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Abstract. It is known that the spatial product of two product systems is
intrinsic. Here we extend this result by analyzing subsystems of the tensor
product of product systems. A relation with cluster systems as introduced by
B.V.R. Bhat, M. Lindsay and M. Mukherjee, is established.

1. Introduction and preliminaries

By a product system, we mean a measurable family of Hilbert spaces (Et)t>0

with associative identification Es ⊗ Et = Es+t. Arveson [1] associated with every
E0-semigroup, a product system of Hilbert spaces. He showed that E0-semigroups
are classified by their product systems up to cocycle conjugacy. Product systems
are classified as spatial and non-spatial depending on whether or not there is a
unit in the product system, where a unit is a measurable family of sections (us)s>0,
such that us ∈ Es, s > 0 and us+t = us⊗ ut, s, t > 0 under the identification. The
spatial product system has an index and the index is additive with respect to
the tensor product of product systems. Much of the theory has a counterpart in
the theory of product system of Hilbert modules ([8], [5]). Though there is no
natural tensor product in the category of product systems of Hilbert modules.
To overcome this, Skeide ([11]) introduced the notion of spatial product in the
category of spatial product systems of Hilbert modules for which the index is
additive with respect to the spatial product.

For two product systems of Hilbert spaces E = (Et)t>0 and F = (Ft)t>0 with
reference units u = (ut)t>0 and v = (vt)t>0 respectively, their spatial product can
be identified with the subsystem of the tensor product generated by subsystems
(ut⊗Ft)t>0 and (Et⊗ vt)t>0. This is exactly the same description of the product
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systems arising from the Powers sum of two E0-semigroups. See [10], [3]. This
raises another question, namely, whether the spatial product is the tensor product
or not. This has been answered in the negative sense by Powers [9].

The spatial structure of a spatial product system depends on the reference
unit. Indeed, Tsirelson ([12]) showed that not all spatial product systems are
transitive. I.e. there are spatial product systems in which given two normalized
units, there may not exist any automorphism of the product system sending one
unit to another. This immediately raises the question whether different choice of
reference units yields isomorphic product systems or not. In [2], it was shown af-
firmatively that the spatial product of two spatial product systems is independent
of the choice of the reference units. See also [3], [7].

In this paper, we show the following : given two product systems E and F and
their subsystemsM and N respectively, the subsystem generated by E ⊗N and
M⊗F is same as the subsystem generated by E ⊗ Ň and M̌⊗F within E ⊗F .
Here M̌ and Ň are respectively the cluster systems of M and N in the sense of
[4]. As a special case, we have the result of [2] namely spatial products of product
systems are intrinsic.

Remark 1.1. It should be noted that some of these results also follow from the
theory of random sets. See Proposition 5.3, [7] for more details. See also Proposi-
tion 3.33, [6] and the identification with the cluster construction given in Theorem
27, [4]. But here we give a plain Hilbert space proof of this result.

2. Product Systems

Let us start with some definitions.

Definition 2.1. A continuous tensor product system of Hilbert spaces (briefly:
product system) is a measurable family E = (Et)t>0 of separable Hilbert spaces
endowed with a measurable family of unitaries Vs,t : Es⊗Et → Es+t for all s, t > 0,
which fulfils for all r, s, t > 0

Vr,s+t ◦ (1Er ⊗ Vs,t) = Vr+s,t ◦ (Vr,s ⊗ 1Et).

Definition 2.2. A unit u of a product system is a measurable non-zero section
(ut)t>0 through (Et)t>0 which satisfies for all s, t > 0

Vs,t(us ⊗ ut) = us+t.

A unit is said to be normalized if ‖ut‖ = 1 for all t > 0.

Definition 2.3. A product system G with associated unitaries Us,t is said to be a
product subsystem of E if Gt ⊂ Et for all t > 0 and Us,t = Vs,t|Gs⊗Gt for all s, t > 0.

Remark 2.4. We do not make the definition of measurability more explicit through-
out this paper. For a thorough discussion, see Section 7, [6].

Definition 2.5. A product system E is said to be spatial if E has a unit.

For a spatial product system E , we denote by EI to be the smallest product
subsystem of E containing all units of E .

Definition 2.6. A product system E is said to have type I if EI = E .



174 M. MUKHERJEE

Given two product subsystems E1 and E2 of a product system E , we denote by
E1

∨
E2 to be the smallest product subsystem of E containing E1 and E2.

3. Roots and Cluster Systems

The following definition is adopted from [4].

Definition 3.1. Let E be a spatial product system and u be a unit of E . A
measurable section (at)t>0 of E is said to be a root of u if

as+t = as ⊗ ut + us ⊗ at , 〈at, ut〉 = 0 , ∀s, t > 0.

Note that for t1, t2, · · · , tn > 0 with
∑n

i=1 ti = t, the following identity holds :
at =

∑n
i=1 y

i, where yi = ut1 ⊗ ut2 ⊗ · · · ⊗ uti−1
⊗ ati ⊗ uti+1

⊗ · · · ⊗ utn . Also note
that yi and yj are orthogonal for i 6= j. Hence ‖at‖2 =

∑n
i=1 ‖yi‖2. Considering

the symmetric Fock product system Γsym(L2[0, t], K), it is shown in Proposition
12, [4] that the roots of the vacuum unit are given by cχ[0,t], c ∈ K. Note that
the vacuum unit and cχ[0,t], c ∈ K generates the Fock product system and as a
consequence we have the following result.

Proposition 3.2 (Corollary 15, [4]). Suppose E is a spatial product system and
u is a unit. The product system generated by the unit u and all roots of u is EI .

Now we recall the notion of cluster system of a product system introduced in
[4]. Suppose (E , B) is a product system and (F , B|F) is a product subsystem.
Define F̃t by

F̃t = span{x⊗ y : x ∈ Er 	Fr, y ∈ Et−r 	Ft−r, for some r, 0 < r < t}.

Set F ′t = Et 	 F̃t. Denote by F̌ , the product subsystem generated by F ′. We
call F̌ the cluster of F . The name ‘cluster’ comes from its connection to random
sets ([6]) which we now describe briefly. Suppose G is a product subsystem of a
product system E . Then for every interval [s, t], 0 < s < t < 1, we may identify,
E1 ' Es ⊗ Et−s ⊗ E1−t. Let P Gs,t, 0 ≤ s ≤ t ≤ 1, be the family of commuting
projections in B(E1) defined by

P Gs,t = PEs⊗Gt−s⊗E1−t = 1Es ⊗ PGt−s ⊗ 1E1−t ,

where PK denotes the projection onto the subspace K. Theorem 3.16, [6] shows
that any product subsystem G corresponds to a unique measure type [µη] (η is a
faithful state on B(E1)) on the closed subsets of [0, 1] such that the prescription

χ{Z:Z∩[s,t]=∅} → P Gs,t, ((s, t) ∈ [0, 1])

extends to an injective normal representation JGη of L∞(µGη ) on E1. The mapping
‘cluster’ which sends a closed set to its limit points is a measurable map on this
space. More precisely, for any Z ⊂ [0, 1], denote Ž the set of its cluster points:

Ž = {t ∈ Z : t ∈ Z \ {t}}.
Then from Theorem 27, [4], we have

JGη (χ{Z:Ž∩[s,t]=∅}) = P Ǧs,t, ((s, t) ∈ [0, 1]).
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4. Subsystems of tensor product and their relation to cluster
systems

Our aim is to prove the following theorem.

Theorem 4.1. Suppose E and F are two product systems and also suppose M
and N are product subsystems of E and F respectively. Then within E ⊗ F ,

E ⊗ N
∨
M⊗F = E ⊗ Ň

∨
M̌ ⊗ F .

The proof we postpone to the very end, after having illustrated the immediate
consequences.

Let us define inductively Mn+1 = M̌n, where M1 = M̌. Denote by M∞ =∨
nMn. Similarly for the subsystem N . Then we have the following corollary.

Corollary 4.2. IfM∞ = E or N∞ = F , then

E ⊗ N
∨
M⊗F = E ⊗ F .

For product system of Hilbert spaces, the spatial product [11] can be defined
as a subsystem of the tensor product in the following way. See also [2].

Definition 4.3. Suppose E and F are two spatial product systems with normal-
ized units u and v respectively. Then their spatial product is defined as

E u⊗v F := E ⊗ v
∨

u⊗F ⊂ E ⊗ F .

The following corollary is the main result of [2].

Corollary 4.4. Suppose E and F are two spatial product systems with normalized
units u and v respectively. Then

E u⊗v F = (E ⊗ F I)
∨

(EI ⊗F)

Proof. It is enough to show EI ⊂ ǔ. For any root a of u, it is easy to see that
a ∈ ǔ. Now the result follows from Proposition 3.2.

�

For each t ∈ R+, we set

Jt = {(t1, t2, . . . , tn) : ti > 0,
n∑
i=1

ti = t, n ≥ 1}.

For s = (s1, s2, . . . , sm) ∈ Js, and t = (t1, t2, . . . , tn) ∈ Jt we define s ^ t :=
(s1, s2, . . . , sm, t1, t2, . . . , tn) ∈ Js+t. On Jt, define a partial order t ≥ s =
(s1, s2, . . . , sm) if for each i, (1 ≤ i ≤ m) there exists (unique) si ∈ Jsi such
that t = s1 ^ s2 ^ · · ·^ sm. The order relation ≥ makes Jt a directed set, i.e.
given s, t ∈ Jt, there exists r ∈ Jt such that r ≥ s, t.

The key of the proof of our main theorem is the following lemma.

Lemma 4.5. Suppose (E ,W ) is a product system and F is a product subsystem
of (E ,W ). Set Xt = F ′t 	Ft, t > 0. Then

Fs ⊗Xt ⊕Xs ⊗Ft = Xs+t.
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Proof. For t = (t1, t2, · · · , tn) ∈ Jt, we denote At =
n⊕
i=1

Ft1⊗· · ·⊗F⊥ti ⊗· · ·⊗Ftn .

Claim 1: Xt = ∩
t∈Jt
At.

Proof of claim 1: Suppose z ∈ Er	Fr and w ∈ Et−r	Ft−r for some 0 < r < t.
Then z⊗w ∈ A⊥t where t = (r, t− r) ∈ Jt. Therefore F̃t is orthogonal to ∩

t∈Jt
At.

We get the right hand side is a subspace of F ′t. Also note that for each t ∈ Jt, At

is orthogonal to Ft. Hence Xt ⊃ ∩
t∈Jt
At. Now for the reverse inclusion, note that

Xt = ∩
0<r<t

Br, where Br = Fr⊗F⊥t−r⊕F⊥r ⊕Ft−r. For any t = (t1, t2, · · · , tn) ∈ Jt,
with n ≥ 2, set r1 = t1, r2 = t1 + t2, · · · , rn−1 = t1 + t2 + · · ·+ tn−1. Then the claim

will follow if we show that
n−1
∩
i=1
Bri = At. To show that we will use induction on n.

For n = 2, the result is obvious. Assume the result is true for n = k ≥ 2. Suppose
t = (t1, t2, · · · , tk+1) ∈ Jt be an arbitrary element. Set t′ = (t1, t2, · · · , tk+1) be

an arbitrary element. Then t′ ∈ Jt. By the induction hypothesis,
k−1
∩
i=1
Bri = At′ .

Then

k
∩
i=1
Bri = At′ ∩ Brk

= [
k−1⊕
i=1

Ft1 ⊗ · · · ⊗ F⊥ti ⊗ · · · ⊗ Ftk+tk+1

⊕
Ft1 ⊗ · · · ⊗ Ftk−1

⊗F⊥tk+tk+1
]⋂

[Ft1+t2+···+tk ⊗F⊥tk+1

⊕
F⊥t1+t2+···+tk ⊗Ftk+1

].

Decomposing further F⊥tk+tk+1
and F⊥t1+t2+···+tk , we see that only terms which

will survive is of the form Ft1 ⊗ · · · ⊗ F⊥ti ⊗ · · · ⊗ Ftk+1
, 1 ≤ i ≤ k + 1. Hence

k
∩
i=1
Bri =

k+1⊕
i=1

Ft1 ⊗ · · · ⊗ F⊥ti ⊗ · · · ⊗ Ftk+1
= At.

Claim 2 : For s ≤ t, As ⊃ At.
Proof of claim 2: For s = (s1, s2, · · · , sn), t = s1 ^ · · · ^ sn. We note that

At =
n⊕
i=1

Fs1 ⊗ · · · ⊗ Asi ⊗ · · · ⊗ Fsn and As =
n⊕
i=1

Fs1 ⊗ · · · ⊗ F⊥si ⊗ · · · ⊗ Fsn .

As F⊥si ⊃ Asi for all i = 1, 2, · · · , n, this proves the claim.
It follows that {At : t ∈ Jt} forms an inverse system under inclusion maps and

we have Xt = lim←−Jt At.

For s ∈ Js, t ∈ Jt, we observe that Fs ⊗ At ⊕ As ⊗ Ft = As^t. As inverse
limit passes through taking tensor product and direct sums with other subspaces
we get,
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Fs ⊗Xt ⊕Xs ⊗Ft = lim←−
Jt

Fs ⊗ At ⊕ lim←−
Js

As ⊗Ft

= lim←−
Js^Jt

Fs ⊗At ⊕ As ⊗Ft

= lim←−
Js^Jt

As^t

= Xs+t. (4.1)

In the last step of Eq. (4.1), we use that Js ^ Jt := {s ^ t : s ∈ Js, t ∈ Jt} is
a cofinal subset of Js+t, i.e. given r ∈ Js+t, there are s ∈ Js and t ∈ Jt such that
s ^ t ≥ r.

�

Proof of Theorem 4.1 : It is enough to prove E ⊗ Ň ⊂ E ⊗ N
∨
M⊗F .

By symmetry, the result follows. Fix the time point t = 1. It is enough to show
that for z ∈ E1, and for η ∈ Y1 := N ′1 	N1, z ⊗ η ∈ ((E ⊗ N )

∨
(M⊗F))1. For

other time point, proof goes identically. From Proposition 3.18, [6], we know that
(s, t)→ PMs,t is jointly SOT continuous and the following holds : for every x ∈ E1,

‖PMs,s+εx − x‖ → 0 and ‖PMt−ε,tx − x‖ → 0 as ε ↓ 0. So in the compact simplex

{0 ≤ s ≤ t ≤ 1}, it is uniformly continuous. i.e. for every x ∈ E1, ‖PMs,t x−x‖ → 0

as (t−s)→ 0. For n ≥ 1, we have PM(i−1)
n

, i
n

= 1E 1
n

⊗· · ·⊗1E 1
n

⊗PM 1
n

⊗1E 1
n

⊗· · ·⊗1E 1
n

,

where PM 1
n

is on the i-th place. Let ε > 0 be given. ChooseN such that for all n ≥
N, ‖z−PMi−1

n
, i
n

z‖ < ε
‖η‖ , for every i = 1, 2, · · · , n. From Lemma 4.5, the following

decomposition holds : Y1 = ⊕ni=1Zi, where Zi = N 1
n
⊗N 1

n
⊗ · · · ⊗Y 1

n
⊗ · · · ⊗N 1

n

with Y 1
n

is on the i-th place. Let η = ⊕iηi be the corresponding (orthogonal)

decomposition. Note that ηi is in the closed linear span of elementary tensors
of the form P = p1 ⊗ p2 ⊗ · · · ⊗ q ⊗ · · · ⊗ pn with pj ∈ N 1

n
for j 6= i and

q ∈ Y 1
n
. Also PMi−1

n
, i
n

z is in the closed linear span of elementary tensors of the

form R = w1⊗w2⊗ · · · ⊗ v⊗ · · · ⊗wn with wj ∈ E 1
n

for j 6= i and v ∈M 1
n
. Now

note that

R⊗ P = (w1 ⊗ · · · ⊗ v ⊗ · · · ⊗ wn)⊗ (p1 ⊗ · · · ⊗ q ⊗ · · · ⊗ pn)

= (w1 ⊗ p1)⊗ · · · ⊗ (v ⊗ q)⊗ · · · ⊗ (wn ⊗ pn)

∈ ((E ⊗ N )
∨

(M⊗F))1.

This gives us PMi−1
n
, i
n

z ⊗ ηi ∈ ((E ⊗ N )
∨

(M⊗F))1. Now

‖z ⊗ η −
n∑
i=1

PMi−1
n
, i
n
z ⊗ ηi‖2 =

n∑
i=1

‖(z − PMi−1
n
, i
n
z)⊗ ηi‖2

<
n∑
i=1

ε2‖ηi‖2

‖η‖2

< ε2.
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The result follows as the subspace is closed. �
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