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Euler sequence and Koszul complex of a module

Bjorn Andreas, Dario Sdnchez Gémez and Fernando Sancho de Salas

Abstract. We construct relative and global Euler sequences of a module. We apply it to
prove some acyclicity results of the Koszul complex of a module and to compute the cohomology
of the sheaves of (relative and absolute) differential p-forms of a projective bundle. In particular
we generalize Bott’s formula for the projective space to a projective bundle over a scheme of
characteristic zero.

Introduction

This paper deals with two related questions: the acyclicity of the Koszul com-
plex of a module and the cohomology of the sheaves of (relative and absolute)
differential p-forms of a projective bundle over a scheme.

Let M be a module over a commutative ring A. One has the Koszul complex
Kos(M)=A"M®aS5 M, where A" M and S"M stand for the exterior and symmetric
algebras of M. It is a graded complex Kos(M)=&p,,~, Kos(M),,, whose n-th graded
component Kos(M),, is the complex: N

0—A"M — A" MM — A" 2MeS*’M — ... — S" M —0

It has been known for many years that Kos(M),, is acyclic for n>0, provided that
M is a flat A-module or n is invertible in A (see [3] or [10]). It was conjectured
n [11] that Kos(M) is always acyclic. A counterexample in characteristic 2 was
given in [5], but it is also proved there that H,,(Kos(M),)=0 for any M, where p is
the minimal number of generators of M. Leaving aside the case of characteristic 2
(whose pathology is clear for the exterior algebra), we prove two new evidences for
the validity of the conjecture (for A Noetherian): firstly, we prove (Theorem 1.6)
that, for any finitely generated M, Kos(M),, is acyclic for n>>0; secondly, we prove
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(Theorem 1.7) that if I is an ideal locally generated by a regular sequence, then
Kos(I),, is acyclic for any n>0. These two results are a consequence of relating the
Koszul complex Kos(M) with the geometry of the space P=ProjS"M, as follows.
First of all, we shall reformulate the Koszul complex in terms of differential
forms of S"M over A: the canonical isomorphism QS.M/A:M®A S"M allows us to
interpret the Koszul complex Kos(M) as the complex of differential forms {2

5 M/A
g'M/A %Qg'_]\l/I/A’ is the inner product with the A-derivation
D: S M—S M consisting in multiplication by n on S™M. By homogeneous local-
ization, one obtains a complex of Op-modules IE\(;S(M ) on P. Our first result (The-
orem 1.4) is that the complex Kos(M) is acyclic with factors (cycles or boundaries)

the sheaves Q@ e Moreover, one has a natural morphism

whose differential, ip:

Kos(M),, —s m,[Kos(M)®Op(n)]

with 7: P—Spec A the canonical morphism. In Theorem 1.5 we give (cohomologi-
cal) sufficient conditions for the acyclicity of the complexes 7, [Kos(M)®Op(n)] and
Kos(M),,. These conditions, under Noetherian hypothesis, are satisfied for n>>0,
thus obtaining Theorem 1.6. The acyclicity of the Koszul complex of a locally
regular ideal follows then from Theorem 1.5 and the theorem of formal functions.
The advantage of expressing the Koszul complex Kos(M) as (Q'S.M/A,ip)
is two-fold. Firstly, it makes clear its relationship with the De Rham complex
(QS M/ A,d): The Koszul and De Rham differentials are related by Cartan’s for-
mula: ipod+doip= multiplication by n on Kos(M),. This yields a splitting
result (Proposition 1.10 or Corollary 1.11) which will be essential for some coho-
mological results in Section 3 as we shall explain later on. Secondly, it allows a
natural generalization (which is the subject of Section 2): If A is a k-algebra, we
define the complex Kos(M/k) as the complex of differential forms (over k), Q. Ik
whose differential is the inner product with the same D as before. Again, one has
that Kos(M/k)=@D,,~, Kos(M/k), and it induces, by homogeneous localization, a

complex I/(\o/s(M /k) of modules on P which is also acyclic and whose factors are the
sheaves Qf /k (Theorem 2.1). We can reproduce the aforementioned results about

the complexes Kos(M),,, I’{\OJS(M), for the complexes Kos(M/k), IE\OJS(M//{)
Section 3 deals with the second subject of the paper: let £ be a locally free
module of rank r+41 on a k-scheme X and let m: P— X be the associated projective
bundle, i.e., P=Proj S"E. There are well known results about the (global and rela-
tive) cohomology of the sheaves QF /X (n) and Qp / (1) (we are using the standard ab-
breviated notation N (n)=N®0Op(n)) due to Deligne, Verdier and Berthelot-Illusie
([4], [12], [1]) and about the cohomology of the sheaves Qp (n) of the ordinary pro-
jective space due to Bott (the so called Bott’s formula, [2]). We shall not use their
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results; instead, we reprove them and we obtain some new results, overall when X
is a Q-scheme. Let us be more precise:

In Theorem 3.4 we compute the relative cohomology sheaves R'm, ) / (1),
obtaining Deligne’s result (see [4] and also [12]) and a new (splitting) result, in
the case of a Q-scheme, concerning the sheaves m,Qp / +(n) and R"m,Qp / (=n)
for n>0. We obtain Bott formula for the projective space as a consequence. In
Theorem 3.11 we compute the relative cohomology sheaves R, Qp / (1), obtaining
Verdier’s results (see [12]) and improving them in two ways: first, we give a more
explicit description of 7, Qp / (1) and of R"m, Qp / i (—n) for n>0; secondly, we obtain
a splitting result for these sheaves when X is a Q-scheme (as in the relative case).

Regarding Bott’s formula, we are able to generalize it for a projective bundle,
computing the dimension of the cohomology vector spaces H?(P,Qp / (n)) and
HY(P,Qp / (1)) when X is a proper k-scheme of characteristic zero (Corollaries 3.7
and 3.14).

It should be mentioned that these results make use of the complexes Izz)/s(é' ) (as
Deligne and Verdier) and Kos(€/k). The complex Kos(€) is essentially equivalent

to the exact sequence
0— Qp/x — (T"E)R0p(—1) — Op — 0

which is usually called Euler sequence. The complex I?o/s(é* /k) is equivalent to the
exact sequence _
0——)Q]p/k ——)QB/k —Op—0

with B=S"E, which we have called global Euler sequence. These sequences still hold
for any A-module M (which we have called relative and global Euler sequences of
M). The aforementioned results about the acyclicity of the Koszul complexes of a
module obtained in Sections 1 and 2 are a consequence of this fact.

1. Relative Euler sequence of a module and Koszul complexes

Let (X,0) be a scheme and let M be quasi-coherent O-module. Let B=
S"M be the symmetric algebra of M (over O), which is a graded O-algebra: the
homogeneous component of degree n is B,=S"M. The module Q5,0 of Kéhler
differentials is a graded B-module in a natural way: BB is a graded O-algebra,
with (BRo B)n= +EB B, ®o By and the natural morphism B&®o B—B is a degree 0

pPTqg=n

homogeneous morphism of graded algebras. Hence, the kernel A is a homogeneous
ideal and A/ A2:QB/O is a graded B-module. If b,,b,€B are homogeneous of
degree p,q, then b, db, is an element of {25,0 of degree p+q. We shall denote by
Q%/O the p-th exterior power of Qp,0, that is AZQp/0, which is also a graded
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B-module in a natural way. For each O-module ', N ®¢B is a graded B-module
with gradation: (N®eB),=N ®eB,. Then one has the following basic result:

Theorem 1.1. The natural morphism of graded B-modules
M@OB[—].] — QB/O
m®b—bdm

is an isomorphism. Hence Q’I’S/O:Ap./\/l ®o B[—p], where A\ M=\, M.

The natural morphism M®p S'M— STt M defines a degree zero homoge-
neous morphism of B-modules Qg0 =M®oB[-1]—=B which induces a (degree
zero) O-derivation D: B—B, such that Qg/0—B is the inner product with D.
This derivation consists in multiplication by n in degree n. It induces homogeneous
morphisms of degree zero:

ip: U0 — Qg

and we obtain:

Definition 1.2. The Koszul complex, denoted by Kos(M), is the complex:

iD

iDp iD ip
(1) o Qo — Qg/é — . — Qo —> B — 0
Via Theorem 1.1, this complex is

P AP Mo Bl—p] 2 2 M@oB[-1] 225 B—0

Taking the homogeneous components of degree n>0, we obtain a complex of
O-modules, which we denote by Kos(M),,:

0—A"M-—A""MR@oM— ... — M5 '*M— S"M—0
such that Kos(M)= & Kos(M),.
n>0

Now let P=ProjB and 7: P—X the natural morphism. We shall use the
following standard notations: for each Op-module A, we shall denote by N(n)
the twisted sheaf N ®p,Op(n) and for each graded B-module N we shall denote
by N the sheaf of Op-modules obtained by homogeneous localization. We shall
use without mention the following facts: homogeneous localization commutes with

exterior powers and for any quasi-coherent module £ on X one has (L&p B[r])=

(m*L)(r).
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Definition 1.3. Taking homogeneous localization on the Koszul complex (1),
we obtain a complex of Op-modules, which we denote by Kos(M):

=4 D ~ i1 D iD ~ D
(2) e — QB/O — QB/O —_— .. — QB/O — Op — 0

By Theorem 1.1, (NZ%/O:(W*AdM)(fd), hence Kos(M) can be written as
P AIM) (—d) 2 s (M) (—1) 22 Op —5 0

Theorem 1.4. The complex R\O/S(M) is acyclic (that is, an exact sequence).
Moreover,

Q@/x = Ker(Qg/o - Q}Za/@)

Hence one has exact sequences

— QL — QL 0

0—Qp B/O P/X

P/X
and right and left resolutions of Qﬁ/x:
0—>Q§/X —)ﬁ%/o—>§%7é—>...—>ﬁg/@—>0]p—>o
= U — Qo — . — OB — 08— 0

In particular, for p=1 the exact sequence
(3) 0——>QP/X——>S~25/O——>OP——>O
is called the (relative) Euler sequence.

Proof. The morphism (NZB/@—KQP is surjective, since M®e B[—1]— B is surjec-
tive in positive degree. Let K be the kernel. We obtain an exact sequence

0——>K——>§~23/@——>Op——>0

Since Op is free, this sequence splits locally; then, it induces exact sequences

0—APK —5QF S APIK 40

B/O

Joining these exact sequences one obtains the Koszul complex IEBJS(M) This proves
the acyclicity of I/{O/S(M) To conclude, it suffices to prove that K=Qp,x.

Let us first define a morphism Qp, X—>§~25 Jo- Assume for simplicity that X =
Spec A. For each be B of degree 1, let U, the standard affine open subset of P defined
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by Uy=Spec(B)), with By the 0-degree component of B,. The natural inclusion
By)— By induces a morphism Qg(b)/A%QBb/A:(QB/A)b which takes values in the
0-degree component, (§25/4)@)- Thus one has a morphism Qg /14— (Q5/4) ), i-e-
a morphism T'(Uy, Qp,x ) —T'(Uy, (NZB/A). One checks that these morphisms glue to
a morphism f: Qp,x _>§B/A~ This morphism is injective, because the inclusion
By — By has a retract, ¢,/ b=, /b", which induces a retract in the differentials.

The composition Qp,x —€3,4—Op is null, as one checks in each Uy:

Ck . bkdck—ckdbk bkiDde—CkiDdbk
)=ip = -

(iDOf)(d(b—k) L = TR =0

because ip d ¢, =rc, for any element ¢, of degree r. Thus, we have that Qp,x is
contained in the kernel of Qp,4—Op. To conclude, it is enough to see that the

image of ?ZQB/ABQB/A is contained in p,x. Again, this is a computation in each
Up; one checks the equality

. (depNdeg\ ¢ ey cq f Cp
’D<—bp+q ) =P N\ o ) 950 N\
and the right member belongs to QB(b)/A. O
For each n€Z, we shall denote by Kos(M)(n) the complex Kos(M) twisted

by Op(n) (notice that the differential of the Koszul complex is Op-linear). The
differential of the complex Kos(M)(n) is still denoted by ip.

1.1. Acyclicity of the Koszul complex of a module
Let Kos(M), :=m,(Kos(M)(n)). The natural morphisms
0o ln — 7 [ ()]
give a morphism of complexes
Kos(M),, — Kos(M),,

and one has:

Theorem 1.5. Let M be a finitely generated quasi-coherent module on a
scheme (X, 0), P=Proj S"M and w: P— X the natural morphism. Let d be the min-
imal number of generators of M (i.e., it is the greatest integer such that A*M##0)
and n>0. Then:

1. If Rim, [ﬁ%/o(n)]zo for any j>0 and any 0<i<d, then I/(\O/b(./\/l)n is acyclic.
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2. If (1) holds and the natural morphism [Q%/O]n—ﬂr* [Qis/o(n)] is an isomor-
phism for any 0<i<d, then Kos(M),, is also acyclic.

Proof. (1) By Theorem 1.4, the complex I/{\o/s(/\/l)(n) is acyclic. Since the (non-
zero) terms of this complex are Qg/o (n), the hypothesis tells us that ., (Kos(M)®
Op(n)) is acyclic, that is, Kos(M), is acyclic.

(2) By hypothesis, Kos(M),, —Kos(M),, is an isomorphism and then Kos(M),,
is also acyclic. [

Theorem 1.6. Let X be a Noethefric/m scheme and M a coherent module on X.
The Koszul complexes Kos(M),, and Kos(M),, are acyclic for n>>0.

Proof. Indeed, the hypothesis (1) and (2) of Theorem 1.5 hold for n>>0 (see
[8, Theorem 2.2.1] and [7, Section 3.3 and Section 3.4]). O

Theorem 1.7. Let I be an ideal of a Noetherian ring A. If I is locally gener-
ated by a regular sequence, then Kos(I), and Kos(I), are acyclic for any n>0.

Proof. In this case 7m: P— X =Spec A is the blow-up with respect to I, because
S™I=I", since I is locally a regular ideal ([9]). Let d be the minimum number of
generators of I. By Theorem 1.5, it suffices to see that for any A-module M and
any 0<i<d one has:

wE e e-0={00 e

This is a consequence of the Theorem of formal functions (see [8, Corol-
lary 4.1.7]). Indeed, let Y,=Spec A/I", E.=n"'(Y,) and 7,: E,—Y,. One has
that E,=ProjS} ;. (I/I"1) is a projective bundle over Y;., because I/I" ! is a lo-
cally free A/I"-module of rank d, since I is locally regular. Hence, for any module
N on Y, and any m>—d one has

‘ § 0 if >0
HY(Ey, (mpN)(m)) = { N@a/p I™ /I if j=0

Now, by the theorem of formal functions (let m=n—1)

HI(P, (7*M)(m))" = lim HY(E,,m(M/I"M)(m)) =0, for j>0.

T
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For j=0, the natural morphism M® 4 I™— HY(P, (7*M)(m)) is an isomor-
phism because it is an isomorphism after completion by I:

H(P, (7" M)(m))" =lim H?(E,, w}(M/I"M)(m))
=lim (M/I"M)@ e I/ T+
—
=lim (M@AS"D)@a4/I" = (MeaI™)". O

T

Remark 1.8. Let d be the minimum number of generators of M. Since I/{\o/s(/\/l)
is acyclic and 7, is left exact, one has that Hd(f(\o/s(./\/l)n)zo for any n. One
the other hand, it is proved in [5] that H;(Kos(M)4)=0. Omne cannot expect
Kos(M)n%I/(Es(M)n to be an isomorphism in general. For instance, consider
X =Spec A with A=k[u,v, s1, s2,t1,t2]/I where k is a field and I=(—us;+vt1+
uta, vS$1 +use —vta, vsa, uty). Let M=(Ax®Ay)/A(ux+vy), where @ (resp. o) is
the class of u (resp. v) in A. Then one can prove that the map M —m,Op(1) is not
injective (for details we refer to section 26.21 of The Stacks project). So that the
question which arises here is whether Kos(M),, —Kos(M),, is a quasi-isomorphism.
We do not know the answer, besides the acyclicity theorems for both complexes
mentioned above.

1.2. Koszul versus De Rham

The exterior differential defines morphisms

. +1
d: Q%/O—_)QZ’/O

which are O-linear, but not B-linear. One has then the De Rham complex:

DeRham(M) EO—)B&QB/@ <, i>92/0 &Qgﬁ) — ..

which can be reformulated as
0—B-L% M@0 B[-1] — .. A’ M&@o B[—p] — AP M@0 Bl—p—1] —> ...

Taking into account that d is homogeneous of degree 0, one has for each n>0 a
complex of O-modules

0— S" M —MR0pS" ' — ... — A" MM — A" M — 0

which we denote by DeRham(M),.
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The differentials of the Koszul and De Rham complexes are related by Cartan’s
formula: ipod + d oi p= multiplication by n on AP M®» S™ P M. This immediately
implies the following result:

Proposition 1.9. If X is a scheme over Q, then Kos(M),, and DeRham(M),
are homotopically trivial for any n>0. In particular, they are acyclic.

Now we pass to homogeneous localizations. The differential d: Q’é /0%9%7(19
is compatible with homogeneous localization, since for any wk+n€Q}l’3 /0 of degree
k+n and any beB of degree 1, one has:

d Wk+n - b do.)k;+n—(d bn)/\(JJk+n
pn - p2n

Thus, for any n€Z, one has (O-linear) morphisms of sheaves
d: QF o (n) — Qi (n)

and we obtain, for each n, a complex of sheaves on P:

DeRham(M, n) =0 — Op(n) = Qg0 (n) < ..~ QF o (n) — ..
which can be reformulated as
0— Op(n) -L (T* M) (n—1) —> ... — (T*AP M) (n—p) —> ..

It should be noticed that De/R\ﬁgm(M,n) is not the complex obtained for n=0
twisted by Op(n), because the differential is not Op-linear.

Again, one has that ipod+ d oip= multiplication by n, on Q’é/o(n). Hence,
one has:

Proposition 1.10. If X is a scheme over Q, then the complexes RT)S(M)(TL)
and DeRham(M,n) are homotopically trivial for any n#0.

Corollary 1.11. Let X be a scheme over Q. For any n#£0, the exact sequences
P -1
0— Q5 x(n) — Q p(n) — Qi (n) —0

split as sheaves of O-modules (but not as Op-modules).
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2. Global Euler sequence of a module and Koszul complexes

Assume that (X, Q) is a k-scheme, where & is a ring (just for simplicity, one
could assume that & is another scheme). Let M be an O-module and B=5"M the
symmetric algebra over O. Instead of considering the module of K&hler differentials
of B over O, we shall now consider the module of Kéhler differentials over k, that
is, Qp/,. As it happened with Q3,0 (Section 1), the module €/, is a graded B-
module in a natural way. The O-derivation D: B— B is in particular a k-derivation,
hence it defines a morphism ip: Qg — B, which is nothing but the composition of
the natural morphism Qgz/, —Qz,0 with the inner product ip: 3,0 — B defined

in Section 1. Again we obtain a complex of B-modules (£ skt p) which we denote
by Kos(M/k):

D iD D

(4) . — Qll)i/k = Q%;,i — . — Qg — B — 0

and for each n>0 a complex of O-modules

Kos(M /)= — [ ]0 —— o —— [Qapln —— "M —— 0

By homogeneous localization one has a complex of Op-modules, denoted by

Kos(M /k):

ip iD iD

L — Q’é/k —_— ﬁ’é},ﬁ _— . — QB/k Op 0

Theorem 2.1. The complex Ir(\o/s(./\/l/k) is acyclic (that is, an exact sequence).
Moreover,

P _ 14 D, p—1
QL) =Ker (04, 2021
Hence one has exact sequences

0— QP

P/k—>§p — Q0

B/k P/k

and right and left resolutions of Qg/k:

0—>Q§/k—>§~2’l;/k—>(~2f§;—>...—>S~23/k—>(9p—>0
e Qg — O — . — QR — O — 0

In particular, for p=1 the exact sequence
(5) O—>Qp/k—>ﬁg/k—>0p—>0

is called the (global) Euler sequence.
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Proof. 1t is completely analogous to the proof of Theorem 1.4. O

Let Kos(M /k),:=m, (Kos(M/k)(n)). The natural morphisms

[Q%/k]" — T (Qg/k(”))
give a morphism of complexes
Kos(M k), — Kos(M/k),,
In complete analogy to the relative setting we have the following:
Theorem 2.2. Let M be a finitely generated quasi-coherent module on a

scheme (X,0), B=S"M, P=ProjB and w: P—X the natural morphism. Let d’
be the greatest integer such that QdB,/]ﬂéO and n>0. Then:

1. If ij*(ﬁg/k(n))zo for any j>0 and any 0<i<d', then Kos(M/k), is
acyclic.

2. If (1) holds and the natural morphism [Q%/k]n%ﬂ*(QiB/k(n)) is an isomor-
phism for any 0<i<d’, then Kos(M/k), is also acyclic.

Theorem 2.3. Let X be a Noetherigr\z/scheme and M a coherent module on X .
The Koszul complexes Kos(M/k),, and Kos(M/k), are acyclic for n>>0.

2.1. Koszul versus De Rham (Global case)
Now we pass to the De Rham complex (over k). The k-linear differentials
) +1
d: Qg Y Q’l; Ik
give a (global) De Rham complex

DeRham(M/k)=0 —>BL>QB/I€ 5 QZL)%;; i>Qllj%/lc e

which is bounded if X is of finite type over k. Since d is homogeneous of degree 0,
one has for each n>0 a complex of O-modules (with k-linear differential)

DeRham(M /k)n =0 — "M —5 [Qp ji]n —5 .. <5 [0 )]0 — .

One has again Cartan’s formula: ipod+ doip= multiplication by n, on [Q’é/k]n
and then:

Proposition 2.4. If X is a scheme over Q, then the complexzes Kos(M/k),
and DeRham(M /k),, are homotopically trivial (in particular, acyclic) for any n>0.
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As in Section 1.2, we can take homogeneous localizations: for each n€Z, the

differentials Q7 /k%Q’éﬁ induce k-linear morphisms

d: O (n) — O%F L (n)

and one obtains a complex of Op-modules (with k-linear differential)

DeRham(M/k, n) =0 — Op(n) % Qp /1 (n) 5 ... 5 QF

B/k(n) — .

Again, the differentials of Koszul and De Rham complexes are related by Car-
tan’s formula: ipod + d oip= multiplication by n, on Qg/k (n), so one has:

Proposition 2.5. Let X be a scheme over Q. The complezes Kos(M/k)(n)
and DeRham(M/k,n) are homotopically trivial (in particular, acyclic) for any

n#0.

Corollary 2.6. If X is a scheme over Q, then for any n##0, the exact se-
quences

(n) — QF,

0— Q2 Bk

B/k (n) _%Qp_l(”) —0

P/k

split as sheaves of k-modules (but not as Op-modules).

3. Cohomology of projective bundles

In this section we assume that £ is a locally free sheaf of rank r+1 on a k-
scheme (X, 0). Let B=S5"E be its symmetric algebra over O and P=Proj B X
the corresponding projective bundle. Our aim is to determine the cohomology of

the sheaves Qg (n) and Qf , ().

3.1. Cohomology of Qf x (n)

Notations: In order to simplify some statements, we shall use the following
conventions:

1. SPE=0 whenever p<0, and analogously for exterior powers.

2. For any integer p, let p=r+1—p.

3. For any O-module M, we shall denote by M* its dual Hom (M, O).

We shall use the following well known result on the cohomology of a projective
bundle:
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Proposition 3.1. Let n be a non negative integer. Then

0 for i£0

Rim Op(n) = { S"E fori=0

If n is a positive integer, then

0 for i#r

R'm,.Op(—n) = { SrrlerQATHLE* fori=r

We shall also use without further explanation a particular case of projection
formula: for any quasi-coherent module N on X and any locally free module £ on
P such that R, L is locally free (for any j), one has

Rim (m*N®L)=N@R'7,.L

Proposition 3.2. Let n be a non negative integer. Then

. 0 for i#0
7 P —
RW*QB/O(N)_{Ap(c/*@STL—pg for i=0

For any positive integer n, one has

S~ 0 for i#£r
'3 4 _ — _ _
R 8dg,0(—n) {Apg*®S”P5* for i=r with p=r+1—p

Proof. Since ﬁ’l;/oz(ﬂ'*/\pé’)(—p), the results follows from Proposition 3.1.
For the second formula we have also used the natural isomorphism APE=APE*®
ATtie. O

Remark 3.3. Notice that A”S@S"*Z’S:[Q%/O]n. Thus, Proposition 3.2 and
Theorem 1.5 tell us that Kos(€),—»Kos(€), is an isomorphism for any n>0 and

the Koszul complexes IE\OJS((E' )n and Kos(€),, are acyclic for any n>0 (thus we obtain
the well known fact of the acyclicity of the Koszul complex of a locally free module).
Let us denote by K, ,, the kernels of the morphisms ip in Kos(€),, that is,
Kpn=Ker (APEQS"PE — APTTEQSPHLE)
One has the following result (see [12] or [4, Exposé XI] for different approaches).

Theorem 3.4. Let € be a locally free sheaf of rank r+1 on a k-scheme (X, O)

and P=Proj S ESSX the corresponding projective bundle.
Let n be a positive integer number.
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, O if0<i=p<r
i P _ < <
Rm. Q]P’/X o { 0 otherwise

: 0  ifi#0
7 p —
RSy (n) = {Icp,n if i=0

and, if X is a Q-scheme, then

Kpn®Kp_1.n=APERS"PE.

Rim Q%

(=n) = 0 if i#r
7‘ p,n Zf’t_

and, if X is a Q-scheme, then
Ky n©K; =APE* RSN TPE

r—p+1,n
Proof. Let n>0. By Theorem 1.4
0— 0 (n) — Qo (n) — ... — Q0 (n) — Op(n) — 0

is a resolution of QF / «(n) by m.-acyclic sheaves (by Proposition 3.2). One concludes
then by Proposition 3.2 and Remark 3.3.
(3) follows from (2) and (relative) Grothendieck duality: one has an isomor-

phism Qg/X:”Hom( ]P,;)’;,Q]}/X) and then
RW*Qg/X(—n)zRW*’Hom (Qﬁ;;};(n), p/x) = RHom (RW*QITP,/)?( n)[r], O)

and one concludes by (2).
Finally, the statements of (2) and (3) regarding the case that X is a Q-scheme
follow from Corollary 1.11. O

Corollary 3.5. (Bott’s formula) Let P, be the projective space of dimension
r over a field k. Let n be a positive integer number.

1.
1 if 0<g=p<r

. q Py
dimy H (PleP’r) {0 otherwise

dimy, H(P,, Q% (n)) = { 0 if 470

(") i a=0
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dimy Hq(IP’in(‘”)):{(()W) (=) Z;ﬁé:

n

Proof. By Theorem 3.4, it is enough to prove that dimy IC,, , = ("t: ?) (”;1).
From the exact sequence

0—Kpn—APERS"PE—Kp_1,—0

it follows that dimy ICp ,,+dimy Kp—1 = (TH) (”7”“"); hence it suffices to prove

r

n+r—p\ (n—1 n n+r—p+1\ (n—=1\ (r+1\ (n—p+r
n p n p—1) \p r
which is an easy computation if one writes (‘;) :Wib)!. O

Remark 3.6. (1) We can give an interpretation of H°(P,,Qf (n)) in terms of
differentials forms of the polynomial ring k[xg, ..., z,]; one has the exact sequence
iD

=2 [P

0— H°(P, Qf (n)) — [}, Rlwou.,] /R

Klao,...a] /K1

that is, H°(P,, Qg (n)) are those p-forms wPGQZ[mo,...,zT]/l@ which are homogeneous
of degree n and such that ipw,=0, where D:ZZZO x;0/0x;.
(2) From the exact sequence

0— HO(P,, Q% (n)) — APE@S™PE —5 ... — EQS" 1€ — §"E —0

we can give a different combinatorial expression of dimy H°(P,, Qg (n)) (as Verdier

does):
p .
dimy, HO (PT,QP :Z (T+1) <n+r P-H).
r

i=

It follows from Theorem 3.4 that HY(P, Qb

P/X) H?P(X,0). For the twisted

case we have the following;:

Corollary 3.7. Let X be a proper scheme over a field k of characteristic zero.
Let € be a locally free module on X of rank r+1 and P=Proj S € the associated
projective bundle. Then, for any positive integer n, one has:

1. dimy H(P, Qﬁ/x( n))=>"_ (1) dim H4(X, AP~ E@ S ~PTiE).

2. dimy H(P, Qﬁ,/x( n))=>4_ (1) dim HI™" (X, APTE* @ SnP~igx)
with p=r+1—p.
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Proof. (1) By Corollary 1.11, one has
HY(P, 8, (n) @ HY (B, Q5 ¢ (n)) = HY (B, 5 (n))

and HY(P, 0 ,(n))=H(X, AP@S"PE) by Proposition 3.2. Conclusion follows.
(2) is completely analogous. O

3.2. Cohomology of Qf . (n)

Let us consider the exact sequence of differentials
0— Qx/k®(96—> Qg/k —>QB/O —0

This sequence locally splits: indeed, if £ is trivial, then E=F®; O and B=
B®, O, with B=5"F; hence, Q3,0=8p/,®;O and there is a natural morphism
Qp/r@rO—Qp/;, which is a section of Qp/,—{5/0.

Remark 3.8. The exact sequence is a sequence of graded B-modules, hence it
gives an exact sequence of @-modules in each degree. In particular, in degree 0 one
obtains an isomorphism Qx/,=[Qz/x]o, and an exact sequence in degree 1:

0—Qx/p®0& — Qg1 —E—0
which is nothing but the Atiyah extension.
Taking homogeneous localizations we obtain an exact sequence of Op-modules
0— 7" Qx/p —>£~25/k —>ﬁg/o —0
which splits locally (on X).

Proposition 3.9. Let n be a positive integer. Then:

1.
0 for i#£0,r
le*Qg/k: QZ))(/k 1 fori=0
Qg{/,: fori=r
2.

Lo~ 0 for i#0
T P —
R W*Qg/k(n) = { [Q%/k]” for i=0
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3. Riw*ﬁ’é/k(—n)zo for i#r and R’“mﬁfg/k(—n) is locally isomorphic to
p _ —
D L onTe o 5mie")
q=0
with g=r+1—q.
4. Furthermore, if X is a smooth k-scheme (of relative dimension d), then

T d+p1*
R 7T*mzé/k(_”) = [QB-}_If]n@Q()i(/k

N Proof. If £ is trivial, then ﬁg/k:ﬂ'*ﬂx/k@ﬁg/o, SO ﬁg/k:@gzo 77*9&7%@
QqB/O and (1)—(3) follow from Proposition 3.2 in this case. Since & is locally trivial,
we obtain the vanishing statements of (1)—(3).

(1) The natural morphism Qf /k—>7r*QZ, /i 18 an isomorphism because it is
locally so. The natural morphism ﬁgﬁ%QEé gives a morphism Rrﬂ'*ﬁgﬁ—>

R"W*ﬁgéz(’), which is an isomorphism because it is locally so. Finally, for any
p>0, the natural morphism ﬁ% /k®§gﬁ_>§?/_1:+l induces a morphism 7, (7} /k)®
R"W*(ﬁgﬁ)—)R"ﬁ*ﬁ%}F;H, i.e. a morphism Qﬁ/k%Rrﬂ*ﬁgﬂﬂ, which is an iso-
morphism because it is locally so.

(2) The natural morphism [Q}, /k]n—HT*QZ /() is an isomorphism because it
is locally so.

It only remains to prove (4), which is a consequence of (relative) Grothendieck
duality. Indeed, notice that, under the smoothness hypothesis, Rrw*ﬁg /k(fn) is
locally free, by (3). Hence, if suffices to compute its dual. This is given by duality:

the relative dualizing sheaf is {2, X:ﬁg‘*/'(lg and one has isomorphisms ﬁ%‘}’;“:

T o2 Hom (3, F2J7 ) 147 then
(R (=) = mHom (@ (—n), gl)
=, [Homp(ﬁfg/k(—n), st%“)@r*(@g(/k)*]
= (F*Q%T;f(n))ég(ﬁglc/k)* 2 [QdB—;If]"(@(Qg(/k)*' 0

Corollary 3.10. The Koszul complexes Kos(E/k)n and I/{\o/s(é'/k)n are acyclic
for n>0 and Kos(E/k),—Kos(E/k)y, is an isomorphism for any n>0.

Let us denote by Kp,n the kernels of the morphisms ip in the Koszul complex
Kos(E/k)yn; that is,

Kp.n i=Ker ([0 ,Jn — [ 4]n)



294 Bjorn Andreas, Dario Sanchez Gémez and Fernando Sancho de Salas

Theorem 3.11. Let £ be a locally free sheaf of rank r+1 on a k-scheme (X, O)

and P=Proj S ELSX the corresponding projective bundle.
Let n be a positive integer. One has:

L RimQf, =0
2.

; 0 for i#£0
7 p —
R, (n) = {@n for i=0
and, if X is a Q-scheme, then one has an isomorphism (of k-modules, not of O-
modules)
’Cp,n GBK:pfl,n - [Q%/k]n

3. Riw*Qﬁ/k(—n):0 for i£r and RTW*Qg/k(—n) is locally isomorphic to

p
@ Q§(7(]Z3®]C:_q7n
q=0

Moreover, if X is a Q-scheme, then one has an isomorphism (of k-modules, not of
O-modules) ~
R'm.Q0f, (—n) @R .00 (—n) = R'm.Qp  (—n)

4. If X is a smooth k-scheme (of relative dimension d), then
R 1 (=1) = Koy pn @ 4

and, if X is a Q-scheme, then one has an isomorphism (of k-modules, not of O-
modules)

Proof. If £ is trivial, then Qp/,=m"Qx/;,B0p/x, 50 Qﬂﬁ/k: 520 W*Qg(/k@)
Qg/}% and (1)—(3) follow from Theorem 3.4 in this case. Since £ is locally trivial,
we obtain the vanishing statements of (1)—(3).

(1) The exact sequences 0—Qp /k%flfg /kﬁﬂg,/fkl —0 induce morphisms

i i1 .
’/T*Qg/kl ——>R17T*Q§,/kl+ — ... ——)RZ’/’T*Qg/k

whose composition with the natural morphism Q&;Z%W*Qﬁ;;’: gives a morphism

Q&;;%Riﬂ'*Qg e This morphism is an isomorphism because it is locally so.

(2) The exact sequence 0—>Q§,/k(ﬁ)—>ﬁ%/k(n)—>§%7,i (n) induces, taking direct
image, the isomorphism W*Qg/k(n):ICp,n.

(4) follows from (2) and (relative) Grothendieck duality. Indeed, notice that,
under the smoothness hypothesis, RTW*Qﬁ/k(—n) is locally free, by (3). Hence, if
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suffices to compute its dual. This is given by duality: the relative dualizing sheaf

is €2,y and one has isomorphisms Q}%XZQ]@/X@W*QSI(M and Hom (Qg/k7 Qg}“;):

Qg';}:_p; then:

[R'm. Q8 (—n)]" = mHomp(QF , (—n), O )

= [Hom p(QL,.(—n), Q) @7 (% )]

- r— * (2) == *
= (M1 P ()@ (% /1)" = Katr—pn®(Q%/8)

Finally, the statements of (2)—(4) regarding the case of a Q-scheme follow from
Corollary 2.6. O

Remark 3.12. For n=1 a little more can be said (as Verdier does): The natural
morphism Qg( /k®5 %ﬂ*Qﬁ /k(l) is an isomorphism. Indeed, the exact sequence
0 —>Qx/k®8—>ﬂg/k — QB/(’) —0
induces for each p an exact sequence
0— Q% @B—Qf , — O @080 — U P05 Q0 — ...
and taking degree 1, an exact sequence
0— Q% R®E— [0

%l —%Q@}c@s—m

On the other hand, taking 7, in the exact sequence

0— €, (1) — QF (1) — Q1 (1) — 0

gives the exact sequence

0— mQp ), (1) — [ .11 —>7r*Q§/_k1(1) —0

Thus, the isomorphism Q‘I;(/k®5—>7r*§2§/k(l) is proved by induction on p.

Remark 3.13. Tt is known (see [1] or [6]) that Rw*Qg/k is decomposable, i.e.,

one has an isomorphism in the derived category R, /k:@:zo Qgg/;[fz] Let us
see that, for p€[0,r], this is a consequence of Theorem 2.1 and Proposition 3.9.
Indeed, by Theorem 2.1, one has the exact sequence

0—>Q§/k—>£~2’é/k—>§’é7;—>...—>£~25/k—>(’)]p—>0

and, by Proposition 3.9, fl’é}; are m,-acyclic for any :>0 and T, ﬁ%ﬁzﬂ?&l Then

Rw*Qﬁ/kE 0—>Q§(/k—>9§(_/2—>...—>ﬂx/k—>(’)—>0

and, since the differential ip : QJX /k—>QJ;/}€ is null, we obtain the result.
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The decomposability of R, Qp /k implies an isomorphism

T

HY(P,QF )= EB HI7(X, Q’;;/;)
1=0

For the twisted case we have the following:

Corollary 3.14. Let X be a proper scheme over a field k of characteristic zero.
Let € be a locally free module on X of rank r+1 and P=Proj S'E the associated
projective bundle. Then, for any positive integer n, one has:

1. dimy H(P, Qﬁ/k(n)): P o(=1)"dimy, HI(X, [Q’é};]n)

2. If X is smooth over k of dimension d, then

d+r—p
dimy, H4(P, Qg,/k(—n)) = Z (—1)" dimy H " 9(X, [leg%—p—z]n)
=0

Proof. (1) By Corollary 2.6,

HI(P, 9, (n)) & (P, Q27 (n) = HU(P, O , (n)
and H(P, ﬁ%/k(n)):H‘l(X, [Qg/k]n) by Proposition 3.9. Conclusion follows.
(2) follows from (1) and duality. O
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