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Stable hypersurfaces with zero scalar curvature
in Euclidean space

Hilário Alencar, Manfredo do Carmo and Gregório Silva Neto

Abstract. In this paper we prove some results concerning stability of hypersurfaces in

the four dimensional Euclidean space with zero scalar curvature. First we prove there is no

complete stable hypersurface with zero scalar curvature, polynomial growth of integral of the

mean curvature, and with the Gauss-Kronecker curvature bounded away from zero. We conclude

this paper giving a sufficient condition for a regular domain to be stable in terms of the mean and

the Gauss-Kronecker curvatures of the hypersurface and the radius of the smallest extrinsic ball

which contains the domain.

1. Introduction

Let M3 be a hypersurface of R4 with scalar curvature R=0 and whose mean

curvature H is nowhere zero. Let Ω⊂M be a regular domain, i.e., a domain with

compact closure and piecewise smooth boundary. We recall that hypersurfaces of

R
4 with zero scalar curvature are critical points of the functional

A1(Ω)=

∫
Ω

H dM

under all compactly supported variations in Ω, see [1]. Thus, the notion of stability

makes sense and we can ask for a condition to ensure that a regular domain Ω⊂M

be stable.

Since H is nowhere zero, depending on choice of orientation we have H>0 or

H<0 everywhere. Let Ω⊂M be a regular domain. If we choose an orientation such

that H>0 everywhere, then the domain Ω will be stable if d2A1

dt2

∣∣
t=0

>0 under all

compactly supported variations in Ω. Otherwise, i.e., if we choose an orientation

such that H<0, then the domain Ω is stable if d2A1

dt2

∣∣
t=0

<0 under all such variations.
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We say that M is stable if all regular domains of M are stable. For more information

about the concept of stability, we refer to [1], [5], [6] and [8].

We say that M3 has polynomial growth of the 1-volume if there exist constants

C>0 and α>0 such that ∫
Br(q)

H dM ≤Crα

for all r>0 and q∈M , where Br(q) denotes the geodesic ball of M with center q

and radius r.

If M3 is a hypersurface of R4 with zero scalar curvature and Gauss-Kronecker

curvature nowhere zero then, by the Gauss equation (3H)2=‖A‖2+6R (where ‖A‖
is the matrix norm of the second fundamental form and R is the scalar curvature

of M3), the mean curvature is nowhere zero. Thus, the notion of stability makes

sense in this case.

Alencar, do Carmo and Elbert, see [1, p. 215], posed a conjecture, which for

the case n=3 can be written as follows:

There is no complete, stable hypersurface M3 of R4 with zero scalar curvature

and everywhere non-zero Gauss Kronecker curvature.

Our first result is a partial answer to this conjecture.

Theorem 1.1. There is no stable, complete, non-compact, hypersurface M3 of

R
4 with zero scalar curvature, Gauss-Kronecker curvature bounded away from zero,

and polynomial growth of the 1-volume.

Since the image of the Gauss map for graphs lies in a open hemisphere, they

are stable, see [1, p.201, Theorem 1.1]. Moreover, by [2, p. 3310, Proposition 4.2],

graphs have polynomial growth of the 1-volume. Thus an immediate corollary of

Theorem 1.1 is the following Bernstein type result.

Corollary 1.2. There is no complete graph in R
4 with zero scalar curvature

and Gauss-Kronecker curvature bounded away from zero.

Remark 1.3. We point out that some condition on the Gauss-Kronecker curva-

ture is needed. In fact, cylinders over positively curved curves are examples of stable

hypersurfaces with zero scalar curvature and everywhere zero Gauss-Kronecker cur-

vature. If we choose, for example, the curve as the graph of the polynomial function

y(x)=x2, see [7, p. 492, Example 4.2], we obtain a cylinder which is a graph with

polynomial growth of the 1-volume.

Remark 1.4. In the direction of Theorem 1.1, by using a technique which holds

only in dimension 3, the third author, see [7, p. 483, Theorem A], proved the fol-
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lowing result: There is no stable complete hypersurface M3 of R4 with zero scalar

curvature, polynomial volume growth and such that

− K

H3
≥ c> 0

everywhere, for some constant c>0. Here H denotes the mean curvature and K

denotes the Gauss-Kronecker curvature of the immersion.

Let rΩ be the radius of the smallest extrinsic ball which contains the domain

Ω⊂M . Our second result gives a sufficient condition for a regular domain to be

stable in terms of the mean and the Gauss-Kronecker curvatures of the hypersurface

and the radius of the smallest extrinsic ball which contains the domain. We have

the following result.

Theorem 1.5. Let M3 be a hypersurface of R4 with zero scalar curvature and

such that H �=0. Let Ω⊂M be a regular domain. If

sup
Ω

(
−3K

H

)
≤ 3

2r2Ω
,

then Ω is stable.

Remark 1.6. By using essentially the same proofs, Theorems 1.1 and 1.5 extend

to the case of a hypersurfaceMn in R
n+1, n arbitrary, with zero scalar curvature and

non-vanishing of the third symmetric function of the principal curvatures, rather

than non-vanishing of Gauss-Kronecker curvature.

2. Proofs of the theorems

In what follows we introduce a second order differential operator which will

play a role for hypersurfaces with zero scalar curvature similar to that of Laplacian

for minimal hypersurfaces. For that, consider the linear operator P1 :TM→TM

given by

P1 =3HI−A,

where A:TM→TM is the linear operator associated with the second fundamental

form of the immersion of M3 into R
4 and I :TM→TM is the identity operator. We

define

(2.1) L1(f)=div
(
P1(∇f)

)
,
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where divX denotes the divergence of the vector field X and ∇f denotes the gradi-

ent of the function f in the induced metric. By a result of Hounie and Leite, see [4,

p. 873, Proposition 1.5], when the scalar curvature R=0, the differential operator

L1 is elliptic if and only if K �=0 everywhere. Since L1 is an elliptic and self-adjoint

operator, it has a discrete spectrum and thus we can consider the eigenvalues of L1

for regular domains Ω⊂M . The first eigenvalue λL1
1 (Ω) has an associated positive

eigenfunction g, i.e., a function such that L1g+λL1
1 (Ω)g=0 in Ω. Set

‖g‖H1
0
=

(∫
Ω

(
|g|2+|∇g|2

)
dM

)1/2

and let H1
0 (Ω) be the completion of C∞

0 (Ω) with respect to the norm ‖·‖H1
0
. It is

well known that H1
0 (Ω) is called a Sobolev space over Ω. It can be proven, see [8,

p. 1052, Lemma 4(a)], that

λL1
1 (Ω) = inf

{∫
Ω
−gL1gdM∫
Ω
g2dM

: g ∈H1
0 (Ω), g �≡ 0

}

= inf

{∫
Ω
〈P1(∇g),∇g〉dM∫

Ω
g2dM

: g ∈H1
0 (Ω), g �≡ 0

}
.

Proof of Theorem 1.1. Let M3 be a complete and non-compact hypersurface

of R4 with zero scalar curvature and Gauss-Kronecker curvature K �=0 everywhere.

It is known that

(2.2) HK ≤ 3

2
R2.

In fact, if k1, k2, and k3 denotes the principal curvatures of the hypersurface, then

(3R)2−6HK = (k1k2+k1k3+k2k3)
2−2(k1+k2+k2)(k1k2k3)

=
[
k21k

2
2+k21k

2
3+k22k

2
3+2

(
k21k2k3+k1k

2
2k3+k1k2k

2
3

)]
−2

(
k21k2k3+k1k

2
2k3+k1k2k

2
3

)
= k21k

2
2+k21k

2
3+k22k

2
3 ≥ 0,

and the equality holds if, and only if, two of the principal curvatures are zero. If,

without loss of generality, we choose an orientation of M3 such that H>0, then the

hypothesis R=0, K �=0, and the (2.2) imply K<0.

The proof of the Theorem will be made by showing the existence of unstable

domains in M . Let {Ωi}∞i=1 be a family of regular domains in M such that Ωi⊂Ωi+1

and
⋃∞

i=1 Ωi=M . The second variation of the functional A1(Ωi)=
∫
Ωi

H dM is

d2A1

dt2
(gi)

∣∣∣∣
t=0

=−
∫
Ωi

(
giL1gi−3Kg2i

)
dM
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where gi :M→R is any piecewise smooth function defined on Ωi with gi|∂Ωi=0, see

[1, p. 207]. Let gi be the first eigenfunction of L1 over Ωi⊂M . Thus we have

d2A1

dt2
(gi)

∣∣∣∣
t=0

=λL1
1 (Ωi)

∫
Ωi

g2i dM+

∫
Ωi

3Kg2i dM,

i.e.,

(2.3)
d2A1

dt2 (gi)
∣∣
t=0∫

Ωi
g2i dM

=λL1
1 (Ωi)−

∫
Ωi
(−3K)g2i dM∫
Ωi

g2i dM
.

Since Mn has polynomial growth of the 1-volume, see [3, p. 259, Lemma 3.12], gives

λL1
1 (M)=inf{λL1

1 (Ω)|Ω⊂M}=0. By using that Ωi⊂Ωi+1, see [8, p. 1051, Lemma

2], we have λL1
1 (Ωi)≥λL1

1 (Ωi+1). This implies

(2.4) lim
i→∞

λL1
1 (Ωi)= 0.

The second member of the expression

(2.5) lim
i→∞

{
λL1
1 (Ωi)−

∫
Ωi
(−3K)g2i dM∫
Ωi

g2i dM

}

is the limit of the mean value of 3K in Ωi with respect to the volume element g2i dM .

There are three possibilities for the limit of the quotient of the integrals in (2.5):

(i) It may be infinite, in which case, because λL1
1 (Ωi)→0, the expression (2.5)

is negative after some i0;

(ii) It may be finite but non-zero, in which case, by the same reason, the

expression is negative after some i0;

(iii) It might be zero. Then we use for the first time the hypothesis that K is

bounded away from zero to conclude this case cannot happen.

Therefore, M is unstable, thus proving Theorem 1.1. �

In order to prove Theorem 1.5 we need the following Poincaré type inequality.

Proposition 2.1. Let M3 be a hypersurface of R4 such that H>0 and R=0.

Let Ω⊂M be a regular domain. If u∈H1
0 (Ω) is a non-negative function, then

(2.6)

∫
Ω

uH dM ≤ rΩ√
6

∫
Ω

H1/2
〈
P1(∇u),∇u

〉1/2
dM,

where rΩ denotes the radius of the smallest extrinsic ball which contains Ω.
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Proof. Initially, let BrΩ(x0), x0∈R4 be the smallest ball of R
4 containing Ω

and ρ(x)=ρ(x0, x) be the extrinsic distance from x0 to x∈M . Since Ω⊂BrΩ(x0),

then, for all x∈Ω,

(2.7) ρ(x)≤ rΩ.

We claim that

divM
(
P1(ρ∇ρ)

)
=6H.

In fact,

div
(
P1(ρ∇ρ)

)
= div

(
3Hρ∇ρ−A(ρ∇ρ)

)
= 3〈∇H, ρ∇ρ〉+3H div(ρ∇ρ)−div

(
A(ρ∇ρ)

)
.

Since div(A(ρ∇ρ))=3H+3〈ρ∇ρ,∇H〉, we obtain our claim. This implies

div
(
uP1(ρ∇ρ)

)
= u div

(
P1(ρ∇ρ)

)
+
〈
∇u, P1(ρ∇ρ)

〉
= 6uH+

〈
∇u, P1(ρ∇ρ)

〉
.

Integrating the expression above over Ω and by using the divergence theorem, we

have

0=6

∫
Ω

uH dM+

∫
Ω

〈
∇u, P1(ρ∇ρ)

〉
dM,

i.e.,

(2.8)

∫
Ω

uH dM =
1

6

∫
Ω

〈
∇u, P1(−ρ∇ρ)

〉
dM.

Since R=0 and H>0, then P1 is positive semi-definite. In fact, if R=0 then (3H)2=

|A|2≥k2i , for all i=1, 2, 3, where ki are the principal curvatures of M3. Thus 0≤
(3H)2−k2i =(3H−ki)(3H+ki) which implies that all eigenvalues 3H−ki of P1 are

non-negative, provided H>0, i.e., P1 is positive semi-definite. Thus, by using

Cauchy-Schwarz inequality, we obtain

〈∇u, P1(−ρ∇ρ)〉 =
〈√

P1(∇u),
√

P1(−ρ∇ρ)
〉

≤
∣∣√P1(∇u)

∣∣∣∣√P1(−ρ∇ρ)
∣∣

=
〈
P1(∇u),∇u

〉1/2〈
P1(ρ∇ρ), ρ∇ρ

〉1/2

≤ (trM P1)
1/2ρ

〈
P1(∇u),∇u

〉1/2|∇ρ|

≤
√
6H1/2ρ

〈
P1(∇u),∇u

〉1/2
.
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Introducing inequality above into (2.8), we have

∫
Ω

uH dM ≤ 1√
6

∫
Ω

ρH1/2
〈
P1(∇u),∇u

〉1/2
dM.

Therefore, by using (2.7),

∫
Ω

uH dM ≤ rΩ√
6

∫
Ω

H1/2
〈
P1(∇u),∇u

〉1/2
dM.

This proves Proposition 2.1. �

We now prove Theorem 1.5.

Proof of Theorem 1.5. Without loss of generality, choose an orientation of M3

such that the mean curvature H>0. The hypothesis R=0 and the inequality (2.2)

imply K≤0. Since L1(
1
2g

2)=gL1g+〈P1(∇g),∇g〉 for any g with compact support,

after integrating and using the divergence theorem, stability becomes equivalent to

(2.9) −3

∫
Ω

Kg2 dM ≤
∫
Ω

〈
P1(∇g),∇g

〉
dM,

for any smooth function g :Ω⊂M→R with compact support, satisfying g|∂Ω=0,

where Ω is a regular domain. The proof will be made by contradiction. Suppose Ω

is unstable. Then there exists a smooth function g :Ω→R, with compact support,

satisfying g|∂Ω=0, such that

(2.10) −3

∫
Ω

Kg2 dM >

∫
Ω

〈
P1(∇g),∇g

〉
dM.

Choosing u=g2 in the inequality (2.6) of Proposition 2.1, we have

∫
Ω

g2H dM ≤ 2rΩ√
6

∫
Ω

H1/2g
〈
P1(∇g),∇g

〉1/2
dM.

By using the Cauchy-Schwarz inequality in the right hand side of the inequality

above, we have

∫
Ω

H1/2g〈P1(∇g),∇g〉1/2 dM ≤
(∫

Ω

g2H dM

)1/2(∫
Ω

〈
P1(∇g),∇g

〉
dM

)1/2

,

and therefore,
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(∫
Ω

g2H dM

)1/2

≤ 2rΩ√
6

(∫
Ω

〈
P1(∇g),∇g

〉
dM

)1/2

.

By using the hypothesis (2.10), we have

∫
Ω

g2H dM ≤ 2r2Ω
3

∫
Ω

〈
P1(∇g),∇g

〉
dM

<
2r2Ω
3

∫
Ω

(−3K)g2 dM

≤ 2r2Ω
3

sup
Ω

(
−3K

H

)∫
Ω

g2H dM,

i.e.,

1<
2r2Ω
3

sup
Ω

(
−3K

H

)

which is a contradiction. �
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