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On a diophantine equation in two unknowns

By BeNeT PERSsON

§ 1.
The purpose of this paper is to examine the solvability in integers z and y
of the equation
@4+ i(D+1)=y (1)

where D is a positive integer = 3 (mod. 4) and ¢ denotes an odd prime.
The special case D =3 has already been treated by T. NAGELL, who showed
that the equation! :

@+t l=y

is impossible in integers z and y, when y & + 1, for all whole exponents
n(>2) not being a power of 3.
W. LiunGGREN completed this result by proving that the equation®

Pz + 1=y

has the only solutions y =1 and y =17. Thus it is sufficient in (1) to take
D 2 7. We furthermore suppose that D has mo squared factor > 1.

According to a theorem of AxEL THUE the equation (1) has only a finite
number of solutions in integers x and y, when D and ¢ are given.?

§ 2.
If we put p=4(—1+ V— D) and o' =3 (— 1 — V— D), the equation 1
can be written
@—o)(z—o)=4y (1)
¢ and ¢’ are conjugate integers in the quadratic field K(V— D). The

numbers 1, ¢ form a basis of the field.
The two principal ideals

(x—¢) and (z—¢)

are relatiVely prime. To show it we denote by j their highest common divisor.
The number 2z + 1 =2z — (0 + o’) is contained in i and also the number
= — (¢ —¢)%. If we write the equation (1) in the form
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2z + 1>+ D=4y,

we see that the numbers 2z + 1 and D are relatively prime since D has no
squared factor > 1. Hence we have j= (1). Therefore we get from (1’) the
ideal equation

(z—g) =0 (2)

where a is an ideal. Let us for the present suppose that a is o principal ideal.
Then (2) can be written

z—o=z¢e(a+be) (2

.
where o and b are relatively prime integers and & is a unit in K (V/— D).
D being > 3, the only units are + 1. Thus the unit ¢ is a ¢-th power, and
we can replace ¢ by 1.
Hence we get from (2')

Dy
x—@:(a—(—bg)qZ(a__g+g]/_—D)q=(c+b; D) (3)
with
c=2a—b.

From (3) we get

2V —D=(c—bV—D)—(c+bV—Dy (3
or developed
3 (g—D)

r;o (2fr+1

901 —=

)Cq—-zr—l p2r+i (_ D)r. (4)

From (4) we get b= + 2™ Here m = 0 is the only possibility, for other-
wise ¢ would be even too by (3) and the right member of (4) would be divis-
ible by 22 Hence b = + 1.

From (4) we get modulo ¢

1= —b(— D)tte-D (mod. g).

Hence

Then the equation (4) is transformed into

()= 5 (o, e o)

q r=0

which is an algebraic equation in ¢* of degree % (¢ — 1) and with integral
coefficients. To every integral solution + ¢ of the equation (5) corresponds
one integral solution y of the equation (1) given by

y=N(@)=31(D + ). : (6)
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In this way we can have at most 4 (¢ — 1) solutions y of (1), when D and ¢

are given. )
The right member of (5) is a binary form of degree n = (¢ — 1) in ¢ and
D. This form is irreducible; to see it we regard the polynomial in z

3D q 7
= (— e
1) 2 (27‘+ I)Z ;{.)Chza

7==0

which has the following properties: @, 0 (mod. ¢); @; =0 (mod. ¢) for all
i<n; ap=0 (mod. 7).

Hence f{(z) is irreducible according to the theorem of EisEnstrIN. Using
the wellknown theorem of AxeL TaUE! on the corresponding form

@, y) = yf(’y”)

we see that the equation (5) has only a finite number of solutions in integers
¢® and D, when ¢ is given and =

§ 3.

Let us denote by & (V:—_—D_) the number of ideal classes in the field K (V— D).
We shall prove the following proposition:

Theorem 1. I f D s o positive integer =3 (mod. 4) having no squared factor
>1 and if b (V — D) 4s not divisible by the prime q, the equation
Ptz +iD+1)=

18 solvable in integers = and y only for a finite number of integers D jor a given
q 2 7. The equation has at most % (q — 1) solutions y, when D and q are given.

In consequence of the results in the preceding paragraph the theorem is
proved, when we can prove that in (2) the ideal a is a principal ideal if

h = h(V— D) D) is not divisible by g¢.
For if 250 (mod. g) there are two integers f and g so that

fa—gh=
Hence we get from (2) the equivalence
a~a?7~(1).

From the relation (6) we see _that if the equation (1) has a solution

y<1;; (D + 1), we must have 4 (V' — D) =0 (mod. g¢). So we get the following
result :
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B. PERSSON, On a diophantine equation in two unknowns
Theorem 2. Let x and y be any integers so that

Y —y>a+
and so that the number
D=4y — 2z + 1)

has mo squared factor > 1. Then the number h(V— D) is divisible by the odd
prime q.

Numerical examples

1. fg=3y=2andez=1weget D =4-2° — 32 =23 with23 — 2> 12+ 1.

Hence A (V' —23) =0 (mod. 3).

Ifg=5y=2ande=4weget D =4-2>— 92 = 47 with 2° — 2 > 4% 4 4.

Hence h(V —47) =0 (mod. 5).

3. fq=T7, y=2and 2=10 we get D =4-27 — 212 =71 with 2" — 2 > 102+ 10.
Hence A (V' —T1) =0 (mod. 7).

4. If g=11, y=2 and =44 we get D=4 - 211 —892=271 with 2! —2>44% + 44
Hence A (V' —271) =0 (mod. 11).

Lo

§ 4.
We shall determine an upper limit for the solutions y of the equation (1),

when the number h(V—D) is not divisible by ¢. As was shown in the
preceding paragraph the ideal a in (2) is then a principal ideal.
Let us write (3') as a product. From (3') we get

UV —D=g!—a? with a=c—bV—D.

7—1 271
2V —D= w—2bV~——D1—[ (a~a'677);

r=1

a—1 45 ; :
—D - o, LA .,
q—1 4 ’
2 =lle? \ae ? —de? |=
=1

q :
g—1
= (— 1)"’-"4“1)11 2(-—ic sian —bV—D cos gr) =
r=1

q—1

=201 ]] (c sin 27 + b VD cos ZL'I‘)‘
r=1 q q
Hence
D\ _Tr
(—) = H (c sin "7 + b VD cos y—zr)-
q i q q
Hence we get because sin ¢ = sin (7 — ¢), cos ¢ = — cos (n —¢) and %=1
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$(g—1D)

(——D) = H (02 sin? %y — D cos? zzr)-
q r=1 q q
From (6) we get
D 3 (-1 -
)= 4ysin® 7 ——-D)-
(=)= 1L (swn]

If
4ysin?Z — D 2 4sin z,
q q

we have, since sin x is increasing in the interval 0 <z < -

2
¥ (g-1) 3 (g—-1) z \2
11 (4ysin2§r—D)§ I (2 sin'»r) =g¢>1
r=1 q r=1 q

Hence we must have

4ysin27}——D<4sin2?
q q

y<3}D coseczg—l— 1
and we get the following result:

Theorem 3. When h(Vj)) is not divisible by g, the integral solutions y
of the equation (1) are all less than the number

1 D cosec? :—; + 1.
§ 5.
We shall prove the following proposition:
Theorem 4. The equation
Ptz +i@tl)=y
18 unsolvable in integers = and y, if ¢ >3 is a prime = 3 (mod. 4).

In an imaginary quadratic field K (V;l) with the discriminant d (d < — 4)
the number of ideal classes % (}d) is given by the formula®

h(Vd) = ij ( )

49



B. PERSSON, On a diophantine equation in two unknowns

where the characters (g) can only have the values 0, + 1. From this formula

we get the following inequality

. laj=1 _
k(Vd)<ﬁ > n:ldlz !

In the present case we have d = — ¢ and hence % (V —¢) is not divisible
by q. As was shown in § 3 this involves a ~ (1) in the equation (2). But the
equation (5) is impossible, when D = ¢, since every term in the right member
is divisible by ¢, while the left member is not divisible by ¢.

<|d].

3

§ 6.
We next consider the special case g =3 supposing that k(VjD) is not
divisible by 3. From (5) and (6) we then get
—~D\ ..
4( 3 ) =3¢ D
y=1(D +cz)=%(D-(§))-

We get the following result:

and

Theorem 5. If D s positive integer = 3 (mod. 4) having no squared factor
> 1 and if h(V—D) is not divisible by 3, the equation

@+z+3iD+1) =4

has the only solution y =3 (D —1) if D is of the form 3¢® + 4, and the only
solution y=1(D + 1) if D is of the form 3c® — 4, and has no integral solutions
for other values of D.

Remark. There are infinitely many integers without squared factor > 1 of
the form 3¢ + 4 and 3¢ —4.%

*

Let us now suppose that the class number h(V:—_D) is divisible by 3. In
this case the equation

P+t iD+1)=49

can have other solutions than those given in the theorem 5. As examples we
treat the cases D =23, 31, 59, 83 where the class number has the value 3.

I. D=23. The ideal classes in K (V——23) can be represented by the ideals
(1), (2, 0) and (2, ¢’) where o =3 (—1 + V—23).

50



ARKIV FOR MATEMATIK. Bd 1 nr 5

We have
2,0)(2,0)=1(2) and (2,¢P=(1—0p)
The equation
2+ +6=4¢° (7)
gives as in the general case
(x—o) =0 8)
where a is an ideal.
If a~ (1) we get as in theorem 5 y ==1(23 + 1) =8, since 23 =3-3%> — 4.
If a~ (2, p) we get from (8)

(2, 0@ —e) = (2, 0)°
(1—9)(x—¢)=(a+bg)® (9)
where ¢ and b are integers.
t—6—p(x+2) =a®>—18ab®+ 66° + o(3a’b — 3ab® —5b%).
Hence we get the system
r—6=aqa®—18ab® + 6b°
—2—2=230a2b —3ab? -5
Hence after elimination of z

—8=0%+ 3ad*b—21ab®+ b® (10)
From (9) we get
2y=N(a+bp)=a®—ab + 6B

The equation (10) has the solutions
fa=—2 [a=3 and fa==0
lb=0 = lbp=1 b= —2

I

which give the solutions ¥ =2, y =6 and y = 12 respectively of (7).

The case a~ (2, p') leads to (10) too. We see that by replacing z by
—1—2,aby —aand b by —b in (8 and (9).

II. D=31. As representatives of the ideal classes we choose (1), (2, o)
and (2, ¢’) with o = 1(—1 + ¥V —31).

We have

(2,02 ¢)=(2) and (2 ¢)=(0)
The equation
2+z+ 8=y (11)

gives .

(x — p) = ad - (12)
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If a~ (1) we get as in theorem 5 y =} (31 — 1) = 10, since 31 = 3-3% + 4.
If a~ (2, o) we get from (12)

o (x— o) =(a+ bp)?

where a and b are integers.
—z-8——gw=a3~—24ab2+8b3+g(3azb—3ab2—7b3).

Hence
—8=0a®—3a%b—21ab? + 150° (13)
with
2y =a*—ab + 8%

The equation (13) has the solutions

fea=—2 fa=1 and fo=4
lo=0 ° lb=1 b =6

which give the solutions y = 2, y =4 and y = 140 respectively of (11).
a~ (2, ¢') gives the same solutions.

III. D=59. As representatives of the ideal classes we choose (1), (3, o)
and (3, o') with ¢ = 3 (— 1 + V' —59).
We have
(3,03 0)=(3) and (3 ¢)=(—3)
The equation
¥+ x4+ 15=4¢> (14)
gives
(x —p) = ad, (15)

a~ (1) gives no solution of (14).
If a~ (3, ) we get from (15)

(@ —3)(z—e)={(a+bo)
—4x—15+ 93 —x) =a® —45ab® + 158% + 9(3a?b — 3ab® — 140
Hence
— 97 =qa® —12a%b —33ab® + T1H° (16)
with
3y=a®—ab+ 150%
The equation (16) has the solutions

Ja=—3 and fa=—1

te=o0 b= —1
which give the solutions y = 3 and y = 5 respectively of (14).
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IV. D=283. As representatiyff_ of the ideal classes we choose (1), (3, o)
and (3, ¢') with ¢ =3 (— 1+ V—83).
We have
(3,0):(3,0)=(3) and (3, 0)%=(0 + 3)

2+ +2l=4¢° (17)

The equation

gives
(x ~— @) = a. (18)

o~ (1) gives no solution of (17).
If a~ (3, 0) we get from (18)

i (@ +3)(x—0)=(a+bo)]
with
3y =a®—ab + 2152

20— 21 + g(— =z —3)=a® — 63ab® + 216° + o(3a2b — 3ab® — 20%°).

Hence
— 27T =a%+ 6a2b — 69abd® — 1955 (19)
The equation (19) has the solution ¢ = — 3, b = 0 which gives the solution
y=3 of (17).

At the end of this paper we give a table containing solutions of the equation
PPraz+3iD+1)=4"
when D is a prime < 100.

§ 7.

Let us examine the case ¢ =25, when h(V'—D) is not divisible by 5. We
get from (5)

2¢ (15)) =5c¢t— 102D + D, (20)

Hence we find that the equation
2tz +iD+1)=49"

has at most one solution y. For if there were different values of ¢ for a
given D, we get from (20)

5¢ —10¢iD=5c; —10¢c; D
and hence
4 c=2D
1. e.
2D =2 (mod. 8)

which is impossible since D =3 (mod. 4).
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If we put with an odd 2
D —5c%=22 (21)

the equation (20) is transformed into
4(—?) 25 (22)

I. If (Q> =1 we get

5
22 —4=5c (22

(22') has the only solution z=3 and ¢=1 in odd positive z and ¢. This
can be proved in the following way. (22) can be written

(:+2)(z—2) =5c
with
(z+2,2—2) =1
Hence we get the system (z > 0)
z+ 2="5a; 2F2=0* (1)

where (¢, b)) =1 and ab=c.
Hence
+4=5q"— bt
where the lower sign is impossible, since the right member is congruent 4
modulo 16. Hence
b* + 4= 5a*
which can be written

where

Hence we get the system

B2+ 2b+2="5f BT+ 2=24g

with (f, ¢)=1 and fg=a.
The last equation can be written

bF1)?2+1=4¢

but as is well known the diophantine equation
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has the only solution z=10. Hence b= + 1 is the onlyv solution of the system

(A) and hence z = + 3, ¢®=1 the only solutions of (22') in odd integers.
This gives by (21) D ==11 as the only case when the equation

+r+iD+1)=9
. . (D )
is solvable if (737 = 1.

152 + 15 + 1 (11 + 1) = 3%,

II. It (?) =: — 1, (22) becomes
224+ 4=>5c (22")
The equation (22’') has only the solutions z = + 1, ¢® = 1 according to an

information from W. LJUNGGREN not yet published. o
This gives by (21) D=7 and D=3 as the only cases of solvability if

(?)2—1.

We get the following result:

524+ 5 + L(7T+ 1) =22

Theorem 6. If_ l_) is a positive integer = 3 (mod. 4) having no squared factor
> 1 and if h(V—D) is not divisible by 5, the equation

B+z+iD+1)=49y

is solvable in integers x and y only when D=3, 7 and 11. In these cases the
equation has a single solution y.

§ 8.
Finally we consider the special case ¢ =7, when % (V' —D) is not divisible
by 7. We shall show that the equation
P+z+iD+1)=y (23)

has at most one solution y for a given D.
From (5) we get

7cs~35c4D—;—2102D2—D3+26(?)=0. (24)
Hence we get from (6) for the solutions y of the equation (23)
7 .3 2 2 3 D\ _
1y>— 14 Dy* + 7Dy — D° -+ B =0. (25)
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Let yy, ¥ and y; be the roots of the equation (25). We have

y1+y2+y3=2D (I)

Yi¥e + YaYs + Y3y = D? (IT)
D

Turvags = — (7 (1)

Hence we see that the equation (23) cannot have three solutions y. For if
D= —1 (mod. 8) we would have by (23) % =0 (mod. 2) for 2=1, 2, 3
against (II). I1f D = 3 (mod. 8) we would have by (23) y; = 1 (mod. 2) against (I).
Neither can we have two solutions for D= — 1 (mod. 8) according to (II).
That it is the same in the case D=3 (mod. 8) can be seen in the follow-
ing way.

Let (25) have three integral toots y;, ¥s, 3. We puby; + ys = u; 414, = v.
Hence by (I) and (II)

u+y;=2D; v+ ysu=D?
and after elimination of y;
hye=v=(D—up (26)

The y: are relatively prime two and two by (II), since (D, ;) =1 by (25).
Hence all y; are squares according to (26). If y, and y, are odd we get

y3 =4 (mod. 8) by (I) and (p) = — 1 in (III). Hence the relation (III) can

7
be written
TA =D+ 1
where 4 is an integer. )
This equation has the only integral solutions D= —1 and D = 3. With
D=3 we get yy =y, =1 and y; = 4.
If we put
D=4z+17c
" the equation (24) is transformed into
D
23~—7c4z—7c“=(7)~ (24')
.. (D .
For c =1 we get, if 7= — 1, the solutions 2 =3;z= —landz= —2

of (24’). The two first values give D =19 and D = 3 respectively. Hence
the equation

2+ +b=y"
has the only solution y = 5.

2792 + 279 + 1 (19 + 1) =57,
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containing solutions of the equation

2tz +iD+1)=4y

when D is a prime << 100.

| 5
= I Soluti h
! o D, i Solution when Other solutions
I ») BV —D) 35+ 4 3 — 4 a~ (1)
c c Y x (> 0) y z(z 0)
7 ‘ 1 1 - 2 2 — —
T 1 — — — — — _
19 | 1 — — — _ _ _
. _— — 1 . P e b
l 2 1
23 ! 3 — 3 8 22 6 14
| l ‘t 12 41
. i B R o 2 0
31| 3 3 — 10 31 4 7
E 140 1656
i 43 [ 1 — — — — — —
47 3 — . — - .
‘,_ U [ . R . _ — - —
5| s | — — — — 3 3
! ! 5 10
'[ 67 1 ‘ — — — — — —
{ J— — — B i _ JE—
LTl 7 ' — 5 24 117 - —
79 5 5 — 26 132 — —
83 3 — — — — 3 2

LITERATURE. 1. T. Nagell: »Des équations indéterminées 2%+ + 1=y et 2+ -+ 1=3y™,
Norsk matematisk forenings skrifter. Serie I, Nr 2, Oslo, 1921. — 2. W. Ljunggren: »Einige
Bemerkungen iiber die Darstellung ganzer Zahlen durch biniire kubische Formen mit posi-
tiver Diskriminantes, Acta math. Vol. 75, 1942. — 3. A. Thue: Uber die Unlésbarkeit der
Gleichung aa® + bz + ¢ =dy" in grossen ganzen Zahlen x und g, Archiv for Mathematik og
Naturvidenskab. B. XXXIV, Kristiania, 1916. — 4. ——: »Uber Annaherungswerte al-
gebraischer Zahlen», Journal fir Math., Band 135 (1909). — 5. E. Hecke: »Vorlesungen
Ober die Theorie der algebraischen Zahlens. Leipzig 1923. § 52, Satz 152; formula 1. —
6. T. Nagell: »Zur Arithmetik der Polynome», Abh. Math. Sem. Univ. Hamburg. I. Band,
1922, — 7. W. Ljunggren: »Einige Satze iiber unbestimmte Gleichungen von der Form
Az*+ Ba® -+ 0= Dy®. Vidensk. Akad. Oslo. I Mat. Naturv. Kl 1942, No 9,

Tryckt den 1 april 1949

Uppsala 1949. Almqvist & Wiksells Boktryckeri AB

57



