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On a diophantine equation in two unknowns 

By B E N G T  P E R S S O N  

w  

The purpose of this paper is to examine the solvability in integers x and y 
of the equation 

x ~ + x + � 8 8  1)--:yq (1) 

where D is a positive integer - - 3  (rood. 4) and q denotes an odd prime. 
The special case D = 3 has already been treated by T. NAGELL, who showed 

that  the equation 1 
x2 + x + l = y n 

is impossible in integers x and y, when y : 4 :_  1, for all whole exponents 
n ( >  2) not being a power of 3. 

W. LJUNG~RE~ completed this result by proving that  the equation S 

x ~ + x + 1 = y3 

has the only solutions y ~ 1 and y ~ 7. Thus it is sufficient in (1) to take 
D > 7. We /urthermore suppose that D has no squared /actor > 1. 

According to a theorem of AXEL THUE the equation (1) has only a finite 
number of solutions in integers x and y, when D and q are given, a 

w  

If we put q-~ �89 (-- 1 + ~ D)  and ~' = �89 ( - -  1 - -  V ~ D ) ,  the equation (1) 
can be written 

(x - -  e) ( x - -  e') ~- Yq. (1') 

and ~' are conjugate integers in the quadratic field K ( V  ~ D). The 
numbers 1, ~ form a basis of the field. 

The two principal ideals 

( x - - 0 )  and ( x - - 0 ' )  

are relatively prime. To show it we denote b y  i their highest common divisor. 
The number 2x + 1 ~ 2 x - - ( ~ + ~ ' )  is contained in i and also the number 
D = - - ( Q -  Q,)2. If  we write the equation (1) in the form 
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( 2 x +  1) 3 + D = 4 y q ,  

we see tha t  the numbers 2 x + 1 and D are relatively prime since D has no 
squared factor > 1. Hence we have i----(1). Therefore we get from (1') the 
ideal equation 

(x - Q) = aq (2) 

where a is an ideal. Let us ]or the present suppose that a is a principal ideal. 
Then (2) can be writ ten 

x - - ~ - - e ( a ~ -  be) q (2') 

where a and b are relatively prime integers and e is a unit in K ( V ~ - - D ) .  
D being > 3, the only units are _+ l. Thus the unit e is a q-th power, and 
we can replace e by  1. 

Hence we get from (2') 

x - - o = ( a + b e ) , =  a - - 5 +  ~ = 2~ (3) 

with 
c = 2 a - - b .  

From (3) we get 

or developed 
2qV ~ D = (c - b V -  D) q - (c + b V ~ D) q (3') 

�89 (q-l) ( ) 
2q-I = __ ~ q eq-2,.-1 b 2~+1 (__ D)~. (4) 

~=o 2 r +  1 

From (4) we get b ~ + 2"*. Here m = 0 is the only possibility, for other- 
wise c would be even too by  (3) and the right member  of (4) would be divis- 
ible by  2q. Hence b =  • 1. 

From (4) we get modulo q 

Hence 
1 = - -  b ( - -  D) i(q-1) (mod. q). 

Then the equation (4) is t ransformed into 

(:?) ,,.1,( ) 
2q-1 __-- ~,  q cq-2r-1 ( - -  D) r, 

2 r + l  r=O 
(5) 

which is an algebraic equation in c ~ of degree � 8 9  1 ) a n d  with integral 
coefficients. To every integral solution + c of the equation (5) corresponds 
one integral solution y of the equation (1) given by  

y = N ( a ) = � 8 8  (6) 

46 



ARKIV FOR MATEMATIK. B d  1 nr 5 

In this way we can have at  most �89 ( q -  1) solutions y of (1), when D and q 
are given. 

The right member of (5) is a binary form of degree n = { ( q -  1) in c 2 and 
D. This form is irreducible; to see it we regard the polynomial in z 

l ( z )  = 2 r  + 1 
r=:O ~'=0 

which has the following properties: an ~ 0 (mod. q); a~--~ 0 (rood, q) for all 
i < n ;  a 0 ~ 0  (mod. qZ). 

Hence ](z) is irreducible according to the theorem of EISE~STEIN. Using 
the wellknown theorem of AXEL THUE 4 on She corresponding form 

we see that  the equation (5) has only a finite number of solutions in integers 
c 2 and D, when q is given and >- 7. 

w 

Let  us denote by h (V :2 D) the number of ideal classes in the field K (V-~ D). 
We shall prove the following proposition: 

Theorem 1. I /  D is a positive integer ~ 3 (mod. 4) having no squared ]actor 
> 1 and i] h ( ] / -  D) is not divisible by the prime q, the equation 

x ~ + x + �88 (D + 1) = yq 

is solvable in integers z and y only ]or a ]inite number o/ integers D ]or a given 
q > 7. The equation has at most ~ (q --  1) solutions y, when D and q are given. 

In consequence of the results in the preceding paragraph the theorem is 
proved, when we can prove that  in (2) the ideal a is a principal ideal if 
h = h (V  ~ D) is not divisible by q. 

For if h ~ 0 (rood. q) there are two integers f and g so that  

l q - g h - - : - l .  

Hence we get from (2) the equivalence 

a ~ a l q  ~ ( 1 ) .  

From the relation (6) we see that  if the equation (1) has a solution 
y < �88 (D 4~ 1), we must have h ( u  D) ------ 0 (rood. q). So we get the following 
result:  
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Theorem 2. Let x and y be any integers so that 

a ~ l  so that the number 

has no squared ]actor > 1. 
prime q. 

yq - -  y > x2 + x 

D ~ 4 y  q - -  (2x  - 1) 2 

Then the number h ( ] / Z  D) is divisible by the odd 

Numerica l  examples 

1. I f  q ~ 3, y = 2 and x = I we get D = 4 . 2  3 - -  32 ~ 23 with 2 3 - -  2 > 12 + 1. 

Hence h (b/--23)  ~ 0 (mod. 3). 

2. I f q = 5 ,  y - ~ 2 a n d x : 4 w e g e t D - - - - 4 - 2 5 - 9 2 = 4 7 w i t h 2 5 - 2 > 4 2 + 4 .  

Hence h ( l / ~ 4 7 ) = ~  0 (mod. 5). 

3. I f  q = 7 ,  y : 2  and x----10 we get D = 4- 27 - -  212 ~ 71 with 27 - -  2 > 102+ 10. 

Hence h (VZ~71) - -  0 (mod. 7). 

4. I f  q = l l ,  y - - 2  and x~--44 we get D - = 4 .  211--892=271 with 2 ~1 - - 2 > 4 4 2  + 44. 

Hence h ( V ~ )  - -  0 (mod. 11). 

w  

We shall determine an upper  limit for the  solutions y of the equat ion  (1), 

when the number  h ( l / - - D )  is not  divisible by  q. As was shown in the 
preceding paragraph the  ideal a in (2) is then  a principal ideal. 

Let  us write (3') as a product .  F rom (3') we get 

2 q | / ~  = a q - -  a 'q with a = c - -  b I / - - D .  

Hence 

) �9 -- 2 ~ i  

2 q V - - D  ~ - - 2 b V ~ D D  a - - a ' e  q-r ; 
r - - I  

q - - I  ~ i  

q - - 1  

= (  l, It ( 1 . . . .  r - - b V - - D  cos ~ r  = 
r=l q q ! 

r = l  

= 2 q - 1 1 - [  c s i n  + b l / S c o s  r �9 
r = l  q 

s i n ~ r + b V / ) c o s  r �9 
q q 

Hence we get because s i n ~ - ~ s i n ( z t - - ~ ) ,  c o s ~ = - - c o s ( ~ - - ~ )  and b 2 - - 1  
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From (6) we get 

If 

�89 (q-- 1) 

(_Z~_) = ~111 (e 2 sin'qr D cos' qr). 

+ (q-I) 

r = l  q 

4 y sin 2 ~ D > 4 sin' z 
q q 

we have, since sin x is increasing in the interval 0 < x < 2  

(q--l) 

1 I  4 y s i n  ~ - - D  > H 2 sin r 
r= l  q r = l  

- ~ q > l .  

Hence we must have 

i. e. 

4 y sin 2 ~- - -  D < 4 sin 2 ~ 
q q 

y < ~ D c o s e c  ~-- + 1 
q 

and we get the following result: 

T h e o r e m  3. When h ( V ~ )  is not divisible by q, the integral solutions y 
o] the equation (1) are all less than the number 

�88 cosec ~ -  + 1. 
q 

w 
We shall prove the following proposition: 

T h e o r e m  4. The equation 

~2 + x + ~ (q + 1) = y~ 

is unsolvable in integers x and y, i] q > 3 is a prime ~-- 3 (rood. 4). 

In an imaginary quadratic field K (Vd) with the discriminant d (d < -  4) 
the number of ideal classes h (Vd) is given by the formula 5 

h(Vd) -  id I.:,Z n , 
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where the characters (dn)can only have the values 0, + 1. From this formula 

we get the following inequality 

1 lal-~ 

n = l  

Idl--1 <ldl. 

In the present case we have d = - - q  and hence h (] / --q)  is not divisible 
by q. As was shown in w 3 this involves a ~ (1) in the equation (2). But the 
equation (5) is impossible, when D----q, since every term in the right member 
is divisible by q, while the left member is not divisible by q. 

w  

We next consider the special case q-~ 3 supposing that  h ( V - - D ) i s  not 
divisible by 3. From (5) and (6) we then get 

= o 

and 

We get the following result: 

Theorem 5. I] D is positive integer -- 3 (mod. 4) having no squared ]actor 
1 and i] h (V--D)  is not divisible by 3, the equation 

x ~ + x + �88 (D + 1) = y3 

has the only solution y : ~ ( D - - 1 )  i/ D is o/ the /orm 3 c 2 + 4 ,  and the only 
solution y -~ ~ (D + 1) i/ D is o/ the /orm 3 c 9 --  4, and has no integral solutions 
]or other values o] D. 

Remark. There are infinitely many integers without squared factor > 1 of 
the form 3c 2 + 4  and 3c ~ - 4 .  e 

Let us now suppose that  the class number h (V~-D) is divisible by 3. In 
this case the equation 

x ~ + x +  � 8 8  l ) - - - -y3 

can have other solutions than those given in the theorem 5. As examples we 
treat the cases D--~ 23, 31, 59, 83 where the class number has the value 3. ~ 

I. D ~-23. The ideal classes in K (V--23) can be represented by the ideals 
(1), (2, e) and (2, ~') where ~ : �89 (--  1 + 1/~223). 
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We have 

(2, ~) - (2, 0') = (2) and (2, e') a = ( 1 - e ) .  
The equation 

x 2 + x  + 6 = y a  (7) 

gives as in the general case 
( x  - q)  = a 3 ( 8 )  

where a is an ideal. 
I f  a ~ ( 1 )  we get  as in theorem 5 y - = ~ ( 2 3  + I ) = 8 ,  since 2 3 = 3 - 3 2 _  4. 
I f  a - ( 2 ,  q) we get  f rom (8) 

(2, 033 ( x -  q) = (2, q')3 a 3 

(1 - -  e) ( x - -  e) ---- (a + b e )  a (9) 

where a and b are integers. 

x - -  6 - -  r (x + 2) = a a - -  18 a b 2 + 6 b a + ~ (3 a 2 b - -  3 a  b 2 - -  5 ba). 

Hence we get  the sys tem 

x - - 6 = a  a - 1 8 a b  2 + 6 b  a 

- -  x - -  2 = 3 a 2 b  - -  3 a b  2 -  5 b  a. 

Hence after elimination of x 

F rom (9) we get  

- - 8 = a  a +  3 a 2 b - -  2 1 a b  2 + b a 

2 y =  N (a + b ~ ) = a 2 - - a b  + 6 b  2. 

The equation (10) has the  solutions 

[ a =  - - 2 .  [ a = 3  and / a  - - 0  

which give the solutions y = 2, y = 6 and y = 12 respectively of (7). 
The case a ~  (2, e') leads to (10) too. We see tha t  by  replacing 

- - l - - x ,  a by - - a  and b by - - b  in (8) and (9). 

I I .  D = 31. As representatives of 
and (2, ~') with e = �89 ( - -  1 + I / - -31 ) .  

We have 

(2, e)-(2, d ) =  (2) 
The equat ion 

gives 

(i0) 

x by  

the ideal classes we choose (1), (2, ~) 

and (2, 0') 3 = (Q') 

x 2 + x + 8 = ya 

( x  - -  O) = a3- 

(11) 

( 1 2 )  

51 



B. PERSSO~, On a diophantine equation in two unknowns 

If a -  (1) we get as in theorem 5 y = �89 - -  1) = 10, since 31 ----- 3.32 + 4. 
If a - ( 2 ,  ~) we get from (12) 

~' ( x - -  ~)) = (a + b~o) 3 

where a and b are integers. 

- - x - - 8 - - o ~  x ~ a  a -  24ab 2+ 8b a + Q ( 3 a 2 b - 3 a b  2 -  7 ba). 

Hence 

with 
- - 8 = a  a - 3 a 2 b - 2 1 a b  e +  15b a 

2 y = a 2 - - a b  + 8b 2. 

(13) 

The equation (13) has the solutions 

[ a = - - 2 .  ~ a = l  and ~ a = 4  
1 [ b = 6  

which give the solutions y ~ 2, y ~ 4 and y----140 respectively of (11). 
a -  (2, ~') gives the same solutions. 

I I I .  D = 59. As representatives of the ideal classes we choose (1), (3, Q) 

and (3, e') with e = �89 ( - -  1 + 1/--59). 
We have 

(3, e) .(3,  e ' ) = ( 3 )  and (3, e') a = ( o ' - 3 )  
The equation 

x 2 + x +  1 5 = y a  (14) 
gives 

(x  - e )  = a3- ( 1 5 )  

a ~ (1) gives no solution of (14). 
If a ~ (3, Q) we get from (15) 

( ~ ' - - 3 ) ( x - - ~ ) = ( a +  b~o) a 

- - 4 x - - 1 5 +  o ( 3 - - x ) : a  a - 4 5 a b  2 +  15b a + ~ ( 3 a  2 b ~ 3 a b  2 - 1 4 b  a) 

Hence 

with 
- - 2 7 - - a  a - - 1 2 a  2 b - 3 3 a b  2 + 71b a 

3 y : a 2 - - a b §  15b 2. 

(16) 

The equation (16) has the solutions 

] a = - - 3  and / a - ~ - - I  
I b = 0  ( b = - i  

which give the solutions y - ~  3 and y ~--5 respectively of (14). 
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IV. 
and (3, ~') with ~ = �89 ( - -  1 + V ~ - ~ ) .  

We have 
(3, Q).(3, ~') = (3) and 

D = 83. As representatives of the ideal classes we choose (1), (3, ~) 

(3, ~,)3 = (~, + 3). 

x 2 + x +  2 1 ~ - y  a (17) 

( x - - ~ ) = ~  3. (18) 

The equation 

gives 

Ct ~ (1) gives no solution of (17). 
If a ~ (3, ~) we get from (18) 

( ~ ' + 3 ) ( x - - ~ ) = ( a + b ~ ) 3  
with 

3 y - - = a e - - a b +  21b 2. 

2 x - - 2 1 +  ~ ( - - x - - 3 ) = a  3 - - 6 3 a b  2 + 21b a + o ( 3 a e b - - 3 a b  2-20ba) .  

Hence 
- - 2 7 - - a  8 + 6 a  u b - 6 9 a b  z - 1 9 b  3. (19) 

The equation (19) has the solution a- - - - - -  3, b = 0 which gives the solution 
y = 3  of (17). 

At the end of this paper we give a table containing solutions of the equation 

x 2 + x + �88 (D § 1) - - y 3  

when D is a prime < 1 0 0 .  

w  
Let us examine the case q ~ 5, when h ( V - - D )  is not divisible by 5. We 

get from (5) 

2 ' ~ : 5 c ' - - 1 0 c ~ D +  D 2. (20) 

Hence we find f, hat the equation 

x 2 +  x +  � 8 8  1)~--y5 

has at most one solution y. For if there were different values of c for a 
given D, we get from (20) 

5c 4 -  lOc~D ~- 5c~-- lOc'~D 
and hence 

c~ § c~ --  2 D 
:i.e. 

2 D ~ 2 (rood. 8) 

which is impossible since D ~ 3 (mod. 4). 
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I f  we put  with an odd z 
D - - 5 c 2 =  2z 

the equation (20) is transformed into 

I. If  ( D ) = I  we get 

(22') has the only solution 

(21) 

z 2 - -  4 = 5 c a. (22 ' )  

z = 3  and c = l  in odd positive z and c. This 
can be proved in the following way. (22') can be written 

(z + 2) ( z - -  2) = 5c  4 

(z + 2, z - - 2 ) = 1 .  

Hence we get the system (z > 0) 

z •  2 = 5 a 4 ;  z T - 2 = b  a 

with 

+ 4 = 5 a 4 - -  b ~ 

where (a, b) = 1 and a b  = c. 
Hence 

(A) 

where 

Hence we get the system 

b 2-, '  2b + 2 = 5 / 4 ;  

with (/, g) = 1 and /g  = a. 
The last equation can be written 

(b T 1) 2 + 1 = g 4 

but as is well known the diophantine equation 

x 4 _ y4 = z 2 
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(b 2 + 2 b + 2 ) ( b  : - 2 b + 2 ) = 5 a  4 

(b 2 +  2 b + 2 ,  b 2 - 2 b  + 2 ) = ( b  2 + 2 b +  2 , 4 b ) = 1 .  

b 2 T 2 b + 2 = 94 

which can be written 

where the lower sign is impossible, since the right member is congruent 4 
modulo 16. Hence 

b 4 + 4 - -  5 a 4 
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has the only solution z = 0. Hence b = -- 1 is the only solution of the system 
(A) and hence z --~ _+ 3, c e = 1 the only solutions of ('2"2') in odd integers. 

This gives by  (21) D = 11 as the only case when t, he equatioa 

is solvable if ( D ) =  i. 

II .  

x 2 + x  + ~(D + 1) .... y" 

152 + 1 5 + : ~ ( 1 1  + 1 ) = 3  ~. 

= = -  1, (22) becomes 

z 2 + 4--=-5 c a (22") 

The equation (22") has only the solutions z ~ • 1. c 2 =  1 according to an 
information from W. LJUZ~GGREZ~ not yet published. 

This gives by  (21) D = 7 and D = 3 as the only cases of solvability if 

5 3 - ~ 5 + I - ( 7 +  1 ) = 2  '~. 

We get the following result: 

Theorem 6. I] D is a positive integer ~ 3 (rood. 4) t~aving no squared [actor" 
> 1 and i/ h (V~D)  is not divisible by 5, the equation 

x ~ +  x +  � 8 8  l)-----y5 

is solvable in integers x and y only when D = 3, 7 and 11. In these cases the 
equation has a single solution y. 

Finally we 
by 7. We shall show tha t  the equation 

x e + x +  ~ ( D +  1)-- :y7 

has at most  one solution y for a given D. 
From (5) we get 

7 c ' - - 3 5 c ' D §  ~D ~ - D 3 + 2 ' ~ D i  
\ 7 !  

w  

consider the special case q = 7, when h (V~D)  is not divisible 

(23) 

= o. (24) 

Hence we get from (6) for the solutions y of the equation (23) 

7 y a - - 1 4 D y 2 §  (25) 
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Let Yl, Y2 and Y3 be the roots of the equation (25). We have 

Yl + Y2 + Y3 ---- 2 D 

Yl Y2 + Y2 Y3 + Y3 Yl = D2 

(i) 

(ii) 

7y~y2ys= D 3 - - ( D )  ( I I I )  

Hence we see tha t  the equation (23) cannot have three solutions y. For if 
D - - = - - I  (mod. 8) we would have by  (23) y ~ - 0  (mod. 2) for i-----l, 2, 3 
against (II). I f  D - -  3 (mod. 8) we would have by  (23) y~ - -  1 (mod. 2) against (I). 
Neither can we have two solutions for D ----- - -  1 (rood. 8) according to (II). 
That  it is the same in the case D - - 3  (mod. 8) can be seen in the follow- 
ing way. 

Let  (25) have three integral roots Yx, Y2, Ya- We put  Yx + Y2 = u; Yl Y2 = v. 
Hence by  (I) and (II) 

u + y a = 2 D ;  V + y a u = D  2 

and after elimination of Y3 

Yl ya = v = (D - -  u) 2 (26) 

The y~ are relatively prime two and two by (II), since (D, y i ) ~  1 by (25). 
Hence all yi are squares according to (26). If  Yl and yg. are odd we get 

y 3 ~ 4  (mod. 8 ) b y  ( I ) a n d  ( D ) : - - 1  in (III) .  Hence the relation ( I I I ) c a n  

be writ ten 

7 A 2 = D  a + 1 
where A is an integer. 

This equation has the only integral solutions D = -  1 and D = 3. 7 With 
D = 3 we get Yl-= Y2 = 1 and Y3 = 4. 

I f  we put  
D = 4z + 7c 2 

the equation (24) is transformed into 

z ' - -  7 c ' z - -  7 c6 = (D) �9 (24') 

For c----1 weget ,  if ( D ) : - - I ,  t h e s o l u t i o n s z = 3 ; z = - - l a n d z - = - - 2  

of (24'). The two first values give D = 19 and D = 3 respectively. Hence 
the equation 

x2 + x + 5 = y  7 

has the only solution y = 5. 

2 7 9 2 + 2 7 9 +  ~ ( 1 9 +  1)----57 . 
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Table 

containing solutions of the  equat ion  

x ~ + x + � 8 8  1 ) = y 3  

when D is a pr ime < 1 0 0 .  

i 
D = So lu t ion  w h e n  

: O t h e r  so lu t ions  
D h ( | / - - - D )  3 c  2-k  4 3 c  ~ -  4 a ~ (1) 

c c Y i x ( >  0) y } x ( ~  0) 

7 1 il I 
- - r  F . . . . . . . . . . . . . . . . . . .  I . . . .  I . . . . . . . . . . .  

11 i 1 /I . . . . .  _ . _ _ ~  

19 } 1 ] __ I __ L . . . . .  

23 ~ 3 - -  ~ 3 8 ~ 6 14 
I I '1 12 41 

. . . . . . .  i . . . . . . . . . . . . . . . . . . . .  i . . . . . .  , . . . . . . . . . . .  

I I ' 2 
31 3 3 - -  10 31 4 7 

. . . . . . . . . . . .  ] - -  

5 9  - 3  . . . . . . . . . .  - . . . . . .  - - I 3 

i l . . . .  

] 71 I 7 - -  5 24 117 - -  

L I T E R A T U R E .  1. T .  N a g e l l :  ~>Des 6 q u a t i o n s  ind6 te rmin6es  x2- i -x -k  l = y n  et  x 2 + x q  - l=3yn~) ,  
N o r s k  m a t e m a t i s k  fo ren ings  sk, ' ifter.  Serie  I ,  ~Nr 2, Oslo, 1921. - -  2. W .  L j u n g g r e n :  ~>Einige 
B e m e r k u n g e n  f iber  die  D a r s t e h u n g  ganze r  Zah l en  d u r c h  bin/~re k u b i s c h e  F o r m e n  m i t  posi-  
r iver  Diskriminante~),  A c t a  m a t h .  Vol.  75, 1942. - -  3. A .  T h u e :  L~ber die  Un lOsba rke i t  de r  
Gle ichung  a x 2 +  b x ~, c ~ d y  n in  g ros sen  g a n z e n  Zah l en  x u n d  y}), A r c h l y  for  M a t h e m a t i k  og  
N a t u r v i d e n s k a b .  B. X X X I V ,  K r i s t i a n i a ~ 1 9 1 6 .  - -  4 . - - - - :  ~)~ber A n n / ~ h e r u n g s w e r t e  al- 
geb ra i s che r  Zahlen*, J o u r n a l  ffir Math . ,  B a n d  135 ( 1 9 0 9 ) . -  5. E .  H e c k e :  , )Vorlesungen 
fiber die Thgpr ie  de r  a lgeb ra i s cheu  Zahlen,). Le ipz ig  1923. w 52, Sa tz  152; f o r m u l a  1. - -  
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