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Abstract. In this paper, we study invariant subspaces of composition opera-
tors on the Hilbert space of Dirichlet series with square summable coefficients.
The structure of invariant subspaces of a composition operator is characterized,
and the strongly closed algebras generated by some composition operators with
irrational symbols are shown to be reflexive. As an application, we provide a
criterion for composition operators with certain symbols not to be algebraic.

1. Introduction

For H a space of analytic functions on a region G ⊆ C and ϕ an analytic map
of G into itself, the composition operator Cϕ is a linear operator defined by

Cϕf = f ◦ ϕ, f ∈ H.
Broadly, one is interested in extracting properties of Cϕ acting on H (bounded-
ness, compactness, spectral properties, etc.) from function theoretic properties of
ϕ and vice versa. We refer to monographs by Cowen-MacCluer [4], Shapiro [15]
and Zhu [18] for general information of composition operators on the open unit
disc D of the complex plane C. Recently, an extensive study of composition oper-
ators was carried out on various spaces of Dirichlet series (see [1, 2, 3, 6, 12, 16]).

LetH be the Hilbert space of Dirichlet series with square summable coefficients:

H =

{
f(s) =

∞∑
n=1

ann
−s : ‖f‖ =

( ∞∑
n=1

|an|2
)1/2

<∞
}
.
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By the Cauchy-Schwarz inequality, the functions in H are all analytic on the
half-plane C1/2 (where, for θ ∈ R, Cθ = {s ∈ C : Re s > θ} and C+ = C0).
In the process, we also encounter the space D of functions f, which in some
(possibly remote) half-plane admit representation by a convergent Dirichlet series
f(s) =

∑∞
n=1 ann

−s. We also recall that a series inD actually converges absolutely
in the half-plane one unit to the right of the half-plane of convergence.

The following comes from [6, 12], which characterizes the boundedness of com-
position operators on H.

Theorem A. An analytic function Φ : C1/2 → C1/2 determines a bounded
composition operator CΦ : H → H if and only if Φ(s) = c0s+ ϕ(s), where c0 is a
non-negative integer, and ϕ(s) =

∑∞
n=1 cnn

−s ∈ D converges uniformly in Cε for
every ε > 0 with the following properties:

(a) If c0 = 0, then ϕ(C+) ⊆ C1/2.
(b) If c0 ≥ 1, then either ϕ ≡ 0 or ϕ(C+) ⊆ C+.

It is convenient to call Φ a c0-symbol if Φ : C1/2 → C1/2 is analytic and satisfies
the above conditions such that CΦ is bounded on H.

We know one of the most famous unsolved problems in analysis is the invariant
subspace problem: does every bounded linear operator on an infinite dimensional
Hilbert space have a non-trivial invariant subspace? In recent decades, the in-
variant subspaces of composition operators acting on the Hardy-Hilbert space
H2(D) have been extensively studied. Particularly, the authors [10] showed that
every hyperbolic composition operator on H2(D) is cosubnormal and has uni-
versal translates. This allows us to formulate the general invariant subspace
problem in terms of invariant subspaces of certain composition operators. Be-
cause of this close relationship, the invariant subspaces of invertible composition
operators have been studied in [9], and Mahvidi studied the structure of invariant
subspaces of a general composition operator in [8].

The purpose of this paper is to generalize these results mentioned above from
the classical Hardy-Hilbert space H2(D) to the spaceH of Dirichlet series. Section
2 includes some background materials needed in the sequel and some basic facts
on the dynamical system of c0-symbols, which are very different from the classical
case. In Section 3, we consider the structure of invariant subspaces of composition
operators. The reflexivity of algebras generated by composition operators and
the non-existence of non-trivial algebraic composition operators are discussed in
Section 4.

2. Preliminaries

Let H be a Hilbert space and B(H) the algebra of all bounded linear operators
on H. Recall that a closed subspace M of H is called an invariant subspace of
A ∈ B(H), if Ax ∈ M for every x ∈ M (i.e., AM ⊆ M). For A ∈ B(H), we
denote the lattice of all invariant subspaces of A by LatA. For U ⊆ B(H), we
set

LatU :=
⋂
A∈U

LatA.
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An algebra U ⊆ B(H) is said to be reflexive, if for any B ∈ B(H) the inclusion
LatU ⊆ LatB implies B ∈ U . Further, if S is any collection of subspaces of H,
we define AlgS := {B ∈ B(H) : S ⊆ LatB}. Then the algebra U is reflexive if
and only if U = Alg LatU . Reflexive algebras are associated extensively to the
transitive and reductive algebra problems. For more details, see [13].

We know that H is a reproducing kernel Hilbert space and the reproducing
kernel at w in C1/2 is given by Kw(s) =

∑∞
n=1 n

−wn−s for Re s > 1/2.
If we denote by C∗Φ the adjoint of CΦ whenever it is bounded, then for w ∈ C1/2

we have

C∗Φ(Kw) = KΦ(w).

Let Φ be an analytic self-map of C1/2. For all n ∈ N we denote the n-th iterate
of Φ by Φn, that is Φn := Φ ◦ · · · ◦ Φ. For n = 0 we set Φ0 := id, the identity
function of C1/2.

The followings are from [2] and [6] respectively.

Lemma 2.1. Let m be a positive integer, and f(s) =
∑∞

n=m ann
−s ∈ D. Then

msf(s)→ am uniformly as Re s→ +∞.

Lemma 2.2. Let Φ(s) = c0s+ϕ(s) be an analytic self-map of C+. If Φ(s) 6= s+iτ,
τ ∈ R, then there exist η > 0 and ε > 0 such that Φ(C1/2−ε) ⊆ C1/2+η.

We next consider the iterates of c0-symbols, which are very different from the
classical case (see [4]). Therefore, we have to use essentially different methods to
study invariant subspaces of composition operators acting on H.

The following corollary shows that for any λ ∈ C1/2, the sequence {Φn(λ)}
never satisfies the “Blaschke” condition.

Corollary 2.3. Let Φ(s) = c0s+ϕ(s) be an analytic self-map of C+. Then there
does not exist λ ∈ C1/2 such that Re Φn(λ)→ 1

2
as n→∞.

The next concerns the dynamical system of c0-symbols in C1/2.

Theorem 2.4. If a c0-symbol Φ is neither a constant nor the identity, then the
set {Φn(w)}∞n=0 has no limit points other than the infinity point in C1/2 for each
w ∈ C1/2.

Proof. Since it is trivial for the case where Φ(s) = s+iτ with τ ∈ R\{0}, then we
assume that Φ(s) 6= s+iτ (τ ∈ R) is a c0-symbol. Here we argue by contradiction.
To this end, we assume that the set {Φn(w0)}∞n=0 has a finite limit point in C1/2

for some point w0 ∈ C1/2. Let g ∈ H be such that g ⊥ span {(C∗Φ)nKw0 : n ≥ 0}.
Then it is clear that

0 = 〈g, (C∗Φ)nKw0〉 = 〈g,KΦn(w0)〉 = g(Φn(w0)),

that is, the analytic function g has zeros Φn(w0) (n ≥ 0). Since Φ is a non-
constant analytic self-map of C1/2, then g ≡ 0 by the identity theorem. So we
have span {(C∗Φ)nKw0 : n ≥ 0} = H.

It follows from Lemma 2.2 that there exists η > 0 such that Φ(C1/2) ⊆ C1/2+η.
Then Φn(w0) ∈ C1/2+η for all n ≥ 1. Thus we can choose some w1 ∈ C1/2 such
that 1/2 < Rew1 < 1/2 + ε for some positive number ε < η and Rew1 6= Rew0.
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Since Kw1 ∈ H = span {(C∗Φ)nKw0 : n ≥ 0} = span {KΦn(w0) : n ≥ 0}, then there

must exist a sequence {gN}N≥0 with gN(s) =
∑m(N)

`=0 a
(N)
` KΦ`(w0)(s), such that

gN → Kw1 in H as N →∞. Note that

gN(s) =

m(N)∑
`=0

a
(N)
`

∞∑
n=1

n−Φ`(w0)n−s =
∞∑
n=1

(m(N)∑
`=0

a
(N)
` n−Φ`(w0)

)
n−s

for each N ≥ 0. Thus we get that
∑m(N)

`=0 a
(N)
` n−Φ`(w0) → n−w1 , that is,

m(N)∑
`=0

a
(N)
` nw1−Φ`(w0) → 1, (2.1)

for all n ≥ 1, as N → ∞. Note that Rew1 6= Rew0 and Rew1 − Re Φ`(w0) <
−(η− ε) for all ` ≥ 1. Thus (2.1) is impossible. This contradiction completes the
proof. �

3. Invariant subspaces

We now consider the structure of invariant subspaces of composition operators.
First, we notice the following simple observation concerning the images of 1 of
the adjoints of composition operators on H.

Lemma 3.1. Let Φ(s) = c0s +
∑∞

k=1 ckk
−s be a c0-symbol. Then the following

statements hold:
(1) If c0 = 0, then C∗Φ1 =

∑∞
n=1 n

−c1n−s.
(2) If c0 ≥ 1, then C∗Φ1 = 1.

Proof. (1) If c0 = 0, then Re c1 >
1
2

by [6, P.319] and for each f(s) =
∑∞

n=1 ann
−s ∈

H, we have

CΦf(s) =
∞∑
n=1

ann
−c1n−

∑∞
k=2 ckk

−s

=
∞∑
n=1

ann
−c1

∞∏
k=2

(
1 +

∞∑
j=1

(−ck log n)j

j!
k−js

)
,

which holds in the half-plane of absolute convergence of the series
∑∞

k=1 ckk
−s.

Thus

〈C∗Φ1, f〉 = 〈1, CΦf〉 = CΦf(+∞) =
∞∑
n=1

ann
−c1 = 〈

∞∑
n=1

n−c1n−s, f〉.

By the arbitrariness of f ∈ H, we get that C∗Φ1 =
∑∞

n=1 n
−c1n−s.

(2) If c0 ≥ 1, then

〈C∗Φ1, n−s〉 = 〈1, n−Φ(s)〉 = 0

for all n ≥ 2. Thus (2) is immediately obtained. �

The following concerns the lattices of two composition operators.

Theorem 3.2. Let Φ(s) = c
(1)
0 s +

∑∞
k=1 c

(1)
k k−s and Ψ(s) = c

(2)
0 s +

∑∞
k=1 c

(2)
k k−s

be c0-symbols. If LatCΦ ⊆ LatCΨ, then the following statements hold:

(1) If c
(1)
0 = 0, then Ψ(α) = α, where α is the fixed point of Φ.

(2) If c
(1)
0 ≥ 1, then c

(2)
0 ≥ 1.
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Proof. (2) follows easily from Lemma 3.1, we only need to prove (1). Suppose

that c
(1)
0 = 0 and α is the fixed point of Φ in C1/2. If LatCΦ ⊆ LatCΨ, then

LatC∗Φ ⊆ LatC∗Ψ. Note that span {Kα} ∈ LatC∗Φ, then

KΨ(α) = C∗ΨKα ∈ span {Kα}.

If Ψ(α) 6= α, then Kα and KΨ(α) are linearly independent. So Ψ(α) = α. �

We also consider the images of two composition operators.

Theorem 3.3. Let Φ(s) = c
(1)
0 s +

∑∞
k=1 c

(1)
k k−s and Ψ(s) = c

(2)
0 s +

∑∞
k=1 c

(2)
k k−s

be c0-symbols such that CΦH ⊆ CΨH. Then the following statements hold:

(1) If c
(1)
0 = 0 and either c

(1)
2 or c

(1)
3 is not zero, then c

(2)
0 ≤ 1.

(2) If c
(1)
0 ≥ 1, then c

(2)
0 ≤ c

(1)
0 .

Proof. (1) Let c
(1)
0 = 0 and assume that either c

(1)
2 or c

(1)
3 is not zero. By way of

contradiction, we assume that c
(2)
0 > 1, then nc

(2)
0 ≥ n2 ≥ 22 for all n ≥ 2. Thus

〈`−s, CΨ(n−s)〉 = 〈`−s, n−c
(2)
0 sn−c

(2)
1 n−

∑∞
k=2 c

(2)
k k−s〉 = 0

for all n ≥ 1 and ` = 2 or 3. That is `−s ∈ (CΨH)⊥, then `−s ∈ (CΦH)⊥, for
` = 2 or 3. However,

〈`−s, CΦ(n−s)〉 = 〈`−s, n−c
(1)
1 n−

∑∞
k=2 c

(1)
k k−s〉 = −n−c(1)1 c

(1)
` log n 6= 0

for all n > 1 and some ` ∈ {2, 3}, which implies that `−s /∈ (CΦH)⊥ for ` = 2 or 3.

This contradiction implies that c
(2)
0 ≤ 1.

(2) If c
(1)
0 ≥ 1 and c

(2)
0 > c

(1)
0 , then nc

(2)
0 > nc

(1)
0 ≥ 2c

(1)
0 for all n ≥ 2. Note that

〈2−c
(1)
0 s, CΨ(n−s)〉 = 〈2−c

(1)
0 s, n−c

(2)
0 sn−c

(2)
1 n−

∑∞
k=2 c

(2)
k k−s〉 = 0

for all n ≥ 1, and

〈2−c
(1)
0 s, CΦ(2−s)〉 = 〈2−c

(1)
0 s, 2−c

(1)
0 s2−c

(1)
1 2−

∑∞
k=2 c

(1)
k k−s〉 = 2−c

(1)
1 6= 0.

Since the inclusion CΦH ⊆ CΨH means that (CΨH)⊥ ⊆ (CΦH)⊥, then the pre-

vious two equations leads to a contradiction. So c
(2)
0 ≤ c

(1)
0 , which completes the

proof. �

Recall that an operator is reductive if every invariant subspace for the operator
is reducing. The following characterizes the reductive composition operators on
H.

Theorem 3.4. Let Φ(s) = c0s+
∑∞

k=1 ckk
−s be a c0-symbol. Then CΦ : H → H

is reductive if and only if Φ(s) = s+ c1 with Re c1 ≥ 0.

Proof. We first claim that c0 6= 0. To this end, by way of contradiction, we assume
that c0 = 0. It is clear that C ∈ LatCΦ, which implies that C∗Φ1 ∈ C by the
reduction of CΦ. Hence 〈C∗Φ1, n−s〉 = 0 for all n ≥ 2. But 〈C∗Φ1, n−s〉 = n−c1 6= 0
for each n ≥ 2 by Lemma 3.1. This contradiction gives the claim.
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Next we claim that c0 = 1. If this is not the case, then c0 > 1. Then 2c0 > 2.
It is clear that Ln := span {k−s : k ≥ n} ∈ LatCΦ, and then Ln ∈ LatC∗Φ for all
n ≥ 1 by the reduction of CΦ. But

〈C∗Φ2−c0s, 2−s〉 = 〈2−c0s, 2−Φ(s)〉 = 2−c1 6= 0,

which implies that C∗Φ2−c0s /∈ L2c0 . This contradicts to L2c0 ∈ LatC∗Φ, then
c0 = 1.

So we can suppose that Φ(s) = s + c1 +
∑∞

k=2 ckk
−s. Since Ln ∈ LatCΦ, and

then Ln ∈ LatC∗Φ for all n ≥ 1. Note that L⊥n = span {1, 2−s, · · · , (n− 1)−s} for
n ≥ 2, and H⊥ = {0}. So CΦ(m−s) ∈ span {1, 2−s, · · · , (n− 1)−s} for each n ≥ 2
and m ∈ {1, 2, · · · , n− 1}. Note that

CΦ(m−s) = m−Φ(s) = m−c1m−sm−
∑∞

k=2 ckk
−s

= m−c1m−s
∞∏
k=2

(
1 +

∞∑
j=1

(−ck logm)j

j!
k−js

)
,

which holds in the half-plane of absolute convergence of the series
∑∞

k=1 ckk
−s.

So ck = 0 for all k ≥ 2. Consequently, Φ(s) = s+ c1 with Re c1 ≥ 0.
Conversely, assume that Φ(s) = s + c1 with Re c1 ≥ 0. Then CΦ is normal. If

Re c1 > 0, then CΦ is compact by [5], and hence every invariant subspace of CΦ

contains at least one of eigenvectors. It follows from [17] that CΦ is reductive.
If Re c1 = 0, then CΦ is a unitary, and {n−s}∞n=1 are eigenvectors of CΦ. By
[17, Theorem 6], there exists a sequence of polynomials pn(z) such that pn(CΦ)
converges strongly to C∗Φ. Hence CΦ is reductive. �

If a non-constant function f ∈ H is an eigenvector of a composition operator,
then the 2-dimensional subspace span {1, f} must be invariant under it. The
following actually characterizes 2-dimensional invariant subspaces containing the
constants of composition operators.

Theorem 3.5. Let Φ(s) = c0s +
∑∞

k=1 ckk
−s be a c0-symbol. If there exists a

non-constant function f such that span {1, f} is invariant under CΦ, then c0 ≤ 1.
Moreover, we have:

(1) If c0 = 0, then f−f(α) is an eigenvector of CΦ with respect to the eigenvalue
(Φ′(α))k for some integer k ≥ 1, where α is the fixed point of Φ in C1/2.

(2) If c0 = 1, then f − f(+∞) is an eigenvector of CΦ with respect to the
eigenvalue `−c1 for some integer ` ≥ 2.

Proof. Let c0 = 0 and α be the fixed point of Φ. We claim that g := f−f(α) is an
eigenvector of CΦ with respect to the eigenvalue (Φ′(α))k for some integer k ≥ 1.
It is obvious that g is also non-constant and g ∈ span {1, f}. Since span {1, f}
is invariant under CΦ, we have CΦg = c + dg for some c, d ∈ C. Since g(α) = 0,
then we have c = 0. Hence CΦg = dg, i.e., f − f(α) is an eigenvector of CΦ with
respect to the eigenvalue d. It is obvious that d = (Φ′(α))k for some integer k ≥ 1
by [3, Theorem 4].

Let c0 ≥ 1 and define the analytic function f̂ := f − f(+∞). Then f̂ ∈
span {1, f} is also non-constant. Since span {1, f} is invariant under CΦ, we have
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CΦf̂(s) = a+ bf̂(s) for some constants a, b ∈ C. Letting Re s→ +∞ and noting

that Φ(+∞) = +∞ for c0 ≥ 1, we can get a = 0 by the fact f̂(+∞) = 0. Hence

CΦf̂(s) = bf̂(s), that is, f̂ = f − f(+∞) is an eigenvector of CΦ with respect to
the eigenvalue b.

We now exclude that c0 > 1. Indeed, if c0 > 1, then b ∈ {0, 1} by [3, Theorem

4] and CΦf̂(s) = bf̂(s) with f̂(+∞) = 0. But this is impossible because f̂ is
neither a constant function or zero, which completes the proof. �

By the previous theorem, we get that: if Φ is a c0-symbol with c0 > 1, then CΦ

has no 2-dimensional invariant subspaces containing the constants. It is inter-
esting to find other finite dimensional invariant subspaces of CΦ. The following
shows the non-existence of non-trivial finite dimensional invariant subspaces.

Theorem 3.6. If Φ(s) = c0s +
∑∞

k=1 ckk
−s is a c0-symbol with c0 > 1, then CΦ

has no non-trivial finite dimensional invariant subspaces other than the constants.

Proof. Let M be a non-trivial finite dimensional invariant subspace of CΦ other
than the constants. We first show thatM must contain the constants. According
to Theorem 4 in [3], the point spectrum of CΦ is {1} and a computation shows
that the eigenvectors corresponding to eigenvalue 1 should be the constants. Since
M is finite dimensional, CΦ|M has an eigenvector. So 1 is in M. By Lemma
3.1, C ∈ LatC∗Φ. So N = M ∩ C⊥ is a finite dimensional invariant subspace
for CΦ, which implies that CΦ|M has an eigenvalue other than 1. This yields a
contradiction since the point spectrum of CΦ is {1}. �

4. Reflexivity

In the sequel, we define Pn for n ≥ 1 on H as follows: (Pnf)(s) = ann
−s for

f(s) =
∑∞

k=1 akk
−s ∈ H. It is clear that P1 is the orthogonal projection from

H onto C, so we will also use PC in place of P1. We begin with the following
interesting fact.

Theorem 4.1. Let Φ be a c0-symbol with c0 > 1. If a strongly closed unital
algebra of operators on H contains CΦ, then PC is in the algebra.

Proof. Let Φ(s) = c0s +
∑∞

k=1 ckk
−s be a c0-symbol with c0 > 1, and let U be a

strongly closed unital algebra of operators on H containing CΦ.
Fix any m ≥ 1 and non-zero element f(s) =

∑∞
k=1 akk

−s ∈ H, and set

Km = span {1, 2−s, · · · ,m−s}.
We claim that (Cm

Φ − PC)f ⊥ Km. In fact, it follows from [6] that Φm(s) =

cm0 s+
∑∞

k=1 c
(m)
k k−s with c

(m)
k ∈ C (k ≥ 1) for each m ≥ 2 and c

(m)
1 = c1

∑m−1
i=0 ci0,

where the series
∑∞

k=1 c
(m)
k k−s converges uniformly in some (possibly remote)

half-plane. Because

(Cm
Φ − PC)f(s) =

∞∑
k=2

akk
−Φm(s),

and nc
m
0 ≥ cm0 > m for n ≥ 2 and c0 > 1, the expression of (Cm

Φ − PC)f(s) does
not contain any k−s with k ≤ m. Thus (Cm

Φ − PC)f ⊥ Km for each m ≥ 1
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Since ∪mKm = H and (Cm
Φ −PC)f ⊥ Km, (Cm

Φ −PC)f converges weakly to 0 in
H. Thanks to Mazur’s theorem (see [14, Theorem 3.13]), there exists a sequence
{hN} of convex combinations of (Cm

Φ −PC)f such that hN → 0 in H as N →∞,

i.e., hN(s) =
∑kN

i=1 rNi
(CNi

Φ − PC)f(s), rNi
≥ 0,

∑kN
i=1 rNi

= 1. Then

kN∑
i=1

rNi
CNi

Φ f(s)→ PCf(s), as N →∞,

in the norm of H. By the arbitrariness of f , PC is in the algebra U . �

The following gives a characterization of invariant subspaces of composition
operators for c0-symbols with c0 > 1.

Corollary 4.2. Let Φ be a c0-symbol with c0 > 1. If M is an invariant subspace
of CΦ, then either C ⊆M or C ⊆M⊥.

Proof. Fix any f ∈M. By Theorem 4.1, we know that Cn
Φf converges weakly to

PCf . Since M ∈ LatCΦ, then PCf ∈ M. If M does not contains the constants,
then PCf = 0. By the arbitrariness of f ∈M, we have C ⊆M⊥. So the proof is
complete. �

Before proceeding to the reflexivity results, we introduce some notation and
one useful lemma. If Φ(s) = s + iτ with τ ∈ R such that ( n

m
)iτ are not roots of

unity for all integers n 6= m and n,m ≥ 1, then we call Φ an irrational c0-symbol.
For example, Φ(s) = s+ i2π is an irrational c0-symbol. If x is a real number, let
{x} = x − [x], where [x] is the greatest integer less than or equal to x. Namely,
{x} denotes the fractional part of x. We recall the following remarkable fact from
[11]:

Lemma 4.3. If θ is an irrational number and f is continuous on [0, 1], then

lim
n→∞

1

n

n−1∑
k=0

f({kθ}) =

∫ 1

0

f(α) dα.

Motivated by Lemma 2.1 and Theorem 2.2 in [10], we give the following two
results.

Theorem 4.4. If a strongly closed unital algebra of operators on H contains a
composition operator with an irrational c0-symbol, then the algebra contains Pn
for n = 1, 2, · · · .

Proof. Fix an n ≥ 1 and let Φ(s) = s + iτ with τ ∈ R such that (p
q
)iτ are

not roots of unity for all integers p, q ≥ 1 with p 6= q. Let U be a strongly
closed unital algebra of operators on H that contains CΦ, Cn = niτCΦ and Ak =
1
k
(Cn + C2

n + · · · + Ck
n). Since CΦ is a unitary, by the mean ergodic theorem

and uniform boundedness principle, {Ak − Pn}∞k=1 is bounded. It is clear that
E := {f ∈ H : limk→∞(Ak − Pn)f = 0} is a closed subspace of H. We now claim
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that m−s ∈ E for each m ≥ 1. In fact, we note that

Akm
−s =

1

k
(niτm−s−iτ + ni2τm−s−i2τ + · · ·+ nikτm−s−ikτ )

=
1

k

[
(
n

m
)iτ + (

n

m
)i2τ + · · ·+ (

n

m
)ikτ
]
m−s.

If m = n, then Akn
−s = n−s, and thus n−s ∈ E. If m 6= n, then θ :=

(τ log(n/m))/2π is irrational by our hypothesis. Thus by Lemma 4.3 for θ and
f(α) = eiα2π, we have

lim
k→∞

1

k

[
(
n

m
)iτ + (

n

m
)i2τ + · · ·+ (

n

m
)ikτ
]

= 0,

which implies that m−s ∈ E. Consequently, E contains m−s for every m ≥ 1.
Thus E = H, which is equivalent to say Pn is the strong limit of {Ak}. Since
Ak is in the algebra U for each k ≥ 1, it follows that Pn is in the algebra for
n = 1, 2, · · · . �

Theorem 4.5. If Φ is an irrational c0-symbol, then every strongly closed unital
algebra of operators on H containing CΦ is reflexive.

Proof. Let U be any strongly closed unital algebra of operators on H containing
CΦ. Then U contains Pn for n = 1, 2, · · · by Theorem 4.4. Suppose B ∈ B(H)
such that LatU ⊆ LatB. For arbitrary n, Bn−s is in the cyclic subspace of U
determined by n−s, and thus there is a sequence {Ak} in U such that Bn−s =
limk→∞Akn

−s. It follows that BPn is the strong limit of {AkPn}∞k=1, and hence
BPn ∈ U .

Let σk be the k-th Cesàro mean of the series
∑∞

m=1 Pm, i.e., σk =
∑k

m=1
k+1−m
k+1

Pm.

Let P̃N be the N -th partial sum of
∑∞

m=1 Pm, i.e., P̃N =
∑N

m=1 Pm. It is clear that

all σk (k ≥ 1) and P̃N (N ≥ 1) are in U . Note that limk→∞ σkP = P for any poly-
nomial P with respect to {n−s}∞n=1. Also for any fixed f(s) =

∑∞
k=1 akk

−s ∈ H,
and ε > 0, it is trivial that there is an integer N0 such that for each N ≥
N0, we have ‖P̃Nf − f‖ < ε/2. Further we can find an integer kN such that

‖σkN P̃Nf − P̃Nf‖ < ε/2. Therefore σkN P̃Nf converges to f in H as N → ∞. It

follows that BσkN P̃N converges strongly to B in H. Since BσkN ∈ U and P̃N ∈ U ,

then BσkN P̃N ∈ U . And thus B ∈ U , which completes the proof. �

Next we give a strongly closed unital algebra of operators on H generated by
certain sets of composition operators such that the non-trivial common invariant
subspace of the algebra is C. For convenience, we will denote by Prime the set
of all prime numbers.

Theorem 4.6. Let Φ be an irrational c0-symbol, and Γ(s) = c1 +
∑

p∈Prime cpp
−s

a c0-symbol with cp 6= 0. Then the strongly closed unital algebra of operators on
H generated by CΦ and CΓ is Alg {{0},C,H}.
Proof. Let U denote the strongly closed unital algebra of operators on H gen-
erated by CΦ and CΓ, and let M be an arbitrary invariant subspace of U . If
M 6= {0}, then we claim that M must contain the constants C. In fact, since
M 6= {0}, then there is a non-zero function f(s) =

∑∞
k=1 akk

−s ∈ M. If a1 6= 0,
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then a1 = P1f(s) ∈ M, i.e., C ⊆ M. If a1 = 0, then f(s) =
∑∞

k=` akk
−s for

a` 6= 0 and ` ≥ 2. Since M is invariant under P`, then `−s ∈M. Due to

CΓ`
−s = `−Γ(s) = `−c1`−

∑
p∈Prime cpp

−s

= `−c1
∏

p∈Prime

(
1 +

∞∑
j=1

(−cp log `)j

j!
p−js

)
,

we have P1CΓ`
−s = `−c1 6= 0. Again CΓM⊆M implies that P1CΓM⊆ P1M⊆

M. Therefore `−c1 ∈M, which implies the claim.
Moreover, ifM 6= C, then there exists some n0 ≥ 2 such that n−s0 ∈M. Since

Pn ∈ U for every n ≥ 1 by Theorem 4.4 and CΓM⊆M, then PnCΓn
−s
0 ∈M for

all n ≥ 1. We know that each positive integer n can be uniquely expressed as

n = pα1
1 p

α2
2 · · · p

α`
` ,

where p1 < p2 < · · · < p` ∈ Prime and α1, α2, · · · , α` are positive integers.
Because

CΓn
−s
0 = n−c10

∏
p∈Prime

(
1 +

∞∑
j=1

(−cp log n0)j

j!
p−js

)
, (4.1)

we can get the coefficient of n−s in (4.1) as follows

an := n−c10

(−cp1 log n0)α1

α1!

(−cp2 log n0)α2

α2!
· · · (−cp` log n0)α`

α`!
.

It is clear that an 6= 0. Note that PnCΓn
−s
0 = ann

−s, which gives that n−s ∈
M. Thus span {n−s : n ≥ 1} ⊆ M and M = H. We now get that LatU =
{{0},C,H}. By Theorem 4.5, we know that the algebra U is reflexive. This
immediately gives that U = Alg LatU = Alg {{0},C,H}, which completes the
proof. �

Interestingly, the following shows that the subalgebra of B(H) generated by
certain sets of composition operators and their adjoints is B(H).

Corollary 4.7. Let Φ be an irrational c0-symbol, and let Γ(s) =
∑∞

k=1 ckk
−s be

a c0-symbol. Then the strongly closed unital algebra of operators on H generated
by CΦ, CΓ and their adjoints equals B(H).

Proof. Let U be the strongly closed unital algebra of operators on H generated
by CΦ, CΓ and their adjoints, and let M 6= {0} be any invariant subspace of
U . By the proof of Theorem 4.6, we know that C ⊆ M . Since M is invariant
under C∗Γ, C∗Γ1 ∈M . Again C∗Γ1 =

∑∞
n=1 n

−c1n−s by Lemma 3.1 and PnC
∗
Γ1 ∈M

for all n ≥ 1 by Theorem 4.4, we have n−s ∈ M for all n ≥ 1, i.e., H = M .
Therefore LatU = {{0},H}. Corollary 8.5 in [13] now gives the desired assertion
U = B(H). �

Algebraic composition operators on Hardy and Bergman spaces were studied by
many authors. Especially, Mahvidi showed that the non-existence of non-trivial
algebraic composition operators on H2(D) by using their invariant subspaces in
[8]. At the end of this section we extend Mahvidi’s result to the Dirichlet series
case.
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Theorem 4.8. Let Φ(s) = c0s +
∑∞

k=1 ckk
−s be a c0-symbol. Then on H the

following statements hold.
(1) If c0 = 0 and {Φ′(α)n}∞n=0 is infinite for the fixed point α of Φ in C1/2, then

CΦ is not algebraic.
(2) If c0 = 1 and c1 6= 0, then CΦ is not algebraic.
(3) If c0 > 1, then CΦ is not algebraic.

Proof. (1) If CΦ is algebraic on H, then so is C∗Φ. Thus there exists a polynomial
P (z) = zn + pn−1z

n−1 + · · ·+ p1z + p0 such that P (C∗Φ) = 0 on H. So

(C∗Φ)nK [m]
α + pn−1(C∗Φ)n−1K [m]

α + · · ·+ p1C
∗
ΦK

[m]
α + p0K

[m]
α = 0 (4.2)

for each m ≥ 0, where K
[m]
α denotes the m-th derivative of Kα. Since the coeffi-

cient of K
[m]
α in the expansion of the left hand side of the equation (4.2) is(

[Φ′(α)]m
)n

+ pn−1

(
[Φ′(α)]m

)n−1
+ · · ·+ p1[Φ′(α)]m + p0

for each m ≥ 0. So [Φ′(α)]m for all m ≥ 0 are the roots of the equation P (z) = 0.
But the polynomial P (z) has at most n zeros, which leads to a contradiction.
Therefore CΦ is not algebraic.

(2) If c0 = 1, then Φn(s) = s+nc1+
∑∞

k=2 c
(n)
k k−s with some c

(n)
k ∈ C (k ≥ 2) for

each n ≥ 2, where the series
∑∞

k=2 c
(n)
k k−s converges uniformly in some (possibly

remote) half-plane. Suppose that there is a polynomial P (z) = zn + pn−1z
n−1 +

· · ·+ p1z + p0 such that P (CΦ) = 0 on H, then

m−Φn(s) + pn−1m
−Φn−1(s) + · · ·+ p1m

−Φ(s) + p0m
−s = 0. (4.3)

Note that

m−Φj(s) = m−sm−jc1
∞∏
k=2

(
1 +

∞∑
i=1

(−c(j)
k logm)i

i!
k−is

)
in some (possibly remote) half-plane for m ≥ 1 and j ≥ 1. Considering the
coefficient of m−s in the left hand side of (4.3), we get

m−nc1 + pn−1m
−(n−1)c1 + · · ·+ p1m

−c1 + p0 = 0,

that is, m−c1 is a root of P (z) = 0. Then by the arbitrariness of m, the polynomial
P has zeros 1, 2−c1 , 3−c1 , · · · ,m−c1 , · · · . Note that, if Re c1 6= 0, then m−c1 are
mutually distinct for all m ≥ 1; if Re c1 = 0 but Im c1 6= 0, then m−c1 =
m−iIm c1 = e−iIm c1 logm are dense in the unit circle, by Lemma 3.5 in [7]. In short,
the polynomial P has infinitely many zeros whenever c1 6= 0. This contradiction
implies that CΦ is not algebraic.

(3) If c0 > 1, by the proof of Theorem 4.1, (C∗Φ)nf converges weakly to PCf in
H. Thus

〈C∗Φn
Kw, g〉 → 〈PCKw, g〉

for each fixed w ∈ C1/2 and g ∈ H, as n→∞. Note that PCKw(s) = 1. Thus

m−Φn(w) = 〈KΦn(w),m
−s〉 → 〈1,m−s〉 =

{
1, m = 1

0, m > 1
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as n → ∞. Therefore the sequence {Re Φn(w)}∞n=0 tends to +∞. If CΦ on H is
algebraic, then so is C∗Φ. Hence, all cyclic subspaces of C∗Φ are finite dimension.
But the cyclic subspace span {(C∗Φ)nKw : n ≥ 0} = span {KΦn(w) : n ≥ 0} of C∗Φ
is infinite dimension, because {Kw} are linearly independent for w ∈ C1/2 with
distinct real parts. This contradiction completes the proof. �
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5. C. Finet, H. Queffélec and A. Volberg, Compactness of composition operators on a Hilbert
space of Dirichlet series, J. Funct. Anal.211 (2004), 271–287.

6. J. Gordon and H. Hedenmalm, The composition operators on the space of Dirichlet series
with square summable coefficients, Michigan Math. J.46 (1999), 313–329.

7. B. Hu, L. Khoi and R. Zhao, Topological structure of the space of composition operators on
Hilbert spaces of Dirichlet series, preprint.

8. A. Mahvidi, Invariant subspaces of composition operators, J. Operator Theory 46 (2001),
453–476.

9. V. Matache, On the minimal invariant subspaces of the hyperbolic composition operator,
Proc. Amer. Math. Soc. 119 (1993), 837–841.

10. E. Nordgren, P. Rosenthal and F. Wintrobe, Invertible composition operators on Hp, J.
Funct. Anal. 73 (1978), 324–344.

11. K. Peterson, Ergodic Theory, Cambridge University Press, Cambridge, 1983.
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