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An improved Combes–Thomas estimate
of magnetic Schrödinger operators

Zhongwei Shen

Abstract. In the present paper, we prove an improved Combes–Thomas estimate, viz. the

Combes–Thomas estimate in trace-class norms, for magnetic Schrödinger operators under general

assumptions. In particular, we allow for unbounded potentials. We also show that for any function

in the Schwartz space on the reals the operator kernel decays, in trace-class norms, faster than

any polynomial.

1. Introduction

The present paper is concerned with the so-called Combes–Thomas estimate

of the following Schrödinger operator with magnetic field

(1.1) HΛ(A, V )= 1
2 (−i∇−A(x))2+V (x) on Λ,

where i is the imaginary unit, ∇=(∂x1 , ∂x2 , ..., ∂xd
) is the gradient, A is the vector

potential giving rise to the magnetic field ∇×A, V is the electric potential and Λ⊂
R

d is the configuration space with dimension d. This operator is used to characterize

a spinless particle subject to a scalar potential and a magnetic field in nonrelativistic

quantum physics (see [21], [22] and [46]).

As is known, the Combes–Thomas estimate plays an important role in the

theory of Schrödinger operators, magnetic Schrödinger operators, classical wave op-

erators, etc. in random media. It was invented by Combes and Thomas [11] to study

the asymptotic behavior of eigenfunctions for multiparticle Schrödinger operators.

Later, Fröhlich and Spencer [20] used it to study the localization for the multidi-

mensional discrete Anderson model. Meanwhile, the Combes–Thomas estimate, as

well as Wegner estimate [48] and Lifshitz tail [37], became important ingredients in

multiscale analysis. Specifically, the initial scale estimate in multiscale analysis for
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localization near the bottom of the spectrum is successful because of the Combes–

Thomas estimate. See [1], [5], [9], [15], [17], [18], [23], [24], [25], [29], [31], [32],

[33], [41], [44] and references therein for further applications. Moreover, a stronger

version of the Combes–Thomas estimate, viz. the estimate in trace-class norms, is

also very useful. In [10] and [30], such estimates have been applied to study the

regularity of the integrated density of states, a concept of great physical significance

[38]. There are also applications in quantum statistical mechanics (see, e.g., [12]).

See [3] and [34] for other applications.

Since the pioneering work of Combes and Thomas [11], the Combes–Thomas

estimate in operator norm has been well studied (see [1], [17], [18], [32], [41], [44]

and references therein). We point out the work of Germinet and Klein [24]. They

proved a Combes–Thomas estimate, in operator norm, with explicit bounds for

general Schrödinger operators including the Schrödinger operator, the magnetic

Schrödinger operator, the acoustic operator, the Maxwell operator and so on. For

the Combes–Thomas estimate in trace-class norms, existing results are scattered

throughout the literature (see e.g. [6], [9], [10] and [34]) and most of them were

proven (for special purposes), more or less, under additional assumptions. For

instance, Klopp proved in [34] the estimate for Schrödinger operators with bounded

potentials. There are also related work in [35] and [36]. Barbaroux, Combes and

Hislop’s result, proven in [3] with an open spectrum gap assumption, works for a

broad class of magnetic Schrödinger operators, but was only proven for infinite-

volume operators. Therefore, it is expected that one can obtain unified results

for both finite-volume and infinite-volume magnetic Schrödinger operators under

general assumptions.

The main goal of the current paper is to obtain the Combes–Thomas estimate

of (1.1) and the associated operator kernel estimate in trace-class norms under gen-

eral assumptions, which allow for unbounded potentials. We first prove an improved

Combes–Thomas estimate, viz. the Combes–Thomas estimate in trace-class norms,

for the magnetic Schrödinger operator (1.1) under general assumptions. Based on

the improved Combes–Thomas estimate, we then show that for any function in the

Schwartz space on the reals the operator kernel decays, in trace-class norms, faster

than any polynomial.

To be more specific, we assume that the magnetic vector potential A∈Hloc(R
d)

is Rd-valued, the electric potential V ∈K±(Rd) is real-valued and the dimension d≥2.

The notation Hloc(R
d) and K±(Rd) for spaces are explained in Section 2. Let Λ⊂R

d

be an open set. We assume that Λ is bounded with sufficiently smooth boundary

if it is not the whole space. The self-adjoint realization of HΛ(A, V ) on L2(Λ) is

still denoted by HΛ(A, V ). If Λ �=R
d, then HΛ(A, V ) is nothing but the localized

operator with homogeneous Dirichlet boundary on ∂Λ. These self-adjoint operators
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are constructed via sesquilinear forms. In Section 3, we will recall the constructions

done in [7].

Our first purpose is to study the Combes–Thomas estimate in trace class norms,

i.e., the trace ideal estimate of the operators

χβ(HΛ(A, V )−z)−nχγ , β, γ ∈R
d,

where χβ is the characteristic function of the unit cube centered at β∈Rd and

z∈ρ(HΛ(A, V )), the resolvent set of HΛ(A, V ). More precisely, we want to obtain

the exponential decay of ‖χβ(HΛ(A, V )−z)−nχγ‖Jp in terms of |β−γ| for suitable
n and p, where ‖ · ‖Jp is the pth von Neumann–Schatten norm reviewed in Section 2.

Following the definition in [24], the family of operators

{χβ(HΛ(A, V )−z)−nχγ}β,γ∈Rd

is also called the operator kernel of the bounded operator (HΛ(A, V )−z)−n. In gen-

eral, if f is a bounded Borel function on σ(HΛ(A, V )), the spectrum of HΛ(A, V ),

then the family {χβf(HΛ(A, V ))χγ}β,γ∈Rd is called the operator kernel of the

bounded linear operator f(HΛ(A, V )). Our first main result regarding the Combes–

Thomas estimate is roughly stated as follows (see Theorems 4.6 and 4.7 for details).

Theorem 1.1. Let A∈Hloc(R
d), V ∈K±(Rd) and Λ⊂R

d be open. Suppose

that p>d/2n with n∈N and n≥1. For any z∈ρ(HΛ(A, V )), the resolvent set of

HΛ(A, V ), there exist constants C=C(p, z, n)>0 and a0=a0(z)>0 such that

‖χβ(HΛ(A, V )−z)−nχγ‖Jp ≤Ce−a0|β−γ| for all β, γ ∈R
d.

In this paper, we also study operator kernel estimates in trace-class norms.

That is, we prove the polynomial decay of the operators

χβf(HΛ(A, V ))χγ , β, γ ∈R
d,

in trace-class norms in terms of |β−γ|, where f belongs to the Schwartz space

S(R) reviewed in Section 2. The main result related to operator kernel estimates is

roughly stated as follows (see Theorem 5.2 for details).

Theorem 1.2. Let A∈Hloc(R
d), V ∈K±(Rd) and Λ⊂R

d be open. Suppose

that p>d/2. Then, for any f∈S(R) and any k∈N, there exists a constant C=

C(p, k, f)>0 such that

(1.2) ‖χβf(HΛ(A, V ))χγ‖Jp ≤C|β−γ|−k for all β, γ ∈R
d.
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Estimates like (1.2), with A being Z
d-periodic, V being bounded and f being

a smooth function with compact support, have been used, as a technical tool, to

study the regularity of integrated density of states. For instance, Combes, Hislop

and Klopp [10, equation (2.30)] utilize the polynomial decay of any order to prove

the convergence of some series, which leads to an expected estimate. It should be

pointed out that Germinet and Klein proved in [24], for slowly decreasing smooth

functions (see Appendix B for the definition), that the operator kernels, for gen-

eral Schrödinger operators, decay, in the operator norm, faster than any polyno-

mial. Their result was then used as a crucial ingredient in their following paper

[25]. Later, sub-exponential decay for functions in Gevrey classes and exponential

decay for real-analytic functions were obtained in [4] by Bouclet, Germinet and

Klein.

The rest of the paper is organized as follows. In Section 2, we collect the

notation used in this paper. In Section 3, we study trace ideal estimates of operators

of the form gf(HΛ(A, V )) for suitable f and g. Such estimates, with g being

characteristic functions of unit cubes and f being integer powers of the resolvent

of HΛ(A, V ), are used as technical tools in the proof of Theorem 1.1. Section 4 is

devoted to the study of the Combes–Thomas estimate in trace-class norms. That

is, we prove Theorem 1.1. In Section 5, we study the operator kernel estimates in

trace-class norms and prove Theorem 1.2.

2. Standing notation

In this section, we collect the notation which will be used in the sequel.

The configuration space Λ is an open set of Rd. We assume that Λ is bounded

with sufficiently smooth boundary unless it is the whole space. We also assume

that the dimension d≥2 since, by gauge transform, vector potentials in one spatial

dimension are of no physical interest.

We denote by χβ the characteristic function of the unit cube centered at β∈Rd.

If the configuration space in question is Λ (�=R
d), then χβ should be understood

as χβχΛ, where χΛ is the characteristic function of Λ. Generally speaking, if a

function is defined on Λ, then we consider it as a function defined on R
d by zero

extension on R
d\Λ.

The Banach space of pth Lebesgue integrable functions on Λ is

Lp(Λ)= {φ measurable on Λ| ‖φ‖p <∞},
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where ‖φ‖p=(
∫
Λ
|φ(x)|p dx)1/p, if p∈[1,∞), and ‖φ‖∞=ess supx∈Λ|φ(x)|. When

p=2, L2(Λ) is a Hilbert space with inner product

〈φ, ψ〉=
∫

Λ

φ̄(x)ψ(x) dx.

Moreover, ‖φ‖2=
√

〈φ, φ〉. As a convention, we simply write ‖ · ‖2 as ‖ · ‖.
If L : Lp(Λ)→Lq(Λ) is a bounded linear operator, the operator norm is defined

by

‖L‖p,q := sup
‖φ‖p=1

‖Lφ‖q.

If p=q=2, we simply write ‖ · ‖2,2 as ‖ · ‖.
Although we use the same notation ‖ · ‖ for both the norm of a function in

L2(Λ) and the norm of an operator on L2(Λ), it should not give rise to any confusion.

Similarly, we do not distinguish the notation for norms corresponding to different

configuration spaces.

For any p∈[1,∞), the Banach space Jp (also an operator ideal) is defined by

Jp = {C : L2(Λ)→L2(Λ) linear and bounded| ‖C‖Jp <∞},

where ‖C‖Jp=(Tr |C|p)1/p<∞ is the pth von Neumann–Schatten norm of C. See

[39] and [42] for more details. We here single out the space J2 (also called the

space of Hilbert–Schmidt operators) for the following important property (see [40,

Theorem VI.23]): A bounded linear operator K on L2(Λ) belongs to J2 if and only

if it is an integral operator with some integral kernel k(x, y) in L2(Λ×Λ). In this

case, ‖K‖J2=(
∫
Λ×Λ

|k(x, y)|2 dx dy)1/2. We will use this property in Section 3.

Let g(x)=− log |x| if d=2 and g(x)=|x|2−d if d≥3. We say that a function

V ∈K(Rd) is in the Kato class if

lim
ε↓0

sup
x∈Rd

∫

|x−y|≤ε

g(x−y)|V (y)| dy=0.

A function V is said to be in the local Kato class Kloc(R
d) if V χK∈K(Rd) for all

compact sets K⊂R
d, where χK is the characteristic function of K. We refer to [45]

for equivalent definitions from the viewpoint of probability theory.

Let V defined on R
d be real-valued. We say that V is Kato decomposable, in

symbols V ∈K±(Rd), if the positive part V+ is in Kloc(R
d) and the negative part V−

is in K(Rd).

A C
d-valued function A is said to be in the class H(Rd) if its squared norm

A·A and its divergence ∇·A, considered as a distribution on C∞
0 (Rd), are both in

the Kato class K(Rd). It is said to be in the class Hloc(R
d) if both A·A and ∇·A
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are in the local Kato class Kloc(R
d). We refer the reader to [2], [7], [8] and [13] for

further remarks about these spaces.

The Schwartz space S(R) consists of those C∞(R) functions which, together

with all their derivatives, vanish at infinity faster than any power of |x|. More

precisely, for any N∈Z, N≥0, and any r∈Z, r≥0, we define for f∈C∞(R)

‖f‖N,r =sup
x∈R

(1+|x|)N |f (r)(x)|.

Then

S(R)= {f ∈C∞(R)| ‖f‖N,r <∞ for all N and r}.
See Folland [19] for more discussions about the Schwartz space.

3. Semigroup and trace ideal estimates

In this section, as a preparation for proving Theorems 1.1 and 1.2, we study

estimates of operators of the form gf(HΛ(A, V )) in trace-class norms for suitable f

and g.

The self-adjoint realization of HΛ(A, V ) on L2(Λ), still denoted by HΛ(A, V ),

is defined via sesquilinear forms as follows (see [7]): the sesquilinear form

h
A,V+

Λ : C∞
0 (Λ)×C∞

0 (Λ) −→ C,

(ψ, φ) �−→ h
A,V+

Λ (ψ, φ),

where

h
A,V+

Λ (ψ, φ)=
〈√

V+ψ,
√
V+φ

〉
+
1

2

d∑

j=1

〈(−i∂j−Aj)ψ, (−i∂j−Aj)φ〉,

is densely defined in L2(Λ), nonnegative and closable, where 〈 · , · 〉 denotes the usual
inner product on L2(Λ). Its closure is still denoted by h

A,V+

Λ with form domain

Q(h
A,V+

Λ ), which is the completion of C∞
0 (Λ) with respect to the norm

‖φ‖
h
A,V+
Λ

=

√
‖φ‖2+h

A,V+

Λ (φ, φ),

where ‖ · ‖=‖ · ‖2 is the norm on L2(Λ) associated with 〈 · , · 〉 as mentioned in

Section 2. We denote by HΛ(A, V+) the associated self-adjoint operator. Since

V−∈K(Rd) is infinitesimally form-bounded with respect to HΛ(A, 0) (≤HΛ(A, V+)),

i.e., there exist Θ1∈(0, 1) (which can be taken to be arbitrarily small) and Θ2≥0

depending on Θ1 so that

(3.1) 〈φ, V−φ〉≤Θ1h
A,0
Λ (φ, φ)+Θ2‖φ‖2, φ∈Q(hA,0

Λ ).
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The KLMN (Kato–Lax–Lions–Milgram–Nelson) theorem (see [40, Theorem X.17])

yields that, with Q(hA,V
Λ )=Q(h

A,V+

Λ ), the sesquilinear form

(3.2)
hA,V
Λ : Q(hA,V

Λ )×Q(hA,V
Λ )−→C,

(ψ, φ) �−→hA,V
Λ (ψ, φ),

where

hA,V
Λ (ψ, φ)=h

A,V+

Λ (ψ, φ)−
〈√

V−ψ,
√
V−φ

〉
,

is closed and bounded from below and has C∞
0 (Λ) as a form core. The associated

semibounded selfadjoint operator is denoted by HΛ(A, V ).

The main result of this section is stated as follows. Let

(3.3) E0 =the infimum of the L2(Rd)-spectrum of HRd(0, V ).

Theorem 3.1. Let A∈Hloc(R
d), V ∈K±(Rd) and Λ⊂R

d be open. Suppose

p≥2. Let f be a Borel function satisfying

(3.4) |f(λ)| ≤C(1+|λ|)−α, λ∈σ(HΛ(A, V )),

for α>d/2p. Then gf(HΛ(A, V )) is in Jp with

‖gf(HΛ(A, V ))‖Jp ≤Cα,p,λ0‖g‖p‖(HΛ(A, V )−λ0)
αf(HΛ(A, V ))‖

whenever g∈Lp(Λ), where λ0<E0 and Cα,p,λ0>0 depends only on α, p and λ0.

To prove the above theorem, we first present some lemmas. We begin with

the celebrated Feynman–Kac–Itô formula proven by Broderix, Hundertmark and

Leschke (see [28], [43], [45] and references therein for earlier versions).

Lemma 3.2. ([7]) Let A∈Hloc(R
d), V ∈K±(Rd) and Λ⊂R

d be open. For any

φ∈L2(Λ) and t≥0, we have

(e−tHΛ(A,V )φ)(x)=Ex{e−Sω
t (A,V )ΞΛ,t(ω)φ(ω(t))} for a.e. x∈Λ,

where

Sω
t (A, V )= i

∫ t

0

A(ω(s)) dω(s)+
i

2

∫ t

0

(∇·A)(ω(s)) ds+
∫ t

0

V (ω(s)) ds,

Ex{ · } denotes the expectation for the Brownian motion starting at x and ΞΛ,t is

the characteristic function of the set {ω|ω(s)∈Λ for all s∈[0, t]}.
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As consequences of Lemma 3.2, we get the so-called diamagnetic inequality

|e−tHΛ(A,V )φ| ≤ e−tHΛ(0,V )|φ|, t≥ 0,

the monotonicity of the semigroup for vanishing magnetic field in the sense that for

Λ⊂Λ′,

e−tHΛ(0,V )χΛφ≤ e−tHΛ′ (0,V )φ, φ≥ 0 and t≥ 0,

and then the Lp-smoothing of semigroups: For 1≤p≤q≤∞, there exist a constant

C>0 and E such that

(3.5) ‖e−tHΛ(A,V )‖p,q ≤‖e−tHΛ(0,V )‖p,q ≤‖e−tH
Rd

(0,V )‖p,q ≤Ct−γeEt,

where γ= 1
2d(1/p−1/q). We remark that E can be chosen such that −E<E0 (see,

e.g., [7] and [41]).

We extend [41, Theorem B.2.1] to the magnetic case.

Lemma 3.3. Let A∈Hloc(R
d), V ∈K±(Rd) and Λ⊂R

d be open. Let α>0 and

1≤p≤q≤∞ satisfy

(3.6)
1

p
− 1

q
<

2α

d
.

Then (HΛ(A, V )−z)−α is bounded from Lp(Λ) to Lq(Λ) whenever Re z<E0.

Proof. This follows from the formula

(HΛ(A, V )−z)−α = cα

∫ ∞

0

e−tHΛ(A,V )etztα−1 dt

and (3.5), where the assumption (3.6) is applied to ensure the convergence of the

above integral. �

As a consequence of Lemma 3.3, we have the following result.

Lemma 3.4. Let A∈Hloc(R
d), V ∈K±(Rd) and Λ⊂R

d be open. Let α>0 and

1≤p≤2≤q≤∞ satisfy (3.6). For any Borel function f satisfying (3.4), the operator

f(HΛ(A, V )) is bounded from Lp(Λ) to Lq(Λ) with

‖f(HΛ(A, V ))‖p,q ≤Cp,q,α,λ0‖(HΛ(A, V )−λ0)
αf(HΛ(A, V ))‖,

where λ0<E0 and Cp,q,α,λ0>0 depends only on p, q, α and λ0.
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Proof. This follows from the arguments in [41, Theorem B.2.3]. �

We next discuss the trace ideal estimate of operators of the form gf(HΛ(A, V ))

for suitable f and g. We start with recalling a result of Dunford and Pettis (see

[13], [41] and [47] for abstract versions).

Lemma 3.5. Let (M,μ) be a separable measurable space. If L is a bounded

linear operator from Lp(M) to L∞(M) with 1≤p<∞, then there is a measurable

function k( · , · ) on M×M such that L is an integral operator with integral kernel

k( · , · ) and

sup
x∈M

(∫

M

|k(x, y)|p
′
dμ(y)

)1/p′

= ‖L‖p,∞ <∞,

where p′=p/(p−1) is the conjugate exponent of p.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. By complex interpolation (see [42, Theorem 2.9]), it

suffices to prove the result in the case p=2, which we show now. For p=2 and

q=∞, we have 1
2d(1/p−1/q)= 1

4d<α by assumption, i.e., (3.6) is satisfied, and

thus, Lemma 3.4 implies that f(HΛ(A, V )) is bounded from L2(Λ) to L∞(Λ). By

Lemma 3.5, f(HΛ(A, V )) is an integral operator with kernel kA,V
Λ (x, y) satisfying

sup
x∈Λ

∫

Λ

|kA,V
Λ (x, y)|2 dy= ‖f(HΛ(A, V ))‖22,∞ <∞.

Thus, gf(HΛ(A, V )) is an integral operator on L2(Λ) with kernel g(x)kA,V
Λ (x, y).

Moreover,
∫∫

Λ×Λ

|g(x)kA,V
Λ (x, y)|2 dx dy≤‖g‖22 sup

x∈Λ

∫

Λ

|kA,V
Λ (x, y)|2 dy

= ‖g‖22‖f(HΛ(A, V ))‖22,∞,

which implies that gf(HΛ(A, V )) is a Hilbert–Schmidt operator as mentioned in

Section 2, i.e., in J2, with J2-norm bounded by ‖g‖2‖f(HΛ(A, V ))‖2,∞. The ex-

pected bound is given by Lemma 3.4. This completes the proof. �

We remark that results obtained in this section are well known for Schrödinger

operators without magnetic fields. See [2], [41] and references therein. It should

be pointed out that the result of Theorem 3.1 in the case HRd(0, V ) was proven

in [41, Theorem B.9.3] for any p≥1. To prove the result for p∈[1, 2), it was first
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shown that gf(HRd(0, V ))∈J1 for g∈
1(L2(Rd)), the Birman–Solomyak space, and

then complex interpolation was used. The proof relies on the translation invariance

of the free Laplacian (see [41, Theorem B.9.2] and [42, Theorem 4.5] for instance),

which, however, is not true for magnetic Schrödinger operators. This prevents us

from obtaining the result for p∈[1, 2).

4. The Combes–Thomas estimate in trace ideals

In this section, we study the improved Combes–Thomas estimate, i.e., the trace

ideal estimate of the operators

χβ(HΛ(A, V )−z)−nχγ for β, γ ∈R
d,

where χβ is the characteristic function of the unit cube centered at β. More pre-

cisely, we want to obtain the exponential decay of ‖χβ(HΛ(A, V )−z)−1χγ‖Jp in

terms of |β−γ|. The main result is stated in Theorem 1.1. Since we also consider

localized operator, χβ should be understood as χβχΛ if the operator is restricted

to Λ as is mentioned in Section 2, where χΛ is the characteristic function of the

domain Λ. The basic tools we use here are sectorial forms and m-sectorial opera-

tors, which are reviewed in Appendix A. We also employ the classical argument of

Combes and Thomas developed in [11].

First of all, we establish some results by applying the theory of sectorial forms

and m-sectorial operators. For this purpose, we first define auxiliary sesquilinear

forms with associated operators formally given by

(4.1) Ha
Λ(A, V )= ea·xHΛ(A, V )e−a·x, a∈R

d,

where ea·x and e−a·x are multiplicative operators. Note that the operator Ha
Λ(A, V )

is not self-adjoint unless a=0. First, we denote by DA,Λ the closure of the operator
1
2

√
2(−i∇−A) on C∞

0 (Λ), so HΛ(A, 0)=D∗
A,ΛDA,Λ. This can be seen by sesquilin-

ear forms. Moreover, the domain of DA,Λ, denoted by D(DA,Λ), is the form domain,

denoted by Q(hA,0
Λ ), of the sesquilinear form associated with the lower bounded self-

adjoint operator HΛ(A, 0). For a∈Λ, we define

DA,Λ(a)= ea·xDA,Λe
−a·x and D∗

A,Λ(a)= ea·xD∗
A,Λe

−a·x.

It is easy to see that

DA,Λ(a)=DA,Λ+i

√
2

2
a on D(DA,Λ),

D∗
A,Λ(a)=D∗

A,Λ+i

√
2

2
a on D(D∗

A,Λ)

(4.2)
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and that they are closed, densely defined operators. Note (DA,Λ(a))
∗ �=D∗

A,Λ(a) for

a �=0. Next, we define the sesquilinear form hA,0
Λ (a) on D(DA,Λ)=Q(hA,0

Λ ) by

(4.3) hA,0
Λ (a)(ψ, φ)= 〈(D∗

A,Λ(a))
∗ψ,DA,Λ(a)φ〉.

We obviously have hA,0
Λ (0)≡hA,0

Λ . Finally, we define the sesquilinear form hA,V
Λ (a)

on Q(h
A,V+

Λ ) by

(4.4) hA,V
Λ (a)(ψ, φ)=hA,0

Λ (a)(ψ, φ)+
〈√

V+ψ,
√
V+φ

〉
−
〈√

V−ψ,
√
V−φ

〉
.

For a0>0, let

(4.5) Ξ1(s)=
2s

1−Θ1
and Ξ2(s, a0)=

2sΘ2

1−Θ1
+

(
1

2s
+
s

4

)

a20,

where Θ1 and Θ2 are given in (3.1). We will write Ξ1(s) and Ξ2(s, a0) as Ξ1 and

Ξ2, respectively, in the sequel.

We next prove several lemmas related to Ha
Λ(A, V ). Our first lemma is about

the relation between hA,V
Λ (a) and Ha

Λ(A, V ).

Lemma 4.1. Let A∈Hloc(R
d), V ∈K±(Rd) and Λ⊂R

d be open. The sesquilin-

ear form hA,V
Λ (a) defined in (4.4) is a closed sectorial form associated with the

unique m-sectorial operator Ha
Λ(A, V ) given by (4.1).

Proof. By (3.2), (4.2), (4.3) and (4.4), we have for any φ∈Q(hA,V
Λ ),

|hA,V
Λ (a)(φ, φ)−hA,V

Λ (φ, φ)|= |hA,0
Λ (a)(φ, φ)−hA,0

Λ (φ, φ)|

≤
√
2|Re〈φ, a·DA,Λφ〉|+ 1

2 |a|
2‖φ‖2

so that

|hA,V
Λ (a)(φ, φ)−hA,V

Λ (φ, φ)|2 ≤ 4|a|2‖φ‖2‖DA,Λφ‖2+ 1
2 |a|

4‖φ‖4,

which implies that for any s>0,

|hA,V
Λ (a)(φ, φ)−hA,V

Λ (φ, φ)| ≤ |a| ‖φ‖
(

4‖DA,Λφ‖2+
1

2
|a|2‖φ‖2

)1/2

≤ 1

2s
|a|2‖φ‖2+ s

2

(

4‖DA,Λφ‖2+
1

2
|a|2‖φ‖2

)

=2shA,0
Λ (φ, φ)+

(
1

2s
+
s

4

)

|a|2‖φ‖2,(4.6)
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since hA,0
Λ (φ, φ)=‖DA,Λφ‖2. Due to (3.1) and (3.2),

hA,V
Λ ≥ (1−Θ1)h

A,0
Λ −Θ2 on Q(hA,V

Λ )(⊂Q(hA,0
Λ )).

This, together with (4.6), implies that

(4.7) |hA,V
Λ (a)(φ, φ)−hA,V

Λ (φ, φ)| ≤Ξ1h
A,V
Λ (φ, φ)+Ξ2‖φ‖2, φ∈Q(hA,V

Λ ),

where Ξ1 and Ξ2 are given in (4.5) with a0 replaced by |a|.
To apply Theorem A.1, we choose s∈

(
0, 1

2 (1−Θ1)
)
so that Ξ1=2s/(1−Θ1)<1.

Since hA,V
Λ is symmetric, closed and bounded from below, Theorem A.1 says that

hA,V
Λ (a) is a closed sectorial form defined on Q(hA,V

Λ ). Theorem A.2 then guarantees

that there exists a unique m-sectorial operator, denoted by Ha
Λ(A, V ), associated

with hA,V
Λ (a). �

The next lemma gives an operator equality connectingHa
Λ(A, V ) andHΛ(A, V ).

Lemma 4.2. Let A∈Hloc(R
d), V ∈K±(Rd) and Λ⊂R

d be open. Suppose that

s∈
(
0, 1

2 (1−Θ1)
)
so that Ξ1<1. Set

(4.8) H̃Λ(A, V )=HΛ(A, V )+Ξ−1
1 Ξ2,

where Ξ1 and Ξ2 are given in (4.5) with a0 replaced by |a|. Then H̃Λ(A, V ) is

nonnegative and there exists a bounded linear operator B from L2(Λ) to itself with

‖B‖≤2Ξ1 such that

(4.9) Ha
Λ(A, V )=HΛ(A, V )+

√
H̃Λ(A, V )B

√
H̃Λ(A, V ),

where Ha
Λ(A, V ) is the m-sectorial operator in Lemma 4.1.

Proof. Set

(4.10)
h̄A,V
Λ (a) = hA,V

Λ (a)−hA,V
Λ on Q(hA,V

Λ ),

h̃A,V
Λ = hA,V

Λ +Ξ−1
1 Ξ2 on Q(hA,V

Λ ).

Then (4.7) can be rewritten as

|h̄A,V
Λ (a)(φ, φ)| ≤Ξ1h̃

A,V
Λ (φ, φ), φ∈Q(hA,V

Λ ),

which implies that h̃A,V
Λ is a densely defined, symmetric, nonnegative, closed ses-

quilinear form with the associated nonnegative self-adjoint operator H̃Λ(A, V ) de-

fined in (4.8).
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Theorem A.3 then ensures that there exists a bounded linear operator B from

L2(Λ) to itself with ‖B‖≤2Ξ1 so that

(4.11) h̄A,V
Λ (a)(ψ, φ)=

〈√
H̃Λ(A, V )ψ,B

√
H̃Λ(A, V )φ

〉

for ψ, φ∈Q(hA,V
Λ )=D

(√
H̃Λ(A, V )

)
. Let

(4.12) h̃A,V
Λ (a)=hA,V

Λ (a)+Ξ−1
1 Ξ2 on Q(hA,V

Λ ).

Since hA,V
Λ (a) is a densely defined closed sectorial form, so is h̃A,V

Λ (a) and the

associated m-sectorial operator is given by

(4.13) H̃a
Λ(A, V )=Ha

Λ(A, V )+Ξ−1
1 Ξ2.

Considering (4.10) and (4.11), we also have

h̃A,V
Λ (a)(ψ, φ)= h̃A,V

Λ (ψ, φ)+h̄A,V
Λ (a)(ψ, φ)

=
〈√

H̃Λ(A, V )ψ,

√
H̃Λ(A, V )φ

〉

+
〈√

H̃Λ(A, V )ψ,B

√
H̃Λ(A, V )φ

〉

=
〈√

H̃Λ(A, V )ψ, (1+B)

√
H̃Λ(A, V )φ

〉
, ψ, φ∈Q(hA,V

Λ ).

(4.14)

We claim that

(4.15) H̃a
Λ(A, V )=

√
H̃Λ(A, V )(1+B)

√
H̃Λ(A, V ).

Let φ∈D(H̃a
Λ(A, V ))⊂Q(h̃A,V

Λ (a))=Q(hA,V
Λ ). We have

h̃A,V
Λ (a)(ψ, φ)= 〈ψ, H̃a

Λ(A, V )φ〉 for all ψ ∈Q(h̃A,V
Λ (a))=Q(hA,V

Λ ).

Comparing this with (4.14) and recalling the definition of the adjoint of an opera-

tor, we see that

√
H̃Λ(A, V )(1+B)

√
H̃Λ(A, V )φ exists and is equal to H̃a

Λ(A, V )φ,

which implies that

H̃a
Λ(A, V )⊂

√
H̃Λ(A, V )(1+B)

√
H̃Λ(A, V ),

i.e.,

√
H̃Λ(A, V )(1+B)

√
H̃Λ(A, V ) extends H̃a

Λ(A, V ). To show (4.15), it now suf-

fices to show that

√
H̃Λ(A, V )(1+B)

√
H̃Λ(A, V ) is accretive since H̃a

Λ(A, V ) is

m-sectorial, and thus has no proper accretive extension. For any

ψ ∈D
(√

H̃Λ(A, V )(1+B)

√
H̃Λ(A, V )

)
⊂Q(hA,V

Λ ),
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(4.14) and (4.12) give

〈
ψ,

√
H̃Λ(A, V )(1+B)

√
H̃Λ(A, V )ψ

〉
= h̃A,V

Λ (a)(ψ, ψ)

=hA,V
Λ (a)(ψ, ψ)+Ξ−1

1 Ξ2‖ψ‖2

=hA,V
Λ (a)(ψ, ψ)−hA,V

Λ (ψ, ψ)

+hA,V
Λ (ψ, ψ)+Ξ−1

1 Ξ2‖ψ‖2.

It then follows from

|Re(hA,V
Λ (a)(ψ, ψ)−hA,V

Λ (ψ, ψ))| ≤ |hA,V
Λ (a)(ψ, ψ)−hA,V

Λ (ψ, ψ)|

and (4.7) that

Re
〈
ψ,

√
H̃Λ(A, V )(1+B)

√
H̃Λ(A, V )ψ

〉

=Re(hA,V
Λ (a)(ψ, ψ)−hA,V

Λ (ψ, ψ))+hA,V
Λ (ψ, ψ)+Ξ−1

1 Ξ2‖ψ‖2

≥−(Ξ1h
A,V
Λ (ψ, ψ)+Ξ2‖ψ‖2)+hA,V

Λ (ψ, ψ)+Ξ−1
1 Ξ2‖ψ‖2

=(1−Ξ1)(h
A,V
Λ (ψ, ψ)+Ξ−1

1 Ξ2‖ψ‖2)

≥ 0,

since Ξ1 is taken to be less than 1 and hA,V
Λ +Ξ−1

1 Ξ2 is nonnegative by (4.7). This

shows that

√
H̃Λ(A, V )(1+B)

√
H̃Λ(A, V ) is accretive and, thus, (4.15) holds. Ob-

viously, (4.9) is equivalent to (4.15) due to (4.8) and (4.13). This completes the

proof. �

The last lemma bridges the resolvent set of HΛ(A, V ) and that of Ha
Λ(A, V ).

Before stating the result, we make following assumptions.

Pick and fix λ0<min{−Θ2, E0}, where E0 was defined in (3.3). This number is

picked to be of technical use. The main advantage is that HΛ(A, V )−λ0 is strictly

positive so that (HΛ(A, V )−λ0)
1/2 is well defined and boundedly invertible, as

opposed to the ill-posedness of the fractional power of HΛ(A, V )−z, which may

cause some troubles.

Let

cz,λ0 =

∥
∥
∥
∥
λ−λ0

λ−z

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

.

Suppose that s>0 and a0>0 satisfy

(4.16) s<
1−Θ1

4cz,λ0

and a20 ≤
2s(λ0+Θ2)

Θ1−1

(
1

2s
+
s

4

)−1
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or

(4.17)
2s(λ0+Θ2)

Θ1−1

(
1

2s
+
s

4

)−1

≤ a20 <

(
(δ−1)λ0

2cz,λ0

+
2s(δλ0+Θ2)

Θ1−1

)(
1

2s
+
s

4

)−1

,

where δ=δ(λ0)∈(0, 1) is such that δλ0∈(λ0,min{−Θ2, E0}). We will show the

derivation for the above two classes for conditions in Lemma 4.5 below. We point

out that
2s(λ0+Θ2)

Θ1−1
<

(δ−1)λ0

2cz,λ0

+
2s(δλ0+Θ2)

Θ1−1

is nothing but s<(1−Θ1)/4cz,λ0 .

Remark 4.3. Note that assumptions (4.16) and (4.17) can be considered to-

gether to form a more general one, but we consider them separately anyway for the

following two reasons.

(i) The first reason is about the conditions giving rise to (4.16) and the first

inequality in (4.17). In the proof of Lemma 4.4 below, we need conditions on s and

a0 to ensure

2Ξ1cz,λ0

∥
∥
∥
∥
λ+Ξ−1

1 Ξ2

λ−λ0

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

< 1,

i.e., (4.21), where the quantity ‖(λ+Ξ−1
1 Ξ2)/(λ−λ0)‖L∞(σ(HΛ(A,V ))) appears. It is

easy to see that

∥
∥
∥
∥
λ+Ξ−1

1 Ξ2

λ−λ0

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

=

⎧
⎪⎨

⎪⎩

1, if Ξ−1
1 Ξ2≤−λ0,

inf σ(HΛ(A, V ))+Ξ−1
1 Ξ2

inf σ(HΛ(A, V ))−λ0
, if Ξ−1

1 Ξ2≥−λ0.

Moreover, the second inequality in (4.16) and the first inequality in (4.17) corre-

spond to Ξ−1
1 Ξ2≤−λ0 and Ξ−1

1 Ξ2≥−λ0, respectively.

(ii) The second reason is that (4.17) provides a nonzero lower bound for a0,

and in turn, an upper bound for e−a0|β−γ|, which is important in Section 5 because

we need such an upper bound (of course after being simplified) to estimate some

integrals there.

Lemma 4.4. Let A∈Hloc(R
d), V ∈K±(Rd) and let Λ⊂R

d be open. Let z∈
ρ(HΛ(A, V )), the resolvent set of HΛ(A, V ). Suppose that s>0 and a∈Rd sat-

isfying |a|=a0>0 obey (4.16) or (4.17). Then Ha
Λ(A, V )−z is invertible, i.e.,

z∈ρ(Ha
Λ(A, V )), the resolvent set of Ha

Λ(A, V ). In other words, ρ(HΛ(A, V ))⊂
ρ(Ha

Λ(A, V )).
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Proof. By (4.9), we have

Ha
Λ(A, V )−z =HΛ(A, V )−z+

√
H̃Λ(A, V )B

√
H̃Λ(A, V )(4.18)

= (HΛ(A, V )−λ0)
1/2(U+V )(HΛ(A, V )−λ0)

1/2,

where

U =(HΛ(A, V )−λ0)
−1/2(HΛ(A, V )−z)(HΛ(A, V )−λ0)

−1/2

=(HΛ(A, V )−z)(HΛ(A, V )−λ0)
−1

and

V =(HΛ(A, V )−λ0)
−1/2

√
H̃Λ(A, V )B

√
H̃Λ(A, V )(HΛ(A, V )−λ0)

−1/2.

Since (HΛ(A, V )−λ0)
1/2 is invertible, invertibility of Ha

Λ(A, V )−z is equivalent to

that of U+V .

We claim that U+V is invertible under the assumptions of the lemma with

(4.19) ‖(U+V )−1‖≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cz,λ0(1−Θ1)

1−Θ1−4scz,λ0

, if a0 satisfies (4.16),

(δ−1)λ0cz,λ0

(δ−1)λ0−2(δλ0Ξ1+Ξ2)cz,λ0

, if a0 satisfies (4.17).

Obviously, U is bounded and invertible with

U−1 =(HΛ(A, V )−λ0)(HΛ(A, V )−z)−1.

Recall that H̃Λ(A, V )=HΛ(A, V )+Ξ−1
1 Ξ2≥0. Since

√
(λ+Ξ−1

1 Ξ2)/(λ−λ0) (as a

function of λ) is bounded on σ(HΛ(A, V )), both

(HΛ(A, V )−λ0)
−1/2

√
H̃Λ(A, V ) and

√
H̃Λ(A, V )(HΛ(A, V )−λ0)

−1/2

are bounded, which implies that V is bounded. Then, by stability of bounded

invertibility (see [27, Theorem IV.1.16]), it suffices to require that ‖V ‖ ‖U−1‖<1.

In this case, U+V is invertible with

(4.20) ‖(U+V )−1‖≤ ‖U−1‖
1−‖V ‖ ‖U−1‖ .

Since ‖U−1‖≤cz,λ0 and

‖V ‖≤‖B‖
∥
∥
∥
∥

√
λ+Ξ−1

1 Ξ2

λ−λ0

∥
∥
∥
∥

2

L∞(σ(HΛ(A,V )))

≤ 2Ξ1

∥
∥
∥
∥
λ+Ξ−1

1 Ξ2

λ−λ0

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

,
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it suffices to require that

(4.21) 2Ξ1cz,λ0

∥
∥
∥
∥
λ+Ξ−1

1 Ξ2

λ−λ0

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

< 1.

It is justified in Lemma 4.5 below that if s and a are as in the assumptions of

the current lemma, then (4.21) holds, which then implies that U+V , and hence

Ha
Λ(A, V )−z, is invertible. Finally, (4.19) follows from (4.20) and Lemma 4.5 be-

low. �

To finish the proof of Lemma 4.4, we show the following lemma.

Lemma 4.5. Let z∈ρ(HΛ(A, V )). If s>0 and a0>0 satisfy (4.16) or (4.17),

then (4.21) holds. Moreover, if (4.16) is satisfied, then
∥
∥
∥
∥
λ+Ξ−1

1 Ξ2

λ−λ0

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

=1,

and if (4.17) is satisfied, then
∥
∥
∥
∥
λ+Ξ−1

1 Ξ2

λ−λ0

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

≤ δλ0+Ξ−1
1 Ξ2

(δ−1)λ0

for some δ=δ(λ0)∈(0, 1) satisfying δλ0∈(λ0,min{−Θ2, E0}).

Proof. Instead of proving (4.21) directly, we show how to derive (4.16) or (4.17)

so that (4.21) holds. Recall that λ0<min{−Θ2, E0},

Ξ1 =
2s

1−Θ1
, Ξ2 =

2sΘ2

1−Θ1
+

(
1

2s
+
s

4

)

a20 and cz,λ0 =

∥
∥
∥
∥
λ−λ0

λ−z

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

.

We here discuss two classes of conditions separated by Ξ−1
1 Ξ2=−λ0.

(i) Due to the fact that σ(HΛ(A, V )) contains a sequence tending to infinity,

it is true that ∥
∥
∥
∥
λ+Ξ−1

1 Ξ2

λ−λ0

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

≥ 1.

So the best choice is ∥
∥
∥
∥
λ+Ξ−1

1 Ξ2

λ−λ0

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

=1,

which holds if and only if Ξ−1
1 Ξ2≤−λ0 since inf σ(HΛ(A, V ))+Ξ−1

1 Ξ2≥0. By mak-

ing a0 small enough, the condition Ξ−1
1 Ξ2≤−λ0 is readily satisfied. Thus (4.21)

reduces to

(4.22) 2Ξ1cz,λ0 < 1.
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Note limλ→∞ |(λ−λ0)/(λ−z)|=1 pointwise for z∈ρ(HΛ(A, V )) and λ0<min{−Θ2,

E0}, which implies that cz,λ0≥1. Hence, if (4.22) holds, then automatically,

Ξ1<
1
2<1.

For any fixed z∈ρ(HΛ(A, V )) and λ0<min{−Θ2, E0}, there exists s such that

(4.22) is satisfied. Moreover, s cannot be chosen to be independent of z or λ0

because of the facts that

lim
z∈ρ(HΛ(A,V ))

dist(z,σ(HΛ(A,V )))→0

cz,λ0 =∞ pointwise when λ0 <min{−Θ2, E0}.

or

lim
λ0→−∞

cz,λ0 =∞ pointwise when z ∈ ρ(HΛ(A, V )),

respectively.

Explicitly, we can choose s to be any number satisfying

(4.23) s∈
(

0,
1−Θ1

4cz,λ0

)

⊂
(

0,
1−Θ1

2

)

so that (4.22) is satisfied, and thus Ξ1<1 holds. Then, by requiring a0 to satisfy

(4.24) a20 ≤
2s(λ0+Θ2)

Θ1−1

(
1

2s
+
s

4

)−1

,

the condition Ξ−1
1 Ξ2≤−λ0 holds. Consequently, any pair (s, a0) satisfying (4.23)

and (4.24) guarantees (4.21).

(ii) Now, we require Ξ−1
1 Ξ2≥−λ0. Then, (λ+Ξ−1

1 Ξ2)/(λ−λ0), as a function

of λ, is decreasing on (λ0,∞), which implies that
∥
∥
∥
∥
λ+Ξ−1

1 Ξ2

λ−λ0

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

≤ λ∗+Ξ−1
1 Ξ2

λ∗−λ0
for all λ∗ ∈ (λ0,min{−Θ2, E0}).

In particular, we can take λ∗=δλ0 for some δ=δ(λ0)∈(0, 1) and obtain
∥
∥
∥
∥
λ+Ξ−1

1 Ξ2

λ−λ0

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

≤ δλ0+Ξ−1
1 Ξ2

(δ−1)λ0
.

Then,

2Ξ1cz,λ0

δλ0+Ξ−1
1 Ξ2

(δ−1)λ0
< 1, i.e., Ξ2 <

(δ−1)λ0

2cz,λ0

−δλ0Ξ1,

will ensure (4.21). Moreover, considering the assumption Ξ−1
1 Ξ2≥−λ0, we deduce

that 2Ξ1cz,λ0<1, which leads to Ξ1<
1
2 since cz,λ0≥1. In conclusion, to ensure

(4.21), we only need to require that

−λ0Ξ1 ≤Ξ2 <
(δ−1)λ0

2cz,λ0

−δλ0Ξ1.
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Explicitly, if s>0 and a0>0 satisfy

2s(λ0+Θ2)

Θ1−1

(
1

2s
+
s

4

)−1

≤ a20 <

(
(δ−1)λ0

2cz,λ0

+
2s(δλ0+Θ2)

Θ1−1

)(
1

2s
+
s

4

)−1

for some δ=δ(λ0,Θ2, E0)∈(0, 1) such that δλ0∈(λ0,min{−Θ2, E0}), then Ξ1<1

and (4.21) holds. �

We proceed to prove Theorem 1.1. Since the proof in the case n≥2 is based

on the proof in the case n=1, we divide Theorem 1.1 into two parts according to

n=1 and n≥2. Moreover, we restate the theorem in the cases n=1 and n≥2 as

Theorems 4.6 and 4.7 below, respectively. For notational simplicity, we set

(4.25) C∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cz,λ0(1−Θ1)

1−Θ1−4scz,λ0

, if a0 satisfies (4.16),

(δ−1)λ0cz,λ0

(δ−1)λ0−2(δλ0Ξ1+Ξ2)cz,λ0

, if a0 satisfies (4.17).

Then, ‖(U+V )−1‖≤C∗.

Theorem 4.6. Let A∈Hloc(R
d), V ∈K±(Rd) and Λ⊂R

d be open. Suppose

that p>d/2. Let z∈ρ(HΛ(A, V )), the resolvent set of HΛ(A, V ). Suppose that s>0

and a0>0 satisfy (4.16) or (4.17). Then, for any β, γ∈Rd,

(4.26) ‖χβ(HΛ(A, V )−z)−1χγ‖Jp ≤Cp,λ0C∗e
√
da0e−a0|β−γ|,

where Cp,λ0>0 depends only on p and λ0.

Proof. By Lemma 4.4 and the operator equality (4.18), we have

χβ(H
a
Λ(A, V )−z)−1χγ =χβ(HΛ(A, V )−λ0)

−1/2(U+V )−1(HΛ(A, V )−λ0)
−1/2χγ .

Since the function (λ−λ0)
−1/2 satisfies (3.4) with α= 1

2 ,
1
2>d/(2·2p) and 2p>d≥2,

Theorem 3.1 ensures that both χβ(HΛ(A, V )−λ0)
−1/2 and (HΛ(A, V )−λ0)

−1/2χγ

are in J2p with J2p-norm only depending on p and λ0. It then follows that

χβ(H
a
Λ(A, V )−z)−1χγ∈Jp with

‖χβ(H
a
Λ(A, V )−z)−1χγ‖Jp

≤‖χβ(HΛ(A, V )−λ0)
−1/2‖J2p‖(U+V )−1‖ ‖(HΛ(A, V )−λ0)

−1/2χγ‖J2p

≤Cp,λ0C∗,
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where (4.19) and (4.25) are used and Cp,λ0>0 only depends on p and λ0. Consid-

ering (4.1), we obtain

‖χβ(HΛ(A, V )−z)−1χγ‖Jp

= ‖χβe
−a·x(Ha

Λ(A, V )−z)−1ea·xχγ‖Jp

= ‖e−a·(β−γ)(e−a·(x−β)χβ)(χβ(H
a
Λ(A, V )−z)−1χγ)(χγe

a·(x−γ))‖Jp

≤‖χβ(H
a
Λ(A, V )−z)−1χγ‖Jp‖e−a·(x−β)χβ‖ ‖χγe

a·(x−γ)‖e−a·(β−γ)

≤Cp,λ0C∗e
√
da0e−a0|β−γ|,

where we used the fact that both ‖e−a·(x−β)χβ‖ and ‖χγe
a·(x−γ)‖ are bounded by

e
√
d|a|/2. By choosing a=a0|β−γ|−1(β−γ), we obtain (4.26). �

Theorem 4.7. Let A∈Hloc(R
d), V ∈K±(Rd) and Λ⊂R

d be open. Suppose

that p>d/2n with n∈N and n≥2. Let z∈ρ(HΛ(A, V )). Suppose that s>0 and

a0>0 satisfy (4.16) or (4.17). Then, for any δ0∈(0, 1) and any β, γ∈Rd,

‖χβ(HΛ(A, V )−z)−nχγ‖Jp ≤ (Cp,n,λ0cδ0,a0C∗)
n−1e(n−1)

√
da0e−δ0a0|β−γ|,

where Cp,n,λ0>0 only depends on p, n and λ0 and cδ0,a0=
∑

α∈Zd e−(1−δ0)a0|α|<∞.

Proof. Write

χβ(HΛ(A, V )−z)−nχγ =
∑

αj∈Z
d

j=1,...,n−1

Rβ,α1Rα1,α2 ...Rαn−2,αn−1Rαn−1,γ ,

where

Rβ,α1 =χβ(HΛ(A, V )−z)−1χα1 ,

Rαj ,αj+1 =χαj (HΛ(A, V )−z)−1χαj+1 , j=1, ..., n−2,

Rαn−1,γ =χαn−1(HΛ(A, V )−z)−1χγ .

Since pn>d/2 by assumption, Theorem 4.6 says that

‖χx(HΛ(A, V )−z)−1χy‖Jpn ≤Cp,n,λ0C∗e
√
da0e−a0|β−γ| for all x, y ∈R

d,

where Cp,n,λ0>0 only depends on p, n and λ0. By Hölder’s inequality for trace

ideals (see [42, Theorem 2.8]), the result of the corollary follows from
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(4.27)
∑

αj∈Z
d

j=1,...,n−1

e−a0|β−α1|e−a0|α1−α2|...e−a0|αn−2−αn−1|e−a0|αn−1−β| ≤ cn−1
δ0,a0

e−δ0a0|β−γ|

for any δ0∈(0, 1), where cδ0,a0=
∑

α∈Zd e−(1−δ0)a0|α|<∞.

To complete the proof, we show (4.27). Pick and fix any δ0∈(0, 1). First, we

have from the triangular inequality and Cauchy’s inequality

∑

α1∈Zd

e−a0|β−α1|e−a0|α1−α2|

=
∑

α1∈Zd

e−(1−δ0)a0|β−α1|e−δ0a0(|β−α1|+|α1−α2|)e−(1−δ0)a0|α1−α2|

≤ e−δ0a0|β−α2|
∑

α1∈Zd

e−(1−δ0)a0|β−α1|e−(1−δ0)a0|α1−α2|

≤ e−δ0a0|β−α2|
( ∑

α1∈Zd

e−2(1−δ0)a0|β−α1|
)1/2( ∑

α1∈Zd

e−2(1−δ0)a0|α1−α2|
)1/2

≤ cδ0,a0e
−δ0a0|β−α2|,

where cδ0,a0=
∑

α1∈Zd e−(1−δ0)a0|α1|≥
∑

α1∈Zd e−2(1−δ0)a0|α1|. Next, by the above

estimate and the triangular inequality,

∑

α2∈Zd

∑

α1∈Zd

e−a0|β−α1|e−a0|α1−α2|e−a0|α2−α3|

≤ cδ,a0

∑

α2∈Zd

e−δa0|β−α2|e−a0|α2−α3|

= cδ0,a0

∑

α2∈Zd

e−δ0a0|β−α2|e−δ0a0|α2−α3|e−(1−δ0)a0|α2−α3|

≤ cδ,a0e
−δ0a0|β−α3|

∑

α2∈Zd

e−(1−δ0)a0|α2−α3|

= c2δ0,a0
e−δ0a0|β−α3|.

By induction, we find (4.27). This completes the proof. �
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5. The operator kernel estimate in trace ideals

In this section, we study operator kernel estimates in trace-class norms. More

precisely, we prove polynomial decay, in trace ideals, of operators

χβf(HΛ(A, V ))χγ , β, γ ∈R
d,

in terms of |β−γ| for f∈S(R), the Schwartz space. The main result in this section is

stated in Theorem 1.2, whose proof is based on Theorem 1.1 (in fact on Theorem 4.6)

and the Helffer–Sjöstrand formula (see [26]), which is defined for a much larger class

of slowly decreasing smooth functions on R, denoted by A. See Appendix B for the

definition of A and the Helffer–Sjöstrand formula.

Before proving Theorem 1.2, we first simplify the second estimate in (4.26) by

adding more conditions so that this estimate can by easily used. Our idea is as

follows: by the Helffer–Sjöstrand formula (B.2), we have for any f∈S(R),

χβf(HΛ(A, V ))χγ =
1

π

∫

R2

∂f̃n(z)

∂z̄
χβ(HΛ(A, V )−z)−1χγ du dv for all n≥ 1.

Therefore, by (B.1),

‖χβf(HΛ(A, V ))χγ‖Jp(5.1)

≤ C

π

n∑

r=0

1

r!

∫

U

|f (r)(u)| |v|
r

〈u〉 ‖χβ(HΛ(A, V )−z)−1χγ‖Jp du dv

+
1

2πn!

∫

V

|f (n+1)(u)| |v|n‖χβ(HΛ(A, V )−z)−1χγ‖Jp du dv

for any n≥1. Clearly, in order to estimate the integrals on the right-hand side of

(5.1), we need (4.26). More precisely, we need that

(5.2) ‖χβ(HΛ(A, V )−z)−1χγ‖Jp ≤
Cp,λ0(δ−1)λ0cz,λ0

(δ−1)λ0−2(δλ0Ξ1+Ξ2)cz,λ0

e
√
da0e−a0|β−γ|,

since the conditions ensuring it provide a nonzero lower bound for a0, which in turn

provide an upper bound for the exponential term. However, this estimate is too

rough to deal with since many parameters in the upper bound depend on z. To

simplify it, we put more conditions on s and a0.

For s>0, we assume that

(5.3) s<
1

2

1−Θ1

4cz,λ0

1−δ

2−δ



An improved Combes–Thomas estimate of magnetic Schrödinger operators 405

is such that

(5.4)
2s(2λ0+Θ2)

Θ1−1
<

(δ−1)λ0

4cz,λ0

+
2s(δλ0+Θ2)

Θ1−1
<

(δ−1)λ0

2cz,λ0

+
2s(δλ0+Θ2)

Θ1−1
.

For a0>0, we require that

(5.5)
2s(λ0+Θ2)

Θ1−1

(
1

2s
+
s

4

)−1

≤ a20 ≤
2s(2λ0+Θ2)

Θ1−1

(
1

2s
+
s

4

)−1

.

The intuitive interpretation of these conditions is that we make 2Ξ1cz,λ0 smaller

and bound Ξ−1
1 Ξ2 by −2λ0 from above. Indeed, (5.3) is equivalent to

2Ξ1cz,λ0 <
1

2

1−δ

2−δ

and, (5.4) and (5.5) are equivalent to

−λ0Ξ1 ≤Ξ2 ≤−2λ0Ξ1 <
(δ−1)λ0

4cz,λ0

−δλ0Ξ1 <
(δ−1)λ0

2cz,λ0

−δλ0Ξ1.

Clearly, (5.3) and (5.5) are stronger than (4.17). Hence, under the assumptions of

(5.3) and (5.5), (5.2) holds. Moreover,

(δ−1)λ0cz,λ0

(δ−1)λ0−2(δλ0Ξ1+Ξ2)cz,λ0

=
cz,λ0

1−2Ξ1cz,λ0

δλ0+Ξ−1
1 Ξ2

(δ−1)λ0

≤ 2cz,λ0

and, therefore, (5.2) can be simplified to

(5.6) ‖χβ(HΛ(A, V )−z)−1χγ‖Jp ≤Cp,λ0cz,λ0e
√
da0e−a0|β−γ|,

where Cp,λ0>0 depends only on p and λ0. Further, we rewrite (5.5) as

(5.7)
2(λ0+Θ2)

Θ1−1

(
1

2s2
+
1

4

)−1

≤ a20 ≤
2(2λ0+Θ2)

Θ1−1

(
1

2s2
+
1

4

)−1

,

which in particular says that a0 is bounded from above by a constant independent of

z, which implies that e
√
da0 is also bounded from above by a constant independent

of z. Hence, (5.6) is further simplified to

(5.8) ‖χβ(HΛ(A, V )−z)−1χγ‖Jp ≤Cp,λ0cz,λ0e
−a0|β−γ|,

where Cp,λ0>0 only depends on p and λ0.
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Note that the lower bound of a0 is not very easy to handle because of the

uncertainty of s and the quantity cz,λ0 . To find a simpler lower bound for a0, we

first fix some s, say

s=
1

4

1−Θ1

4cz,λ0

1−δ

2−δ
,

and then give an explicit bound for cz,λ0 with z=u+iv under the assumptions

(u, v)∈U and (u, v)∈V , respectively. Recall that

cz,λ0 =

∥
∥
∥
∥
λ−λ0

λ−z

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

,

U = {(u, v)∈R
2|〈u〉< |v|< 2〈u〉},

V = {(u, v)∈R
2|0< |v|< 2〈u〉}.

Lemma 5.1. Let z∈ρ(HΛ(A, V )). Then, with z=u+iv,

(5.9) ‖χβ(HΛ(A, V )−z)−1χγ‖Jp ≤

⎧
⎪⎨

⎪⎩

Cp,λ0 |v|e−Cλ0
|β−γ|/|v|, if (u, v)∈U,

Cp,λ0

〈u〉
|v| e

−Cλ0
|v| |β−γ|/〈u〉, if (u, v)∈V,

where Cλ0>0 depends only on λ0 and Cp,λ0>0 depends only on p and λ0.

Proof. For any z∈ρ(HΛ(A, V )), we let

(5.10) s=
1

4

1−Θ1

4cz,λ0

1−δ

2−δ

and let a0>0 satisfying (5.5) be such that (5.8) holds. By (5.10) and the first

inequality in (5.7) we have

(5.11) a20 ≥
2(λ0+Θ2)

Θ1−1

(
1

2s2
+
1

4

)−1

=− (λ0+Θ2)C2

Cλ0c
2
z,λ0

+C1

for some C1>0 and C2>0.

Let (u, v)∈U . For any λ∈σ(HΛ(A, V )), |λ−z|≥dist(z, σ(HΛ(A, V )))≥|v|>
〈u〉≥1, which implies that

cz,λ0 ≤
∥
∥
∥
∥1+

|z−λ0|
|λ−z|

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

≤ 1+|z|−λ0 ≤ 1−λ0+
√
2|v| ≤Cλ0 |v|

and then

(5.12) a0 ≥
√

−(λ0+Θ2)C2

Cλ0c
2
z,λ0

+C1
≥ Cλ0

|v| ,

where the fact |v|≥1 is used.
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Let (u, v)∈V . Then

cz,λ0 ≤
∥
∥
∥
∥1+

|z−λ0|
|λ−z|

∥
∥
∥
∥
L∞(σ(HΛ(A,V )))

≤ 1+
|z|−λ0

|v| ≤ 5〈u〉−λ0

|v| ≤Cλ0

〈u〉
|v| ,

which, together with (5.11), implies that

(5.13) a0 ≥Cλ0

|v|
〈u〉 ,

where the fact 〈u〉/|v|> 1
2 is used.

By means of (5.8), (5.12) and (5.13), we obtain (5.9). �

We now restate and prove Theorem 1.2.

Theorem 5.2. Let A∈Hloc(R
d), V ∈K±(Rd) and Λ⊂R

d be open. Suppose

that p>d/2. Then, for any f∈S(R) and any k∈N,

‖χβf(HΛ(A, V ))χγ‖Jp ≤Cp,λ0,k,f |β−γ|−k for all β, γ ∈R
d,

where Cp,λ0,k,f>0 depends only on p, λ0, k and f .

Proof. Fix any k∈N and let n=k+1 in (5.1). Since the function θ(t)=e−ttk,

t≥0, attains its global maximum at t=k, we have

(5.14) e−t ≤ e−kkkt−k.

Applying (5.14) to t=Cλ0/|v| |β−γ| and t=Cλ0 |v|/〈u〉|β−γ|, respectively, we ob-

tain

(5.15) e−Cλ0
|β−γ|/|v| ≤ e−kkk

Ck
λ0
|β−γ|k

|v|k

and

(5.16) e−Cλ0
|v| |β−γ|/〈u〉 ≤ e−kkk

Ck
λ0
|β−γ|k

〈u〉k
|v|k ,

respectively.

We now use (5.15) and (5.16) to estimate the integrals in (5.1). By the first

estimate in (5.9) and (5.15), we have for some Cp,λ0,k,f>0,

k+1∑

r=0

1

r!

∫

U

|f (r)(u)| |v|
r

〈u〉 ‖χβ(HΛ(A, V )−z)−1χγ‖Jp du dv

≤ Cp,λ0e
−kkk

Ck
λ0
|β−γ|k

k+1∑

r=0

1

r!

∫

U

|f (r)(u)| |v|
r+k+1

〈u〉 du dv
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=
Cp,λ0e

−kkk

Ck
λ0
|β−γ|k

k+1∑

r=0

1

r!

2r+k+3−2

r+k+2

∫

R

|f (r)(u)|〈u〉r+k+1 du

≤Cp,λ0,k,f |β−γ|−k,

where the fact that f∈S(R), and so the integrals are convergent, is used.

Similarly, by the second estimate in (5.9) and (5.16),

1

2π(k+1)!

∫

V

|f (n+1)(u)| |v|n‖χβ(HΛ(A, V )−z)−1χγ‖Jp du dv

≤ Cp,λ0e
−kkk

2π(k+1)!Ck
λ0
|β−γ|k

∫

V

|f (k+2)(u)|〈u〉k+1 du dv

=
4Cp,λ0e

−kkk

2π(k+1)!Ck
λ0
|β−γ|k

∫

R

|f (k+2)(u)|〈u〉k+2 du

≤Cp,λ0,k,f |β−γ|−k.

Consequently, for any f∈S(R), there exists Cp,λ0,k,f>0 so that

‖χβf(HΛ(A, V ))χγ‖Jp ≤Cp,λ0,k,f |β−γ|−k for all β, γ ∈R
d.

This proves Theorem 5.2. �
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Appendix A. Sectorial form and m-sectorial operators

In this section, we review some results about sectorial form and m-sectorial

operators used in the above sections. The material is chosen from [27]. See also

[16].

Let H be a separable Hilbert space and h( · , · ) : H×H→C be a sesquilinear

form. The form h is called sectorial if there exist γ∈R and θ∈[0, π/2) so that

h(u, u)∈{z ∈C | |arg(z−γ)| ≤ θ} for any u∈Q(h) with ‖u‖=1,

where Q(h) is the form domain of h. In particular, any symmetric sesquilinear form

bounded from below is sectorial. For relatively bounded perturbations, we have the

following result (see [27, Theorem VI.1.33]).
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Theorem A.1. Let h be a sectorial form and h′ be h-bounded, i.e., Q(h)⊂
Q(h′) and there exist nonnegative constants a and b such that

|h′(u, u)| ≤ ah(u, u)+b‖u‖2 for any u∈Q(h).

If a<1, then h+h′ is sectorial. Moreover, h+h′ is closable or closed if and only if

h is closable or closed, respectively.

Let H : H→H be a linear operator with domain D(H). H is said to be accretive

if Re〈u,Hu〉≥0 for all u∈D(H). It is said to be m-accretive if for any z∈C with

Re z>0, it is true that

(H+z)−1 ∈L(H) and ‖(H+z)−1‖≤ 1

Re z
,

where L(H) denotes the space of all bounded linear operators on H. It is not hard

to see that an m-accretive operator is maximal accretive in the sense that it is

accretive and has no proper accretive extension. If there are γ∈R and θ∈[0, π/2)
so that

〈u,Hu〉 ∈ {z ∈C | |arg(z−γ)| ≤ θ} for any u∈D(H) with ‖u‖=1,

thenH is said to be sectorial. H ism-sectorial if it is bothm-accretive and sectorial.

If H is sectorial, then the sesquilinear form h( · , · ) on Q(h)=D(H) defined by

h(u, v)= 〈u,Hv〉, u, v ∈Q(h),

is sectorial and closable (see [27, Theorem VI.1.27]). In particular, any symmetric

operator bounded from below defines a closable sectorial form. Conversely, we have

the following result (see [27, Theorems VI.2.1 and V.2.6]).

Theorem A.2. Let h( · , · ) be a densely defined and closed sectorial form in

H with form domain Q(h). Then there exists a unique m-sectorial operator H such

that D(H)⊂Q(h) and

h(u, v)= 〈u,Hv〉 for u∈Q(h) and v ∈D(H).

If, in addition, h( · , · ) is symmetric and bounded from below, then the associated

m-sectorial operator H is self-adjoint with the same lower bound.

The second part of the above theorem is well known and widely used in the

theory of Schrödinger operators. We have also used the following result (see [27,

Lemma VI.3.1]).
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Theorem A.3. Let h( · , · ) be a densely defined, symmetric, nonnegative closed

form with the associated nonnegative self-adjoint operator H . Let q( · , · ) be a form

relatively bounded with respect to h so that

|q(u, u)| ≤Ch(u, u), u∈Q(h),

for some C≥0. Then there is B∈L(H) with ‖B‖≤εC such that

q(u, v)=
〈√

Hu,B
√
Hv

〉
, u, v ∈Q(h)=D

(√
H
)
,

where ε=1 or ε=2 according to whether q is symmetric or not.

Appendix B. The Helffer–Sjöstrand formula

In this section, we define the class of slowly decreasing smooth functions and

review the Helffer–Sjöstrand formula (see [26]), which provides an alternative ap-

proach to the spectral theory of self-adjoint operators. The material below is taken

from [14].

Definition B.1. A function f is said to be in A, the class of slowly decreasing

smooth functions on R, if f∈C∞(R) and there exit μ>0 and a sequence of constants

cn≥0, n≥1, so that

|f (n)(u)| ≤ cn〈u〉−n−μ for all u∈R and n≥ 1,

where 〈u〉≡
√

1+|u|2. We define the following norms on A,

|||f |||n=
n∑

r=0

∫

R

|f (r)(u)|〈u〉r−1 dx for f ∈A and n≥ 1.

Let τ∈C∞(R) with τ(u)=1 if |u|<1 and τ(u)=0 if |u|>2. For f∈A, the

smooth (nonanalytic) extensions f̃n : C→C of f are defined by

f̃n(z)=

(
1

r!

n∑

r=0

f (r)(u)(iv)

)

σ(u, v), n≥ 1,

where z=u+iv and σ(u, v)=τ(v/〈u〉). Define

∂f̃n(z)

∂z̄
=

1

2

(
∂f̃n(z)

∂u
+i

∂f̃n(z)

∂v

)

.
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Direct calculation shows that

∂f̃n(z)

∂z̄
=

1

2

( n∑

r=0

1

r!
f (r)(u)(iv)r

)

(σu(u, v)+σv(u, v))+
1

2n!
f (n+1)(u)(iv)nσ(u, v).

Obviously, σ(u, v)=0 if |v|≥2〈u〉 and both σu(u, v)=0 and σv(u, v)=0 if |v|≤〈u〉
or |v|≥2〈u〉. Thus, by introducing the sets U={(u, v)∈R2|〈u〉<|v|<2〈u〉} and V =

{(u, v)∈R2|0<|v|<2〈u〉}, we have

(B.1)

∣
∣
∣
∣
∂f̃n(z)

∂z̄

∣
∣
∣
∣≤C

( n∑

r=0

1

r!
|f (r)(u)| |v|

r

〈u〉

)

χU (u, v)+
1

2n!
|f (n+1)(u)| |v|nχV (u, v)

for some C>0 only depending on τ , where χU and χV are the characteristic func-

tions of U and V , respectively.

Theorem B.2. ([14]) Let f∈A and H be self-adjoint on separable Hilbert

space. Then the integral

∫

R2

∂f̃n(z)

∂z̄
(H−z)−1 du dv

converges in operator norm and is independent of n and τ . Moreover,

∥
∥
∥
∥

∫

R2

∂f̃n(z)

∂z̄
(H−z)−1 du dv

∥
∥
∥
∥≤ c|||f |||n+1, n≥ 1,

where c>0 is a constant independent of f and n.

It should be pointed out that the fact that the constant c is independent of

n is due to Germinet and Klein [24]. This follows from the fact that 2n/n!→0 as

n→∞.

We then define, for f∈A,

(B.2) f(H)=
1

π

∫

R2

∂f̃n(z)

∂z̄
(H−z)−1 du dv,

which is referred to as the Helffer–Sjöstrand formula. By Theorem B.2 we have

‖f(H)‖≤c|||f |||n+1 for all n≥1.
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20. Fröhlich, J. and Spencer, T., Absence of diffusion in the Anderson tight binding
model for large disorder or low energy, Comm.Math. Phys. 88 (1983), 151–184.



An improved Combes–Thomas estimate of magnetic Schrödinger operators 413

21. Galindo, A. and Pascual, P., Mecánica cuántica. 1, Eudema Universidad, Madrid,
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