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The Hartogs extension theorem for holomorphic
vector bundles and sprays

Rafael B. Andrist, Nikolay Shcherbina and Erlend F. Wold

Abstract. We give a detailed proof of Siu’s theorem on extendibility of holomorphic vector

bundles of rank larger than one, and prove a corresponding extension theorem for holomorphic

sprays. We apply this result to study ellipticity properties of complements of compact subsets in

Stein manifolds. In particular we show that the complement of a closed ball in Cn, n≥3, is not

subelliptic.

1. Introduction

The main purpose of the present article is to investigate ellipticity properties

of complements of compact sets in Stein manifolds, and our main result is the

following.

Theorem 1.1. Let X be a Stein manifold with dimX≥3 and let K⊂X be a

compact subset.

– If X\K is elliptic, then K has only finitely many accumulation points.

– If X\K is subelliptic and smoothly bounded, then K is empty.

The notion of ellipticity for complex manifolds was introduced by Gromov in

[12] where he proved an Oka principle for holomorphic sections of elliptic bundles,

generalizing previous work of Grauert [13] for complex Lie groups. For ellipticity

as well as the notion of subellipticity we refer to the book of Forstnerič [7]. A short

overview can be found in this article in Section 7. The question which type of sets

have Oka complements has been mentioned for example in [7, Problem 5.16.4] and

Oka properties of ball complements have been investigated in [11]. In [7, Propo-
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sitions 6.4.1, 6.4.3] (sub-)ellipticity properties for complements of subvarieties are

studied.

The main ingredient in the proof of Theorem 1.1 is the following Hartogs type

extension theorem for holomorphic vector bundles on Stein manifolds which was

stated by Siu in [16]:

Theorem 1.2. Let X be a Stein manifold and let K⊂X be a holomorphically

convex compact set with connected complement. Let E→X\K be a holomorphic

vector bundle. If dimX≥3, then there is a finite set of points P⊂K such that E

extends to a holomorphic vector bundle on X\P .

For proving this result Siu suggested to use methods from Andreotti–Grauert

theory. To our knowledge no proof of this statement exists in the literature, and so

we carry it out in detail.

A proof of Theorem 1.2 in the case of line bundles was recently given by

Fornæss–Sibony–Wold [3], and a description of the obstructions for the extension

of roots of line bundles in dimension two was given by Ivashkovich [15].

It turns out that the extension of vector bundles across critical level sets of an

exhaustion function poses some technical difficulties which may be of independent

interest, see Theorem 1.3.

Theorem 1.3. Let X be a complex manifold with dimX≥3 and let M⊂X be

a closed totally real Lipschitz subset of X . Then for any holomorphic vector bundle

E→X\M , there exists a discrete set of points P⊂M such that E extends to a

holomorphic vector bundle on X\P .

For the notion of a totally real Lipschitz set, see Definitions 2.5 and 2.7 on p. 4.

In view of Theorem 1.3 the following corollary is an immediate consequence of the

proof of Theorem 1.2:

Corollary 1.4. Let X be a complex manifold and M⊂X a closed, totally real

Lipschitz set. If X\M is elliptic, then M is a discrete set of points.

The paper is organized as follows. In Section 2 we present some results concern-

ing the density of pseudoconcave points and the extension of mappings. Next, in

Section 3, we show how to modify exhaustion functions near critical points. In Sec-

tion 4, we consider extensions of sections and maps of fiber bundles, which—among

other methods—are used to show the uniqueness of the extensions of bundles. In

Section 5 we show how to extend bundles across non-critical level sets, and in Sec-
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tion 6 we give the proofs of Theorems 1.2 and 1.3. Finally, in Section 7, we explain

the application to Oka theory and prove Theorem 1.1.

Acknowledgement. The authors would like to thank the referee for helpful

comments.

2. Pseudoconcave points of compact sets and extension of mappings

Definition 2.1. By �n :={z=(z1, ..., zn)∈Cn : |z1|<1, ..., |zn|<1} we denote

the open unit polydisc in C
n.

For 0≤r<s define according to Siu [17, Chapter 2, Section 3]

Gn(r, s) :=
{
(z1, ..., zn)∈ (s·�)n : |zk|>r for some k∈{1, ..., n}

}

= s·�n\r ·�n
.

For q=1, 2, ..., n−1 we define a standard q-Hartogs figure hq by

h
q :=

(
�q×Gn−q(1/2, 1)

)
∪
(
1/2·�q×�n−q

)
.

By a q-Hartogs figure we mean the biholomorphic image φ(hq) of a standard q-Hartogs

figure under an injective holomorphic map φ : �n→X into a complex manifold X .

We set h̃
q
:=φ(�n). If not stated explicitly otherwise, we always assume n=dimX .

When there is no danger of confusion, we will, by abuse of notation, write hq also

for its biholomorphic image φ(hq).

Definition 2.2. Let K⊂C
n be a compact set. We call a point x∈K strictly q-

pseudoconcave if for any open neighborhood U of x, there exists a q-Hartogs figure

hq⊂U \K with x∈h̃q .

We will use the following notation: For any set K⊂C
k×C

m and z0∈Ck, we

denote

Kz0 :=K∩
(
{z0}×C

m
)
.

Note that if x∈Kz0 is a strictly q-pseudoconcave point for Kz0 in C
m, then x is

strictly (q+k)-pseudoconcave for K, since q-Hartogs figures in {z0}×C
m can be

fattened up slightly.

Proposition 2.3. Let K⊂Cn be a compact set. Then the strictly q-pseudo-

concave points in the Shilov boundary “S(P (K)) of the algebra P (K) are dense in
“S(P (K)) for q=1, 2, ..., n−1.
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Remark 2.4. Let Sq(K) denote the set of all strictly q-pseudoconcave points

of the compact K⊂C
n. Then the statement of Proposition 2.3 can be rephrased as

Sq(K)∩ “S
(
P (K)

)
= “S

(
P (K)

)
for q=1, 2, ..., n−1

Also note the following inclusions: S1(K)⊆S2(K)⊆...⊆Sn−1(K).

Proof. Note first that a global extreme point x∈K is q-pseudoconcave for 0<

q<n: Let x∈K be such that ‖x‖=supz∈K ‖z‖. After a unitary transformation we

may assume that x=e1=(1, 0, ..., 0). Then clearly ({e1}×{Cn−1})∩K={e1}, so it

is easy to construct q-Hartogs figures at x.

We proceed to show that if x∈ “S(P (K)) and if ε>0, then there exists a point

x′∈K with ‖x′−x‖<ε and a holomorphic automorphism Λ∈Authol(Cn) such that

Λ(x′) is a global extreme point for the set Λ(K).

The peak points for P (K) are dense in “S(P (K)), so we may assume that the

point x is a peak point for the algebra P (K). Then x is not in the polynomially

convex hull of the set K ′ :=K\Bε(x), where Bε(x) denotes the ball of radius ε with

center x. Hence, for any R>0 and any δ>0, by the Andersén–Lempert Theorem

[1], [2], [4] and [5] there exists Λ∈Authol(Cn) such that ‖Λ−id‖K\Bε(x)<δ and

such that ‖Λ(x)‖>R. If R is chosen large and δ is chosen small, this proves the

proposition. �

We denote the coordinates on C
n by z1, ..., zn with zj=xj+iyj , and we let x

denote the tuple (x1, ..., xn) and y denote the tuple (y1, ..., yn).

Definition 2.5. By a Lip-α-graph M at the origin we mean a set M={y=ψ(x)}
with ψ(0)=0 and ψ Lipschitz continuous with Lipschitz constant α>0, defined in

a neighborhood of 0 in Rn
x .

Corollary 2.6. Let M⊂C
n be a compact subset of a closed Lip-α graph near

the origin with 0<α<1. Then there exists a dense set of points Σ⊂M such that

for any point x∈Σ and any open set U containing x, there exists an embedding

φ : �n→U containing x, with φ(h1)∩M=∅.

Proof. In view of [18, Theorem 1.6.9, p. 55] we observe that a Lip-α graph M

over R
n
x satisfies M= “S(P (M)). Then the statement follows from Proposition 2.3

with K=M and q=1. �

Definition 2.7. Let X be a complex manifold. A subset M⊆X is called a

totally real Lipschitz set if for each point p∈M there exists a holomorphic coordinate
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neighborhood z : U→V containing p and a constant 0<α<1 such that z(U∩M) is

contained in a Lip-α-graph of a map ψ : Rn
x∩V →R

n
y∩V , where z=x+iy.

Corollary 2.8. Let X be a complex manifold with dimX≥2 and let M⊂X be

a closed totally real Lipschitz submanifold. Furthermore let Z be a complex manifold,

let Y be a Stein manifold and let f : (X\M)×Z→Y be a holomorphic map. Then

f extends holomorphically across M×Z.

Proof. The problem is local, so let W be an open connected subset of the

origin, assume that M is a closed subset of W , and let f∈O((W \M)×Z). Since

Y is Stein, it is enough to consider functions thanks to the existence of a proper

holomorphic embedding of Y in some C
N . Note that W \M is connected. By the

previous corollary there exists a point x∈M and an embedding φ : �n→W with

x∈φ(�n) and φ(h1)∩M=∅. Note that φ(�n)\M is connected. Let f̃ be the

extension of f |φ(h1)×Z to φ(�)×Z according to Lemma 2.9. Now f and f̃ are both

holomorphic on the connected open set φ(�n)\M and they coincide on the open

set φ(h1). By the identity principle they coincide on φ(�)\M , and then clearly f̃

extends f across (M∩φ(�n))×Z.

Now let Ω⊂M be the largest open set (in the relative topology) such that f

extends across Ω×Z. This is well defined since any extension across a point of M

is unique if it exists, and it is non-empty by the argument above. Note that M \Ω
is either empty or it is a closed subset of a Lip-α-graph, and in the latter case

we would get a contradiction to the assumption that Ω is maximal, since, due to

Corollary 2.6, we could apply the above argument again. Hence, M=Ω. �

Lemma 2.9. Let Z be a complex manifold and let f : hq×Z→C be a holomor-

phic function, where hq stands for the standard q-Hartogs figure. Then f extends

to a holomorphic function f̃ : �n×Z→C.

Proof. Let (w, z) denote the coordinates on �n×Z. By the classical Hartogs

extension theorem, for each z∈Z the map f(·, z) extends uniquely to a holomorphic

function f̃z : �n→C, and we let these extensions determine an extension f̃ . It re-

mains to show that the extension is actually holomorphic, and since holomorphicity

is a local property, we can use local coordinates and assume that Z is a domain

in C
m. Using the classical Hartogs extension theorem for partial derivatives in the

z-directions on hq×Cm, it is easy to see that f̃ is holomorphic in each variable

separately, hence f̃ is holomorphic. �

If M is C2-smooth, it is easy to construct a 1-Hartogs figure directly; we denote

by x resp. y the real resp. imaginary part of z=x+iy∈Cn:
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Figure 1. The lower bound yn=(C/2−K)·‖x‖2 for Im(fC(x, ψ(x))) in Lemma 2.10.

Lemma 2.10. Let M={y=ψ(x)}⊂C
n be a C2-smooth graph at the origin with

dψ(0)=0. Then for any open set U containing the origin, there exists an embedding

φ : �n→U containing the origin, with φ(h1)∩M=∅.

Proof. For C>0 we let FC : Cn→C
n be the map

FC(z)=
(
z1, ..., zn−1, fC(z)

)
:=

(

z1, ..., zn−1, zn+Ci·
n∑

j=1

z2j

)

.

Since FC is injective near the origin, there exists a constantK>0 such that ‖ψ(x)‖<
K‖x‖2, and by staying close enough to the origin we may assume that ‖ψ(x)‖≤
1/2·‖x‖. Choosing C>2K we see that

Im
(
fC

(
x, ψ(x)

))
= C

n∑

j=1

(
x2
j−ψj(x)

2
)
+ψn(x)

≥ C

n∑

j=1

1/2·x2
j−K‖x‖2,

Therefore we obtain Im(fC(x, ψ(x)))≥(C/2−K)·‖x‖2. Using this it is easy to

construct a Hartogs figure, see also Figure 1. �

3. Modification of a strictly plurisubharmonic function near a Morse

critical point

In this section we show how to modify a strictly plurisubharmonic function

near a nice Morse critical point, in order to extend sections and bundles across
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critical points. This is very similar to what is done in Oka–Grauert theory, and the

reader can compare the following proposition with Lemma 3.10.1 in [7]. We feel

however that the proof we give here is simpler. It is motivated by ideas in [3].

Definition 3.1. We denote the super-level sets of an exhaustion function ρ of

the complex manifold X by Xc :={x∈X : ρ(x)>c}, the sub-level sets by Xc :={x∈
X : ρ(x)<c}, and its level sets by Γc :={x∈X : ρ(x)=c}.

Definition 3.2. Let ρ : X→R be a Morse exhaustion function of the complex

manifold X . A critical point x0∈X of ρ is called nice (see [14, Definition 2.4]) if

there exist local holomorphic coordinates z=(z1, ..., zn)=(x1+iyn, ..., xn+iyn) such

that ρ is of the form

ρ(z)= ρ(x0)+

m∑

j=1

(
x2
j+μjy

2
j

)
+

n∑

j=m+1

(
x2
j−μjy

2
j

)
,(1)

with 0≤μj≤1 for j=1, ..., n and μj<1 for j=m+1, ..., n.

For a compact set L⊂X the Morse exhaustion function is called nice on X\L
if the set of critical points of ρ in X\L is discrete and if each of them is nice, with

not more than one critical point in each level set.

Proposition 3.3. Let ρ : X→R be a strictly plurisubharmonic exhaustion

function, let x∈X be a nice critical point with ρ(x)=c and let some c′>c be such

that there are no critical values in the interval (c, c′]. Choose coordinates z in which

ρ assumes the form as in (1) for ‖z‖<1. We can assume that all μj for j=1, ...,m

in (1) are positive (for if not, we may move the corresponding x2
j terms to the second

sum and renumber). Then for every ε>0, there exist ε1<ε2<ε and s>0, and there

exists a strictly plurisubharmonic function ρ̃ on X such that the following hold:

(i) in the coordinate z, on Bε1(0), we have that

ρ̃(z)= c+
m∑

j=1

(
x2
j+μjy

2
j

)
+

n∑

j=m+1

x2
j ,(2)

with 0<μj≤1 for j=1, ...,m,

(ii) {x∈X :ρ̃(x)=c}\Bε1⊂{x∈X : ρ(x)<c},
(iii) ρ̃(x)=ρ(x)+s for x∈X\Bε2(0), and

(iv) there are no critical values for ρ̃ in the interval (c, c′+s].

See also Figure 2 for an illustration of the properties (i)–(iv) of Proposition 3.3.
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Figure 2. Modification of ρ to ρ̃ in Proposition 3.3, assuming for simplicity that the
form (2) is reached at this step.

Proof. For simplicity we assume that c=0, and hence we can locally represent

the function ρ as

ρ(z)=

m∑

j=1

(
x2
j+μjy

2
j

)
+

n∑

j=m+1

(
x2
j−μjy

2
j

)
.(3)

Fix a cutoff function χ∈C∞
0 (R) with χ≡1 on [−1/2, 1/2], suppχ⊂(−1, 1), and

0≤χ≤1. Furthermore, for every 0<ε<1, and every δ∈{0}m×[0, 1)n−m, we set

ψε,δ(z) :=χ

(
‖z‖2
ε2

)
·

n∑

j=m+1

δjy
2
j(4)

The function ρ̃ shall be defined as a sum

ρ̃(z) := ρ(z)+

�∑

k=1

ψεk,δ(k)(z)+s·
(
1−χ

(
‖z‖2
ε2�+1

))
.(5)

The following lemma provides the crucial step in the proof.

Lemma 3.4. Fix the function χ as above and let 0<μ<1 and μ′>0. Then

there exists 0<δ0<1 such that if ρ is a function of the form (3) on B
n
ε with μj≥μ′ for

j=1, ...,m, and μj≤μ for j=m+1, ..., n, and if ψε,δ as above satisfies 0<δj≤μj and

δj<δ0 for j=m+1, ..., n, then ρε,δ=ρ+ψε,δ is a strictly plurisubharmonic function

on B
n
ε , with all critical points contained in {ρε,δ≤0}.
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Before we prove the lemma, we show how it is used by completing the proof of

the above proposition:

Let μ:=maxm+1≤j≤n{μj}, μ′ :=min1≤j≤m{μj}, and let δ0 be as in the lemma,

depending on μ and μ′, and fix an l∈N and δj for j=m+1, ..., n such that μj=lδj
with δj<δ0. Set εk=(1/2)k for k=1, ..., l+1, and set δ(k)=(δm+1, ..., δn) for k=

1, ..., l. The function ρ̃ defined by (5) will now satisfy all the desired properties for

sufficiently small s. �

Proof of Lemma 3.4. By computing the Levi form of ψε,δ , we see that there

exists a constant M , independent of ε and δ, such that Lz(ψε,δ;w)≥−Mδ‖w‖2,
where δ=maxm<j≤n{δj}, hence

Lz(ρ+ψε,δ;w)≥
1

2

(
m∑

j=1

(1+μj−Mδ)|wj |2+
n∑

j=m+1

(1−μj−Mδ)|wj |2
)

.

So if δ0<
1−μ
M we see that ρε,δ is strictly plurisubharmonic.

Next we compute the gradient

∇ρε,δ(z) =∇ρ(z)+∇ψε,δ(z)

= 2(x1, ..., xn, μ1y1, ..., μmym,−μm+1ym+1, ...,−μnyn)

+χ

(
‖z‖2
ε2

)
·2(0, ..., 0, δm+1ym+1, ..., δnyn)

+

(
2

ε2
χ′
(
‖z‖2
ε2

)
·

n∑

j=m+1

δjy
2
j

)

·(x1, ..., xn, y1, ..., yn).

Now fix z and assume that ∇ρε,δ(z)=0. If ym+1=ym+2=...=yn=0, then ∇ρε,δ(z)=

∇ρ(z), hence x1=x2=...=xn=y1=y2=...=ym=0.

Next we assume that x =0 and observe that this requires

2

ε2
χ′
(
‖z‖2
ε2

)
·

n∑

j=1

δjy
2
j =−2.

Now there is at least one j∈{m+1, ..., n} such that yj =0. The yj -component in the

sum of the first two lines above is 2yj(χ(
‖z‖2

ε2 )δj−μj). But the expression in brackets

can never be 1, so the yj -component of ∇ρε,δ(z) is not zero. Finally, assume that

yk =0 for 1≤k≤m. Note that
∑n

j=m+1 δjy
2
j≤δ0‖z‖2<δ0ε

2, so the yk-component of
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the third term in the sum above is less than 2‖χ′‖δ0|yk| in absolute value. Therefore,

as long as δ0 is chosen small enough so that 2‖χ′‖δ0<μ′, the gradient is non-zero.

We conclude that x1=x2=...=xn=y1=...=ym=0, and ρε,δ(z)≤0. �

4. The Hartogs extension theorem for holomorphic fiber bundles

Theorem 4.1. Let X be a Stein manifold, dimX≥2, let K⊂K ′⊂X be com-

pact sets with K holomorphically convex and X\K ′ connected, and let Q⊂X\K be

a closed discrete set of points. Let π : E→X\(K∪Q) be a holomorphic fiber bundle

with Stein fiber, and let Y be a Stein manifold. Then the following hold:

(i) Any holomorphic map f : π−1(X\(K ′∪Q))→Y extends uniquely to a holo-

morphic map f̃ : E→Y , and

(ii) any holomorphic section s : X\(K ′∪Q)→E extends uniquely to a section

s̃ : X\(K∪Q)→E.

Proof. We first argue that we can assume that Q=∅. For this purpose we let ρ

be a strictly plurisubharmonic exhaustion function of X , and we pick c>0 such that

K ′⊂{ρ<c} and {ρ=c}∩Q=∅. Choose c′<c such that K ′∪(Q∩{ρ<c})⊂{ρ<c′}.
Then K∪(Q∩{ρ<c}) is holomorphically convex in {ρ<c}, so we can let this be our

new set K, and K ′ be the set {ρ≤c′}, and we replace X by {ρ<c}.
Let ρ : X→R be a C∞-smooth non-negative plurisubharmonic exhaustion func-

tion such that K={ρ=0}, ρ>0 on X\K, and ρ is strictly plurisubharmonic on

X\K (see e.g [18, Theorem 1.3.8]). By the Morse lemma and [14, Lemma 2.5]

we can assume that ρ is a nice exhaustion function, i.e. near each critical point

x0∈X\K the exhaustion function ρ is of the form (1) in suitable local coordinates.

We will give the proof of (i); the proof of (ii) is almost identical.

Choose a non-critical value c>0 such that K ′⊂Xc, and define

s= inf
{
0≤ t≤ c : f extends to π−1

(
Xt

)}
.(6)

By Corollary 4.3 below we obtain that s<c. Assume to get a contradiction that

s>0. By Corollary 4.3 or Lemma 4.4 f would extend further. �

We now give the lemmas used in the above proof.

Lemma 4.2. Let c′>0 be a non-critical value for ρ, and assume that

g : π−1(Xc′)→Y is a holomorphic map. Then there exists c′′<c′ and an extension

of g to π−1(Xc′′).
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Proof. For any point x∈Γc′ there exist local holomorphic coordinates such that

Γc′ is strictly convex near x. Hence, by compactness, there exist Hartogs figures

(h1j , h̃
1

j ), j=1, ...,m, in Xc′ such that for all j

h̃
1

j∩X̃c′ is connected for all small C2-perturbations X̃c′ of Xc′ .(7)

and such that
⋃

j h̃
1

j covers Γc′ . Choose finitely many compact sets Cj⊂Γc′∩h̃
1

j

such that
⋃

j Cj covers Γc′ . Since Y is Stein, we can think of each g|π−1(h1
j )

as

a holomorphic map to C
k and so a local extension reduces to extension of each

component. Hence Lemma 2.9 gives an extension to each π−1(h̃
1

j ). It is intuitively

clear that we get a jointly well defined extension across Γc′ . The following is a

precise argument.

We proceed by induction on l and assume that we have found a small C2-

perturbation ρl of ρ defining a small perturbation Xc′

l of Xc′ , with Xc′∪C1∪...∪
Cl⊂Xc′

l and an extension of f to Xc′

l .

By (7) we get a well defined extension of f to Xc′

l ∪h̃1l+1. Let χ∈C∞
0 (X), χ≥0,

suppχ⊂h̃
1

l+1 and χ≡1 near Cl+1. Then ρl,ε :=ρl+ε·χ converges to ρl in C2-norm,

and defines ρl+1 and Xc′

l+1 for ε>0 small enough.

After m steps we have an extension to a full neighborhood of Γc′ . �

Corollary 4.3. Let c′>0 be a non-critical value for ρ, and g : π−1(Xc′)→Y

be a holomorphic map. Let 0≤c′′<c′ and assume that there are no critical values

in the interval (c′′, c′). Then g extends to a holomorphic map g̃ : π−1(Xc′′)→Y .

Proof. We let s:=inf{c′′<t<c′ : g extends to π−1(Xt)}. Then c′′≤s<c′ and

g extends to some g̃ : π−1(Xs)→Y . If c′′<s we would get a contradiction since g̃

would extend across Γs. �

Next we consider the critical case.

Lemma 4.4. Let c′>0 be a critical value for ρ and g : π−1(Xc′)→Y be any

holomorphic map. Then there exists a c′′∈[0, c′) such that g extends to π−1(Xc′′).

Proof. If c′ corresponds to a local minimum, it is easy to extend using a Hartogs

figure and Lemma 2.9. Otherwise we choose c>c′ such that there are no critical

values in the interval (c′, c). Let ρ̃ be a function as in Proposition 3.3 below. Then,

by Corollary 4.3 with the function ρ̃, the map g extends to π−1({ρ̃>c′}), and, by
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Lemma 2.8, g extends further across the critical point. So there exists some c′′<c′

such that the extension is defined on π−1(Xc′′). �

Remark 4.5. Note that an isomorphism between two holomorphic vector bun-

dles of rank r is a section of an associated holomorphic fiber bundle with fibers

Glr(C). Hence part (ii) of Theorem 4.1 can be applied for extension of isomor-

phisms of bundles.

Before we give two corollaries, we state the definition of the extension of a

bundle.

Definition 4.6. Let X be a complex manifold, let U1⊂U2⊂X be open sets

and let Ej→Uj be holomorphic vector bundles for j=1, 2. We say that E2 is an

extension of E1 if E2|U1 is isomorphic to E1.

Corollary 4.7. Let X be a Stein manifold with a nice exhaustion function ρ.

Let c3<c2<c1, let Qj be closed discrete subsets of Xcj for j=1, 2, 3, and let E1→
Xc1 \Q1 be a holomorphic vector bundle, and assume that Ej is an extension of E1

to Xcj \Qj for j=2, 3. Moreover, assume for each j=1, 2, 3 that Qj is the singularity

set of the vector bundle Ej→Xcj \Qj , i.e. Ej cannot be extended as a holomorphic

vector bundle through any point in Qj . Then Q1⊂Q2⊂Q3, Q1=Q2∩Xc1=Q3∩Xc1 ,

Q2=Q3∩Xc2 and E2 and E3 are isomorphic over Xc2 \Q2.

Proof. By definition of an extension we have that Qj∩Xc1⊂Q1 for j=2, 3,

and by transitivity, the three bundles are isomorphic over Xc1 \Q1. Now let x∈
Xc1 \Qj for j=2 or j=3. The isomorphism implies that E1 is trivial in a punctured

neighborhood of x, hence x /∈Q1. Hence Q1⊂Q2 and Q1⊂Q3. It follows that

Q1=Q2∩Xc1=Q3∩Xc
1 . Using a similar argument, we conclude that Q2⊂Q3 and

Q2=Q3∩Xc2 .

Finally, we observe that by Theorem 4.1 the isomorphism between E2 and E3

on Xc1 \Q1 extends to an isomorphism on Xc2 \Q2. �

Corollary 4.8. Let X be a Stein manifold with a nice exhaustion function ρ.

Let cj∈R, cj<cj−1, for j=1, 2, 3, .... Let E1→Xc1 \Q1 be holomorphic vector bun-

dle, and assume that for every j=1, 2, 3, ... there exist holomorphic extensions Ej→
Xcj \Qj , where Qj is the singularity set of Ej . Then E1 extends to Xs\Q as a

holomorphic vector bundle, where s=inf{cj} and Q=
⋃∞

j=1 Qk.

Proof. The previous corollary allows us to define the inductive limit of all the

extensions, removing unnecessary singular points. �
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Proposition 4.9. Let K⊂�×r ·�n−1
, 0<r<1, n≥3, be a closed set with

�n\K connected, and with Kz1 polynomially convex (possibly empty for some z1)

for all z1∈�. Let π : E→�n\K be a holomorphic fiber bundle with Stein fiber,

and let Y be a Stein manifold. If we denote by Dn−1
r the domain �×Gn−1(r, 1)=

�×(�n−1\r ·�n−1
), then the following hold

(i) Any holomorphic map f : π−1(Dn−1
r )→Y extends uniquely to a holomorphic

map f̃ : E→Y , and

(ii) any holomorphic section s : Dn−1
r →E extends uniquely to a section s̃ : �n\

K→E.

Proof. Theorem 4.1 implies that f and s have well defined extensions to the

slices �n
z1 \Kz1 for all z1∈�. This gives us extensions f̃ and s̃ of f and s respec-

tively, but we need to show that they are holomorphic in the z1-direction.

In order to show this, say for s, we let Ω be the largest open subset of �n\K
such that s is holomorphic on Ω, and write K̃=�n\Ω. Assume by contradiction

that K̃ =K. Then there exists z0∈� such that Kz0 is a proper subset of K̃z0 . Since

Kz0 is polynomially convex we see that Kz0 cannot contain “S(P (K̃z0)), hence there

is a point x∈ “S(P (K̃z0))\Kz0 . It follows then from Proposition 2.3 that there is a

strongly pseudoconcave point x′∈K̃z0 \Kz0 , and hence there exists an arbitrarily

small Hartogs figure (h1, h̃
1
) of dimension (n−1) with h1⊂�n

z0 \K̃z0 and x′∈h̃1z0 .
For some small ε>0 we have that �ε(z0)×h1⊂�n\K̃, and this gives us a Hartogs

figure on which s, by local triviality of the fiber bundle π, extends to some open

neighborhood of x′ in �n. Contradiction.

The case of a holomorphic map follows the same argument. �

5. Extending vector bundles across smooth level sets of a strictly

plurisubharmonic exhaustion function

In this section we will assume throughout that X is a complex manifold with

dimX=n≥3, and we let ρ be a nice exhaustion function.

Proposition 5.1. Let c be a non-critical value of ρ, Q⊂Xc be a closed (in Xc)

discrete set of points and let E→Xc\Q be a holomorphic vector bundle whose sin-

gular set is Q. Then Q is finite near Γc and there exist c′<c and a finite set of

points P⊂Xc′ , such that E extends to Xc′ \(Q∪P ).

The first step for proving the proposition will be the following lemma:
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Lemma 5.2. Under the assumptions of Proposition 5.1 the set Q is finite

near Γc and there exists a finite set of points P⊂Γc such that for any point x∈
Γc\P , there exists an open neighborhood U of x in X with the property that E is

a holomorphically trivial vector bundle on U∩Xc. Moreover, there exists an open

neighborhood V of P such that E extends as a coherent analytic sheaf S on Xc∪V .

Proof. Let x∈Γc. Then we can assume that Γc is strictly convex in suitable

local holomorphic coordinates, and hence it is easy to construct a holomorphic

embedding φ : �n→X with φ(0)=x and a set W of the form

(
�ε

(
z∗
)
×�n−1

)
∪
(
�×Gn−1(r, 1)

)
(8)

for some z∗∈�, ε∈(0, 1), r∈(0, 1) and�ε(z
∗)={z : |z−z∗|<ε} with ϕ(W )⊂Xc\Q,

where Q is the singularity set of E.

Indeed, due to the strict convexity of Γc, we can first choose an embedding

ϕ : �n→X such that ϕ(0)=x and ϕ(({0}×�n−1)∪(�×b�n−1))⊂Xc∪{x}. Then,
taking into account the fact that Q is countable, we can choose z∗∈� and t∈(0, 1)
such that ϕ(({z∗}×�n−1

t )∪(�×b�n−1
t ))⊂Xc\Q and hence, by closedness of Q in

Xc, there exists a small enough neighborhood of the set ({z∗}×�n−1
t )∪(�×b�n−1

t )

in �n which will give, after a homothety �n−1
t →�n−1, the open set W in (8) with

the required properties.

Then by Siu, p. 225 in [17], the vector bundle E extends to a coherent analytic

sheaf S on φ(�n), which is a holomorphic vector bundle Ẽ→φ(�n)\Q̃ where Q̃ is a

finite set of points. In view of Remark 4.5 above we can conclude by Proposition 4.9,

applied to the fiber bundle with fibres Glr(C), that any isomorphism Ψ: E|G→Ẽ|G,
where G:=φ(�×Gn−1(r, 1)), extends to a vector bundle isomorphism

Ψ̃: E|φ(�n)\(Xc∪Q∪ eQ) → Ẽ|φ(�n)\(Xc∪Q∪ eQ).

In particular, the set Q∩ϕ(�n)⊂Q̃ is finite. By the compactness of Γc we can find

a finite covering Γc by the sets ϕj(�n), j=1, 2, ...,m, described above. Therefore,

the set P , defined as the union of the corresponding sets Q̃j∩Γc (where Q̃j is the

described set Q̃ which corresponds to ϕj(�n)), as well as the set Q near Γc are finite.

For x∈Γc\P , we can take an embedding ϕ : �n→X with x∈ϕ(�n) and such a small

image that ϕ(�n)∩Q=∅. This shows that for U=ϕ(�n) the bundle E is trivial on

U∩Xc. The existence of the required neighborhood V of P and the extension of the

vector bundle E→Xc\Q to a coherent sheaf S on Xc∪V follows from the above

argument applied to a covering of P by finitely many polydiscs ϕj(�n), j=1, ...,m,

and then extending E to a coherent sheaf Sj for each j=1, ...,m. �
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Proof of Proposition 5.1. We now let χ∈C∞
0 (X) be such that χ≥0 and χ(p)>0

for all p∈P provided by the preceding lemma. If ε>0 is small enough, then the

function ρε :=ρ+εχ is strongly plurisubharmonic without critical points near Γc,ε :=

{x∈X : ρε(x)=c}, and by the last lemma we have an extension of E across Γc,ε

which we may assume to be a trivial bundle near any point of Γc,ε. To avoid too

many indices we now drop the subscript ε, assume that E was already locally trivial

near Γc, and proceed with the extension.

Let Ui, i=1, ..., l, be an open cover of Γc such that E|Xc∩Ui is trivial for every i.

Choose a finite number of Hartogs figures (h1j , h̃
1

j ) such that for each j one has

h1j⊂Xc, h̃
1

j⊂Ui for some i, h̃
1

j∩Xc is connected, and such that
⋃

j h̃
1

j covers Γc.

It follows from Proposition 4.9 and Remark 4.5 that if X̃c is a sufficiently small

C2-perturbation of Xc with Xc⊂X̃c, and if Ẽ is an extension of E to X̃c, then Ẽ

is holomorphically trivial on h̃
1

j∩X̃c for each j. Now, an argument as at the end of

the proof of Lemma 3.4 shows that E extends across Γc. �

Corollary 5.3. Let X be a Stein manifold with a nice exhaustion function ρ,

let Q⊂Xc be a closed discrete set for a non-critical value c, and let E→Xc\Q
be a holomorphic vector bundle such that Q is its singularity set. Then for each

c′<c with no critical values in (c′, c] there exists a discrete subset Q′⊂Xc′ and an

extension of E to Xc′ \Q′ with Q′ being singularity set of this extension.

Proof. Let s:=inf{c′′<c : E extends to a vector bundle on Xc′′ \Q′′, where

Q′′⊂Xc′′ is a closed discrete set}. By Corollary 4.8 we have that E extends to

Xs\Qs for some closed discrete set Qs⊂Xs and so s=c′. �

6. Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.3. By Corollary 2.8, transition maps extend across totally

real Lipschitz sets. Hence it is enough to show that there is a discrete set of points

P⊂M such that for any point x0∈M \P , there is an open neighborhood U of x0

with the property that E is holomorphically trivial on U \M .

Let Ω⊂M be the set consisting of all points x∈M that have a neighborhood

U⊂X such that E|U\M is trivial. We will first show that Ω =∅, and then that every

point x∈bΩ is isolated in M .

By Corollary 2.6, there exists an embedding φ : �n→X with φ(�n)∩M =∅,

and such that φ(h1)⊂X\M .

By choosing a possibly smaller Hartogs figure, we may assume that E is a vector

bundle on φ(h1). Now E extends to a coherent analytic sheaf S on φ(�n), and S
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is locally free outside a finite set of points. Arguing as in the proof of Lemma 5.2,

we see that E may be trivialized outside a locally finite set of points in M .

Next, M̃ :=M \Ω is itself a totally real Lipschitz set, and E extends to a vector

bundle on X\M̃ . Unless M̃ is a discrete set of points, the whole argument can

be repeated to show that E is a trivial vector bundle near a relatively open subset

of M̃ , contradicting the maximality of Ω. �

Remark 6.1. We believe that the same method of proof for Theorem 1.3 works

also for a (n−2)-complete manifold X instead of a Stein manifold X , i.e. when X

has a smooth exhaustion function whose Levi form has a least 3 positive eigenvalues

in every point.

Proof of Theorem 1.2. We choose a nice nonnegative plurisubharmonic exhaus-

tion function ρ of X , i.e. as in Definition 3.2 with L=∅. Then, by the compactness

of K, the vector bundle E is defined on a superlevel set Xa⊂X\K of ρ for some

regular value a>0. Let

c := inf
{
b<a : E extends to Xb\Qb, where Qb is a discrete closed subset of Xb

which is the singularity set of E in Xb
}
.

It follows from Corollary 4.8 that E extends to Xc\Qc where Qc is also is a discrete

closed subset of Xc which is the singularity set of E in Xc. By Corollary 5.3,

c cannot be a regular value of ρ. If the critical point is not a local minimum, we can

consider the function ρ̃ constructed in Proposition 3.3 and conclude that E extends

to {ρ̃>c}\Q̃c. By Lemma 2.10 and an argument as in the Lemma 5.2 the set Q̃c is

locally finite near M :={ρ̃=0}∩Bε1 . Finally, E extends across M by Theorem 1.3.

If the critical point is a local minimum, it is easy to find a Hartogs figure, and

by the same argument as before, the singularity set cannot accumulate there. We

conclude that c=0 and that the singularity set is finite. �

7. Oka theory

In this section we will use our extension result to prove the following theorem.

Theorem 7.1. Let X be a Stein manifold with an exhaustion function ρ, let

K⊂X be a compact set, and let Ej→X\K be a holomorphic vector bundle with

sprays sj : E→X\K for j=1, ...,m finite. Assume further that the family of sprays

is dominating on a super-level set Xc⊃K.
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1. If m=1, then K has only finitely many accumulation points which lie in Xc.

2. If m≥1 and K is smoothly bounded, then K is actually the empty set.

The statement of Theorem 7.1 contains Theorem 1.1.

Before proving this theorem we first give some background on Oka theory.

Gromov [12] introduced 1989 in his seminal paper the notion of an elliptic

manifold and proved an Oka principle for holomorphic sections of elliptic bundles,

generalizing previous work of Grauert [13] for complex Lie groups. The (basic) Oka

principle of a complex manifold X says that every continuous map Y →X from a

Stein space Y is homotopic to a holomorphic map.

In Oka theory exist many interesting classes of complex manifolds with weaker

properties than ellipticity. However, all the known inclusion relations between these

classes are yet not known to be proper inclusions. Following the book of Forstnerič

[7, Chapter 5] we want to mention in particular the following classes and then prove

that at least one of these inclusions has to be proper.

Definition 7.2. A spray on a complex manifold X is a triple (E, π, s) consisting

of a holomorphic vector bundle π : E→X and a holomorphic map s : E→X such

that for each point x∈X we have s(0x)=x where 0x denotes the zero in the fiber

over x.

The spray (E, π, s) is said to be dominating if for every point x∈X we have

d0xs(Ex)=TxX

A complex manifold is called elliptic if it admits a dominating spray.

In this definition we adapted the convention used e.g. in the textbook [7]

identifying the fiber Ex over x with its tangent space in 0x.

A weaker notion, subellipticity, was introduced later by Forstnerič [6] where he

proved the Oka principle for subelliptic manifolds:

Definition 7.3. A finite family of sprays (Ej , πj , sj), j=1, ...,m, on X is called

dominating if for every point x∈X we have

d0xs1(E1,x)+...+d0xsm(Em,x)=TxX(9)

A complex manifold X is called subelliptic if it admits a finite dominating family

of sprays.
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It is immediately clear from the definition that an elliptic manifold is subellip-

tic. However, the Oka principle holds under even weaker conditions. Forstnerič [8],

[9] and [10] showed that the following condition (CAP) is equivalent for a manifold

to satisfy the Oka principle (and versions of the Oka principle with interpolation

and approximation), hence justifying the name Oka manifold:

Definition 7.4. A complex manifold X is said to satisfy the convex approxima-

tion property (CAP) if on any compact convex set K⊂C
n, n∈N, every holomorphic

map f : K→X can be approximated, uniformly on K, by entire holomorphic maps

C
n→X . A manifold satisfying CAP is called an Oka manifold. If this approx-

imation property holds only for n≤N for some N∈N, then X is said to satisfy

CAPN .

A subelliptic manifold is always Oka. Whether an Oka manifold is elliptic or

subelliptic, is on the other hand not known—this implication holds however under

the extra assumption that it is Stein.

We want to mention also these weaker properties:

Definition 7.5. A complex manifold X of dimension n is called dominable if

there exists a point x0∈X and a holomorphic map f : Cn→X with f(0)=x0 and

rank d0f=n.

Definition 7.6. A complex manifold X of dimension n is called strongly dom-

inable if for every point x0∈X there exists a holomorphic map f : Cn→X with

f(0)=x0 and rank d0f=n.

Summarizing the previous, the following inclusions are known [7, Corol-

lary 5.15.4]:

elliptic⊆ subelliptic⊆Oka⊆ strongly dominable⊆dominable

There are several known candidates to prove that one of these inclusions is

proper. Theorem 7.1 gives a class of examples of complex manifolds which are not

subelliptic, but strongly dominable.

Corollary 7.7. Let K be the closure of a smoothly bounded non-empty open

subset of Cn, n≥3. Then C
n\K is not subelliptic, but dominable. If K is holomor-

phically convex, then C
n\K is strongly dominable.
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Proof. Since X :=C
n is a Stein manifold, it is a direct consequence of The-

orem 7.1 that X\K is not subelliptic. However for all x∈Cn\K̂ there exists a

Fatou–Bieberbach domain Ω⊆C
n\K̂,Ω∼=C

n, x∈Ω, therefore C
n\K is dominable

resp. strongly dominable. �

Whether or not these examples are Oka manifolds, remains an open question.

A partial result in this direction has been obtained in [11] where they prove that

C
n\Bn satisfies CAPk for k<n.

Proof of Theorem 7.1. In the subelliptic case (which covers also the elliptic

case) we are given a finite family of sprays (Ej , πj , sj) for j=1, ...,m on X\K, which

is dominating on Xc. By Theorem 1.2 we can extend it to a family (Ẽj , π̃j , s̃j) of

sprays on X\P , s̃j : Ẽj→X , where P is a finite set of points. Now (Ẽj , π̃j , s̃j) is

dominating outside an analytic subset of X\P , hence a closed discrete set of points

P ′ inX\P . We denote by P ′′ :=P∪P ′. Consider a point p∈bK\P ′′, i.e. a boundary

point of K where the family of the extended sprays exists and is dominating. By

continuity of the derivative and lower semicontinuity of its rank, the family of sprays

is then also dominating in a open neighborhood V ⊂X\P ′′ of p.

1. If m=1, every sequence in V \K converging to p will be such that the fibres

above all but finitely many points of this sequence hit p. For if not, s1 could not

be dominating in p by the continuity of the derivative. Therefore K⊆P ′′, since we

have just shown that there cannot exist a dominating spray s̃1 : E1|X\K→X\K if

K�P ′′.

2. If m≥1, assume for a contradiction that K =∅ is smoothly bounded. For

each spray s̃j we denote by Ap,j :={q∈V : s̃j(Ej,q)�p}=πj((s̃j |V )−1(p)) the set of

points whose fiber hits p. By the domination property in p there exists at least one

spray s̃j such that Ap,j has a tangent in p which is transversal to the boundary of K.

In analogue to the situation m=1 we can choose a sequence in Ap,j\K converging

to p such that the fibres above the points of this sequence hit p under s̃j . Again we

can conclude K⊆P ′′. Now if the boundary of K is actually smooth and consists of

only finitely many accumulation points, K is empty. �
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