms). In particular, there is some γ∈(0, 1) such that

γ|x−y| ≤
∣∣Fi(x)−Fi(y)

∣∣
for every i and every x, y in that ball.

Lemma 8. Let λ be a probability measure on E such that

λ(I)≤A|I|s

for every interval I . Then there are constants a and b>0 such that

#
{
U ∈D ;U ⊂J and |U|≥x−1

}
≥ a+b

(
log λ(J)+s log x

)

for every interval J and every x>0.

Proof. For y>0, let

η(y)=#
{
U ∈D ; |U|≥ y−1

}
,

and fix some U0∈D. Given y, let n be the unique integer such that

γn+1|U0|<y−1 ≤ γn|U0|.

If n≥0 then |Fρ(U0)|≥y−1 for each ρ of length n and there are Nn such ρ:s, so

η(y)≥Nn≥n logN . If n<0, it is still true that η(y)≥n logN . Thus

η(y)≥n logN ≥
(
log y+log |U0|

− log γ
−1

)
logN.

Now assume that s>0, since otherwise the conclusion of the lemma holds

trivially. Take an interval J with positive λ-measure and some positive x. Consider

the sets of the form Eρ that are maximal (with respect to inclusion) subject to the

condition of having λ-measure less than or equal to λ(J)/3. Their union is E and

the intersection of two different such sets contains at most one point. Therefore

J intersects at least three of them, and must include at least one (the one in the

middle). Thus there is some ρ such that Eρ⊂J and

|Eρ| ≥ γ|Eρ′ | ≥ γ

(
λ(Eρ′)

A

)1/s

≥ γ

(
λ(J)

3A

)1/s

,
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where ρ′ is the longest proper prefix of ρ. Every U∈D satisfies Fρ(U)∈D and

Fρ(U)⊂convEρ and |Fρ(U)|≥B−1|Eρ||U|, so it follows that

#
{
U ∈D ;U ⊂J and |U|≥x−1

}
≥#

{
U ∈D ;U ⊂ convEρ and |U|≥x−1

}

≥ η
(
B−1|Eρ|x

)
≥ η

(
B−1γ(3A)−1/sλ(J)1/sx

)

≥
(
log(B−1γ(3A)−1/s)+log |U0|

− log γ
−1

)
logN

+
logN

−s log γ

(
log λ(J)+s log x

)
. �

Proof of Theorem 4. Take any ε>0. Using Lemma 8 at the last step, there are

constants a and b>0 and some x0 such that if x≥x0 then

ψ(J, x)=#
{
U ∈D ;U ⊂J and |U|mδ

(
|U|

)
≥x−1

}

≥#
{
U ∈D ;U ⊂J and |U|m+α+ε ≥x−1

}

=#
{
U ∈D ;U ⊂J and |U|≥x−1/(m+α+ε)

}

≥ a+b

(
log λ(J)+

s

m+α+ε
log x

)
,

and thus dimF fωλ≥s/(m+α+ε) almost surely by Theorem 2. Letting ε→0 along

a countable set proves the theorem. �

6. Proof of Theorem 5 and Theorem 1

Lemma 9. Let F be a Borel subset of R such that Hs(F )>0. Then there

exists some t∈R and a probability measure λ on C∩(F+t) such that

λ(I)≤A|I|s

for some constant A and every interval I .

Proof. Since Hs(F )>0, there is a probability measure μ on F such that

μ(I)≤A0|I|s

for some constant A0 and every Borel set I (see [6, Proposition 4.11 and Corol-

lary 4.12], and also [13, Theorem 48]). Then, using that Lebesgue measure is

invariant under translation,
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0<μ(R)L(C)=

∫∫
χC(t) dt dμ(x)=

∫∫
χC(x+t) dt dμ(x)

=

∫∫
χC(x+t) dμ(x) dt=

∫
μt(C) dt,

where μt denotes the translation of μ by t. It follows that there is some t such that

μt(C)>0. For that t, let

λ=
μt|C
μt(C)

.

Then λ is a probability measure on C∩(F+t) and

λ(I)≤ A0

μt(C)
|I|s

for every interval I . �

Lemma 10. Take E=C and let λ be a probability measure on C such that

λ(I)≤A|I|s

for every interval I . Then there are constants a and b>0 and a function θ, such

that limx→∞ θ(x)=1 and

#
{
U ∈D ;U ⊂J and |U|≥x−1

}
≥ a+b

(
log λ(J)+sθ(x) log x

)

for every interval J and every x≥(1−2c1)
−1.

Proof. Fix J and x and let n be the unique integer such that

(1−2cn+2)

n+1∏
i=1

ci <x−1 ≤ (1−2cn+1)

n∏
i=1

ci.

For any two elements of D that have the same size there is a larger element of D

that lies between them (with respect to the order of R), so there is a unique largest

U∈D that intersects J . Then there is a connected component J ′ of J \U such that

λ(J ′)≥λ(J)/2, and thus

∣∣J ′∣∣≥
(
λ(J)

2A

)1/s

.

Let

k=

⌈
log(2A)−log λ(J)

s log 2

⌉
.
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Then
k∏

i=1

ci ≤ 2−k ≤
∣∣J ′∣∣,

so J ′ intersects a connected component of [0, 1]\Ck. That connected component is

smaller than U , and therefore U⊂[0, 1]\Ck as well. It follows that J ′ includes one

of the connected components of Ck, and hence there are at least 2n−k elements of

D that are included in J and have size (1−2cn+1)
∏n

i=1 ci. Thus

#
{
U ∈D ;U ⊂J and |U|≥x−1

}
≥ 2n−k ≥ (n−k) log 2

≥−s log 2+log(2A)

s
+
log λ(J)

s

− n log 2 log x

log(1−2cn+2)+
∑n+1

i=1 log ci
,

which has the desired form with

a=−s log 2+log(2A)

s
, b=

1

s

and

θ(x)=
−n log 2

log(1−2cn+2)+
∑n+1

i=1 log ci
.

This proves the lemma since n→∞ when x→∞ and ci→1/2 when i→∞. �

Proof of Theorem 5. By Lemma 9 there is some t∈R and a probability measure

λ on C∩(F+t) such that

λ(I)≤A|I|s

for every interval I . Take any ε>0. Since λ is a probability measure on C, it

follows from Lemma 10 that there exist constants a and b>0 and some x0 such

that if x≥x0 then

ψ(J, x)=#
{
U ∈D ;U ⊂J and |U|mδ

(
|U|

)
≥x−1

}
≥#

{
U ∈D ;U ⊂J and |U|m+α+ε ≥x−1

}

=#
{
U ∈D ;U ⊂J and |U|≥x−1/(m+α+ε)

}

≥ a+b

(
log λ(J)+

(
s

m+α+ε
−ε

)
log x

)
.

Thus dimF fωλ≥s/(m+α+ε)−ε almost surely by Theorem 2, and letting ε→0

along a countable set shows that dimF fωλ≥s/(m+α) almost surely. �
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Proof of Theorem 1. Let s=dimH F . If s=0 then the statement is trivial, so

assume that s>0 and let {dk}∞k=1 be an increasing sequence of positive numbers

that converges to s. Then there are disjoint open intervals {Jk}∞k=1 such that

Hdk(F∩Jk)>0 for all k. They can be constructed recursively along with open

intervals {Ik}∞k=1 as follows.

Let I1=R. Assuming that Ik has been defined and that dimH F∩Ik=s, there

is a compact subset Fk of F∩Ik such that 0<Hdk(Fk)<∞ (see [13, Theorem 48]).

Let xk be a point such that

Hdk
(
Fk∩(−∞, xk]) =Hdk

(
Fk∩[xk,∞

))
.

Then Ik\{xk} is a disjoint union of two open intervals. Choose Ik+1 to be one of

these intervals so that dimH(F∩Ik+1)=s, and let Jk be the other interval. Note

that Hdk(F∩Jk)≥Hdk(Fk)/2>0.

Take E=C in the construction of fω . By Theorem 5, there is for each k some

tk∈R and ωk∈Ω such that

dimF fωk

(
C∩(F∩Jk+tk)

)
≥ dk

m+α
.

Let ak=inf Jk∩(C−tk) and bk=sup Jk∩(C−tk). Define gk on [ak, bk] by

gk(x)=
(
fωk

(x+tk)−x
)
−
(
fωk

(ak+tk)−ak
)
,

and set gk to 0 on (−∞, ak) and to gk(bk) on (bk,∞). By Theorem 3 the func-

tion fωk
is m times differentiable and f

(m)
ωk is uniformly continuous with modulus

2‖ϕ(m+1)‖∞δ, and it is clear from the way that fω was extended to R (see Sec-

tion 2.2) that

f ′
ωk

=1 and f ′′
ωk

= ...= f (m)
ωk

=0 on C.

It follows that gk is m times differentiable and that g
(m)
k is uniformly continuous

with modulus 2‖ϕ(m+1)‖∞δ. Thus by Lemma 7,

g(x)=

∞∑
k=1

gk(x)

is m times differentiable and g(m)(x) is uniformly continuous with modulus

4‖ϕ(m+1)‖∞δ. Let

f(x)=x+g(x).

For x∈(an, bn)
f(x)= const.+fωn(x+tn),

and thus

dimF f(F )≥ sup
n

dimF f
(
F∩(an, bn)

)
≥ sup

n

dn
m+α

=
s

m+α
. �
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