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Abstract. We find necessary and sufficient conditions for the validity of
weighted Hardy-type inequalities for a class of semiadditive operators.

1. Introduction

Let I = (0,∞), 0 < θ, q, p ≤ ∞ and 1
p

+ 1
p′

= 1. Suppose that w, u and v are

non-negative functions such that they, together with v1−p
′
, are locally integrable

on I.
We introduce the following operators:

T+
θ f(x) =

 x∫
0

w(t)

∣∣∣∣∣∣
x∫
t

f(s)ds

∣∣∣∣∣∣
θ

dt


1
θ

, T−θ f(x) =

 ∞∫
x

w(t)

∣∣∣∣∣∣
t∫

x

f(s)ds

∣∣∣∣∣∣
θ

dt


1
θ

.

The operators T+
θ and T−θ are superlinear for 0 < θ < 1 and sublinear for θ > 1.

These operators become linear for θ = 1.
We consider the inequalities: ∞∫

0

u(x)
∣∣T±θ f(x)

∣∣q dx
 1

q

≤ C±

 ∞∫
0

v(t)|f(t)|pdt

 1
p

, (1.1)

where C± are positive constants. Let us notice that the Hardy-type inequality
with the operator T+

θ is directly equivalent to the inequality with the operator
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T−θ , via a simple change of variable in the integrals. Moreover, it suffices to study
(1.1) for f ≥ 0.

Let

∆+
θ g(x) =

 x∫
0

w(t) |g(x)− g(t)|θ dt

 1
θ

, ∆−θ g(x) =

 ∞∫
x

w(t) |g(t)− g(x)|θ dt

 1
θ

be the θ-mean deviations with the weight w of the value of a function g from g(x)
on the intervals (0, x) and (x,∞), respectively. Then inequality (1.1) is equivalent
to the following inequality: ∞∫

0

u(x)
∣∣∆±θ g(x)

∣∣q dx
 1

q

≤ C±

 ∞∫
0

v(t)|g′(t)|pdt

 1
p

.

Inequality (1.1) was investigated in [5], where necessary and sufficient condi-
tions for its validity were found for 1 ≤ p ≤ q <∞ and 0 < θ <∞.

In this work we study the case 0 < q < p, p ≥ 1 and 0 < θ <∞. Here we prove
the sufficiency part of the provided case and the general v. Necessity is derived
for the case 0 < θ, q < ∞, max{θ, q} < p, p > 1 and the general v. Moreover,
necessity is also derived for the case max{θ, q} < 1 = p and v ≡ 1.

For (α, β) ⊂ I we assume

A+(α, β) = sup
α<x<β

 x∫
α

w(t)dt

 1
θ
 β∫

x

v1−p
′
(s)ds


1
p′

,

A−(α, β) = sup
α<x<β

 β∫
x

w(t)dt


1
θ
 x∫
α

v1−p
′
(s)ds

 1
p′

,

B+(α, β) =


β∫
α

w(t)

 t∫
α

w(s)ds


θ
p−θ
 β∫

t

v1−p
′
(s)ds


θ(p−1)
p−θ

dt


p−θ
pθ

,

B−(α, β) =

 β∫
α

w(t)

 β∫
t

w(s)ds


θ
p−θ
 t∫
α

v1−p
′
(s)ds


θ(p−1)
p−θ

dt


p−θ
pθ

,

D+(α, β) =

 β∫
α

w(t)

 t∫
α

w(s)ds


θ

1−θ

(v(t, β))
θ
θ−1 dt


1−θ
θ

,
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D−(α, β) =

 β∫
α

w(t)

 β∫
t

w(s)ds


θ

1−θ

(v(α, t))
θ
θ−1 dt


1−θ
θ

,

where v(α, β) = ess inf
α<t<β

v(t).

Let H+(α, β) and H−(α, β) be the best constants of the following Hardy in-
equalities β∫

α

w(t)

∣∣∣∣∣∣
β∫
t

f(s)ds

∣∣∣∣∣∣
θ

dt


1
θ

≤ H+(α, β)

 β∫
α

v(t)|f(t)|pdt


1
p

,

 β∫
α

w(t)

∣∣∣∣∣∣
t∫

α

f(s)ds

∣∣∣∣∣∣
θ

dt


1
θ

≤ H−(α, β)

 β∫
α

v(t)|f(t)|pdt


1
p

,

respectively.
From the results of the works [4] and [8] (see also [5]) for Hardy inequalities we

have
Lemma A. (i) If 1 ≤ p ≤ θ <∞, then

A±(α, β) ≤ H±(α, β) ≤ p
1
θ (p′)

1
p′A±(α, β). (1.2)

(ii) If 0 < θ < p and 1 < p <∞, then

(p′)
1
p′ θ

1
p

(
1− θ

p

)
B±(α, β) ≤ H±(α, β) ≤

(
p

p− θ

) p−θ
pθ

p
1
p (p′)

1
p′B±(α, β). (1.3)

(iii) If 0 < θ < 1 = p, then

θ(1− θ)D±(α, β) ≤ H±(α, β) ≤ (1− θ)
1−θ
θ D±(α, β). (1.4)

Since the expressions A±, B± and D± are decreasing in α and increasing in
β, then from (1.2), (1.3) and (1.4) we have that H±(α, β) are equivalent to a
decreasing function in α and equivalent to a increasing function in β. It means
that for each case (i), (ii) and (iii) there exists a constant C > 0 depending only
on p and θ such that H±(α, β) ≤ CH±(α1, β1) holds for α1 ≤ α < β ≤ β1. For

example, for the case (i) we have C = p
1
θ (p′)

1
p′ .

Denote A+(0, β) ≡ A+(β), B+(0, β) ≡ B+(β), D+(0, β) ≡ D+(β), H+(0, β) ≡
H+(β), A−(α,∞) ≡ A−(α), B−(α,∞) ≡ B−(α), D−(α,∞) ≡ D−(α) and
H−(α,∞) ≡ H−(α).

In what follows we write A � B if A ≤ CB with some constant C > 0 that
depends only on θ, q and p. The expression A ≈ B means A� B and B � A.
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2. Main results

Let

E+ =

 ∞∫
0

u(x)

 ∞∫
x

u(s)ds


q
p−q (

H+(x)
) pq
p−q dx


p−q
pq

,

E− =

 ∞∫
0

u(x)

 x∫
0

u(s)ds


p
p−q (

H−(x)
) pq
p−q dx


p−q
pq

.

Theorem 2.1. Let 0 < q < p, p ≥ 1 and 0 < θ <∞. If E± <∞, then inequality
(1.1) holds. Moreover, C± � E±, where C± > 0 is the best constant in (1.1).

Proof. Let us prove Theorem 2.1 only for the operator T+
θ . For the operator T−θ

it can be proved similarly.
In the same way as in the proof of the sufficiency part of Theorem 2.1 of [5] we

define a sequence of points {xk} ⊂ I such that

I =
⋃
k

[xk, xk+1), [xk, xk+1)
⋂

[xi, xi+1) = ∅, i 6= k, (2.1)

(T+
θ f(xk))

θ ≡
xk∫
0

w(t)

 xk∫
t

f(s)ds

θ

dt = 2θk if xk <∞, (2.2)

2θk ≤ (T+
θ f(x))θ ≡

x∫
0

w(t)

 x∫
t

f(s)ds

θ

dt < 2θ(k+1) if xk ≤ x < xk+1. (2.3)

From (2.2) and (2.3) it follows

2k−1 �

 xk∫
xk−1

w(t)

 xk∫
t

f(s)ds

θ

dt


1
θ

+

 xk−1∫
0

w(t)dt

 1
θ xk∫
xk−1

f(s)ds. (2.4)

Using (2.1), (2.2) and (2.4) as in [5] we have

L ≡
∞∫
0

u(x)
(
T+
θ f(x)

)q
dx =

∑
k

xk+1∫
xk

u(x)
(
T+
θ f(x)

)q
dx ≤ 22q

∑
k

2q(k−1)
xk+1∫
xk

u(x)dx

�
∑
k

 xk∫
xk−1

w(t)

 xk∫
t

f(s)ds

θ

dt


q
θ xk+1∫
xk

u(x)dx

+
∑
k

 xk−1∫
0

w(t)dt


q
θ
 xk∫
xk−1

f(s)ds

q xk+1∫
xk

u(x)dx = L1 + L2. (2.5)



WEIGHTED INEQUALITIES FOR A CLASS OF SEMIADDITIVE OPERATORS 159

Let us estimate L1 and L2 separately.
To estimate L1 first we use Hardy inequality, then we apply Hölder’s inequality

for sequences with the parameters p
q

and p
p−q and get

L1 ≤
∑
k

xk+1∫
xk

u(x)dx
(
H+(xk−1, xk)

)q xk∫
xk−1

v(t)fp(t)dt


q
p

≤

∑
k

 xk+1∫
xk

u(x)dx


p
p−q (

H+(xk−1, xk)
) qp
p−q


p−q
p ∑

k

xk∫
xk−1

v(t)fp(t)dt


q
p

�

∑
k

xk+1∫
xk

u(x)

 xk+1∫
x

u(s)ds


q
p−q (

H+(xk−1, xk)
) qp
p−q dx


p−q
p  ∞∫

0

v(t)fp(t)dt


q
p

�

∑
k

xk+1∫
xk

u(x)

 ∞∫
x

u(s)ds


q
p−q (

H+(0, x)
) qp
p−q dx


p−q
p  ∞∫

0

v(t)fp(t)dt


q
p

≤ (E+)q

 ∞∫
0

v(t)fp(t)dt


q
p

. (2.6)

Now, we estimate L2 for each case of Lemma A separately.
Let 1 ≤ p ≤ θ <∞. Twice using Hölder’s inequality we get

L2 ≤
∑
k

 xk−1∫
0

w(t)dt


q
θ
 xk∫
xk−1

v1−p
′
(s)ds


q
p′ xk+1∫

xk

u(x)dx

 xk∫
xk−1

v(t)fp(t)dt


q
p

≤

∑
k

 xk+1∫
xk

u(x)dx


p
p−q

 xk−1∫

0

w(t)dt

 1
θ
 xk∫
xk−1

v1−p
′
(s)ds

 1
p′


qp
p−q


p−q
p

×

∑
k

xk∫
xk−1

v(t)fp(t)dt


q
p

(2.7)
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�

∑
k

xk+1∫
xk

u(x)

 xk+1∫
x

u(s)ds


q
p−q

dx

×

 sup
0<z<xk

 z∫
0

w(t)dt

 1
θ
 xk∫

z

v1−p
′
(s)ds

 1
p′


qp
p−q


p−q
p  ∞∫

0

v(t)fp(t)dt


q
p

≤

∑
k

xk+1∫
xk

u(x)

 ∞∫
x

u(s)ds


q
p−q (

A+(x)
) qp
p−q dx


p−q
p  ∞∫

0

v(t)fp(t)dt


q
p

(due to (1.2))

�

 ∞∫
0

u(x)

 ∞∫
x

u(s)ds


q
p−q (

H+(x)
) qp
p−q dx


p−q
p  ∞∫

0

v(t)fp(t)dt


q
p

= (E+)q

 ∞∫
0

v(t)fp(t)dt


q
p

. (2.8)

Now, let 0 < θ < p and 1 < p < ∞. Starting from (2.7) and using Lemma
A(ii), we get

L2 ≤

∑
k

 xk+1∫
xk

u(x)dx


p
p−q
 xk−1∫

0

w(t)dt


qp

θ(p−q)

×

 xk∫
xk−1

v1−p
′
(s)ds


q(p−1)
p−q


p−q
p  ∞∫

0

v(t)fp(t)dt


q
p

�

∑
k

 xk+1∫
xk

u(x)dx


p
p−q
 xk−1∫

0

w(t)

 t∫
0

w(s)ds


θ
p−θ

dt

×

 xk∫
xk−1

v1−p
′
(s)ds


θ(p−1)
p−θ


q(p−θ)
θ(p−q)


p−q
p  ∞∫

0

v(t)fp(t)dt


q
p
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≤

∑
k

 xk+1∫
xk

u(x)dx


p
p−q (

B+(xk)
) pq
p−q


p−q
p  ∞∫

0

v(t)fp(t)dt


q
p

�

∑
k

xk+1∫
xk

u(x)

 ∞∫
x

u(t)dt


q
p−q (

H+(x)
) pq
p−q dx


p−q
p  ∞∫

0

v(t)fp(t)dt


q
p

≤ (E+)q

 ∞∫
0

v(t)fp(t)dt


q
p

. (2.9)

In the case 0 < θ < 1 = p we have, following (2.5),

L2 =
∑
k

 xk−1∫
0

w(t)dt


q
θ
 xk∫
xk−1

1

v(t)
v(t)f(t)dt

q xk+1∫
xk

u(x)dx

≤
∑
k

xk+1∫
xk

u(x)dx

 xk−1∫
0

w(t)dt


q
θ

(v(xk−1, xk))
−q

 xk∫
xk−1

v(t)f(t)dt

q

(since we have that q < p = 1, we use Hölder’s inequality with the parameters 1
q

and 1
1−q )

≤

∑
k

 xk+1∫
xk

u(x)dx

 1
1−q
 xk−1∫

0

w(t)dt


q

θ(1−q)

(v(xk−1, xk))
q
q−1


1−q

×

∑
k

xk∫
xk−1

v(t)f(t)dt

q

=

∑
k

 xk+1∫
xk

u(x)dx

 1
1−q

 xk−1∫

0

w(t)dt

 1
1−θ

(v(xk−1, xk))
θ
θ−1


q(1−θ)
θ(1−q)


1−q

×

 ∞∫
0

v(t)f(t)dt

q
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�

∑
k

 xk+1∫
xk

u(x)dx

 1
1−q
 xk−1∫

0

w(t)

 t∫
0

w(s)ds


θ

1−θ

× (v(t, xk))
θ
θ−1 dt

) q(1−θ)
θ(1−q)

)1−q
 ∞∫

0

v(t)f(t)dt

q

�

∑
k

xk+1∫
xk

u(x)

 xk+1∫
x

u(s)ds


q

1−q (
D+(x)

) q
1−q dx


1−q ∞∫

0

v(t)f(t)dt

q

�

 ∞∫
0

u(x)

 ∞∫
x

u(s)ds


q

1−q (
H+(x)

) q
1−q dx


1−q ∞∫

0

v(t)f(t)dt

q

= (E+)q

 ∞∫
0

v(t)f(t)dt


q
p

. (2.10)

From (2.5), (2.6), (2.8), (2.9) and (2.10) it follows that (1.1) holds with the
estimate C+ � E+ for the best constant C+ > 0 in (1.1). The proof of Theorem
2.1 is complete. �

Let

F+ =

 ∞∫
0

u(x)

 ∞∫
x

u(s)ds


q
p−q (

B+(x)
) pq
p−q dx


p−q
pq

,

F− =

 ∞∫
0

u(x)

 x∫
0

u(s)ds


p
p−q (

B−(x)
) pq
p−q dx


p−q
pq

.

Theorem 2.2. Let 0 < θ, q < ∞, max{θ, q} < p and p > 1. Then inequality
(1.1) holds if and only if E± < ∞. Moreover, E± ≈ C±, where C± > 0 is the
best constant in (1.1).

Proof. The sufficiency follows from Theorem 2.1.
We prove the necessity for the operator T+

θ . For the operator T−θ it can be
proved analogously. Suppose that inequality (1.1) holds for T+

θ with the best
constant C+ > 0. It suffices to prove that F+ � C+ since in the case max{θ, q} <
p and p > 1 we have that F± ≈ E±, by Lemma A. We consider two cases q ≤ θ
and q > θ.
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First we consider the case q ≤ θ. Let 0 < y < z <∞. Due to local integrability
of the functions w and v1−p

′
on I the following function

F (x) ≡ Fy(x) =

x∫
y

w(t)

 t∫
y

w(s)ds


θ
p−θ
 x∫

t

v1−p
′
(s)ds


θ(p−1)
p−θ

dt

=
(
B+(y, x)

) pθ
p−θ

is defined for all x > y.
The function F (x) for any τ > y is absolutely continuous on the interval [y, τ ].

Therefore, its derivative

F ′(x) =
θ(p− 1)

p− θ

x∫
y

w(t)

 t∫
y

w(s)ds


θ
p−θ
 x∫

t

v1−p
′
(s)ds


p(θ−1)
p−θ

dt v1−p
′
(x)

≡ θ(p− 1)

p− θ
g(x)v1−p

′
(x)

is integrable on the interval [y, τ ] for any τ > y. Here

g(x) =

x∫
y

w(t)

 t∫
y

w(s)ds


θ
p−θ
 x∫

t

v1−p
′
(s)ds


p(θ−1)
p−θ

dt.

We introduce the function

fy,z(t) = χ(y,z)(t)

 z∫
t

u(x)dx

 1
p−q

(F (t))
q−θ
θ(p−q) (g(t))

1
p v1−p

′
(t),

where χ(y,z)(·) is the characteristic function of the interval (y, z). Then due to

local integrability of the functions u, w, v1−p
′

and gv1−p
′

we have ∞∫
0

v(t)fpy,z(t)dt

 1
p

=

 z∫
y

 z∫
t

u(x)dx


p
p−q

(F (t))
p(q−θ)
θ(p−q) g(t)v1−p

′
(t)dt


1
p

<∞.

From the last expression by integration by parts we get ∞∫
0

v(t)fpy,z(t)dt

 1
p

≈

 z∫
y

u(t)

 z∫
t

u(x)dx


q
p−q

(F (t))
q(p−θ)
θ(p−q) dt


1
p

. (2.11)

We estimate the left side of (1.1) for f = fy,z from below. For this purpose
first we estimate the expression T+

θ fy,z(x) for a fixed x ∈ (y, z) from below. Using

monotonicity of the functions (F (t))
q−θ
θ(p−q) and

(
z∫
t

u(x)dx

) 1
p−q

for t ∈ (y, z) we
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have (
T+
θ fy,z(x)

)θ
=

x∫
y

w(t)

 x∫
t

fy,z(s)ds

θ

dt

=

x∫
y

w(t)

 x∫
t

 z∫
s

u(t)dt

 1
p−q

(F (s))
q−θ
θ(p−q) g

1
p (s)v1−p

′
(s)ds


θ

dt

≥

 z∫
x

u(t)dt

 θ
p−q

(F (x))
q−θ
p−q

x∫
y

w(t)

 x∫
t

g
1
p (s)v1−p

′
(s)ds

θ

dt. (2.12)

We estimate the integral
x∫
t

g
1
p (s)v1−p

′
(s)ds separately:

x∫
t

g
1
p (s)v1−p

′
(s)ds

=

x∫
t

 s∫
y

w(ς)

 ς∫
y

w(τ)dτ

 θ
p−θ
 s∫

ς

v1−p
′
(τ)dτ


p(θ−1)
p−θ

dς


1
p

v1−p
′
(s)ds

≥
x∫
t

 t∫
y

w(ς)

 ς∫
y

w(τ)dτ

 θ
p−θ
 s∫

t

v1−p
′
(τ)dτ


p(θ−1)
p−θ

dς


1
p

v1−p
′
(s)ds

≈

 t∫
y

w(τ)dτ


1
p−θ x∫

t

 s∫
t

v1−p
′
(τ)dτ

 θ−1
p−θ

v1−p
′
(s)ds

≈

 t∫
y

w(τ)dτ


1
p−θ
 x∫

t

v1−p
′
(τ)dτ


p−1
p−θ

. (2.13)

From (2.12) and (2.13) for x ∈ (y, z) we have

T+
θ fy,z(x)�

 z∫
x

u(t)dt

 1
p−q

(F (x))
q−θ
θ(p−q)

 x∫
y

w(t)

 t∫
y

w(τ)dτ


θ
p−θ
 x∫

t

v1−p
′
(τ)dτ


θ(p−1)
p−θ

dt


1
θ
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=

 z∫
x

u(t)dt

 1
p−q

(F (x))
p−θ
θ(p−q) .

Then  ∞∫
0

u(x)
(
T+
θ fy,z(x)

)q
dx

 1
q

≥

 z∫
y

u(x)
(
T+
θ fy,z(x)

)q
dx

 1
q

�

 z∫
y

u(x)

 z∫
x

u(t)dt


q
p−q

(F (x))
q(p−θ)
θ(p−q) dx


1
q

. (2.14)

From (1.1), (2.11) and (2.14) we get z∫
y

u(x)

 z∫
x

u(t)dt


q
p−q

(F (x))
q(p−θ)
θ(p−q) dx


p−q
pq

� C+

for all (y, z) ⊂ I.
Proceeding to the limits y → 0 and z → ∞ and taking into account that

lim
y→0
z→∞

Fy,z(x) = (B+(x))
pθ
p−θ we have

F+ � C+. (2.15)

Thus, the proof of the necessity for the case q ≤ θ is complete.
Now, let q > θ. Then γ = q

θ
> 1. Let f and ϕ be non-negative functions such

that
∞∫
0

v(t)fp(t)dt <∞ and
∞∫
0

u1−γ
′
(s)ϕγ

′
(s)ds <∞. Inequality (1.1) is rewritten

in the form: ∞∫
0

u(x)

 x∫
0

w(t)

 x∫
t

f(s)ds

θ

dt


γ

dx


1
γ

≤ (C+)θ

 ∞∫
0

v(t)fp(t)dt

 θ
p

.

By Hölder’s inequality, this implies

∞∫
0

ϕ(x)

x∫
0

w(t)

 x∫
t

f(s)ds

θ

dtdx

≤ (C+)θ

 ∞∫
0

u1−γ
′
(s)ϕγ

′
(s)ds

 1
γ′
 ∞∫

0

v(t)fp(t)dt

 θ
p

.
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Since f was chosen arbitrarily, we get

G ≡ sup
f≥0

(
∞∫
0

ϕ(x)
x∫
0

w(t)

(
x∫
t

f(s)ds

)θ
dtdx

) 1
θ

(∞∫
0

v(t)fp(t)dt

) 1
p

≤ C+

 ∞∫
0

u1−γ
′
(s)ϕγ

′
(s)ds

 1
θγ′

.

(2.16)
For the fixed ϕ, the quantity G in (2.16) is equal to the least constant C+ of

inequality (1.1) in which u(x) ≡ ϕ(x) and q = θ.
Therefore, using the first part of the proof, we have

G�

 ∞∫
0

ϕ(x)

 ∞∫
x

ϕ(t)dt

 θ
p−θ

F̃ (x)dx


p−θ
θp

,

where F̃ (x) = (B+(x))
pθ
p−θ .

Integration by parts of the last expression gives

G�

 ∞∫
0

 ∞∫
x

ϕ(t)dt


p
p−θ

F̃ ′(x)dx


p−θ
θp

.

Then from (2.16) we have the following Hardy inequality: ∞∫
0

 ∞∫
x

ϕ(t)dt

µ

F̃ ′(x)dx


1
µ

� (C+)θ

 ∞∫
0

u1−γ
′
(s)ϕγ

′
(s)ds

 1
γ′

, (2.17)

where µ = p
p−θ .

Since γ′ = q
q−θ , it holds γ′ > µ. Since ϕ was arbitrary, (2.17) holds for all ϕ

such that
∞∫
0

u1−γ
′
(s)ϕγ

′
(s)ds <∞. Hence, by Lemma A we have


∞∫
0

F̃ ′(x)

 x∫
0

F̃ ′(t)dt


µ

γ′−µ
 ∞∫

x

u(s)ds


µ(γ′−1)

γ′−µ

dx


γ′−µ
µγ′

� (C+)θ.

Integration by parts yields
∞∫
0

u(x)

 ∞∫
x

u(s)ds


γ′(µ−1)

γ′−µ (
F̃ (x)

) γ′
γ′−µ

dx


γ′−µ
θµγ′

� C+.
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Since γ′(µ−1)
γ′−µ = q

p−q ,
γ′

γ′−µ = q(p−θ)
θ(p−q) ,

γ′−µ
θµγ′

= p−q
pq

and
(
F̃ (x)

) p−θ
pθ

= B+(x), we

have

F+ � C+. (2.18)

Relations (2.15) and (2.18), together with the relation C+ � E+ obtained in
Theorem 2.1, give E+ ≈ C+. The proof of Theorem 2.2 is complete. �

Let

F+
1 =

 ∞∫
0

u(x)

 ∞∫
x

u(s)ds


q

1−q
 x∫

0

w(s)ds


q

θ(1−q)

dx


1−q
q

,

F−1 =

 ∞∫
0

u(x)

 x∫
0

u(s)ds


q

1−q
 ∞∫

x

w(s)ds


q

θ(1−q)

dx


1−q
q

.

Theorem 2.3. Let max{θ, q} < 1 = p and v(x) ≡ 1. Then inequality (1.1) holds
if and only if E± <∞. Moreover, E± ≈ C±, where C± > 0 is the best constant
in (1.1).

Proof. The sufficiency follows from Theorem 2.1.
Let us prove the necessity only for T+

θ since for T−θ it can be proved similarly.
Suppose that inequality (1.1) holds for T+

θ with the best constant C+ > 0. Since

v(x) ≡ 1, we have D+(x) ≈
(

x∫
0

w(s)ds

) 1
θ

. Here and below the equivalence

constants do not depend on x ∈ I. Due to the relations D+(x) ≈ H+(x) the
values F+

1 are equivalent to the values E+, respectively. Therefore, it suffices to
prove the estimates F+

1 � C+.
Let 0 < y < z <∞. Assume

fy,z(t) = χ(y,z)(t)

 z∫
t

u(s)ds

 1
1−q
 t∫

y

w(s)ds


q

θ(1−q)−1

w(t).

Then

∞∫
0

fy,z(t)dt =

z∫
y

 z∫
t

u(s)ds

 1
1−q
 t∫

y

w(s)ds


q

θ(1−q)−1

w(t)dt

≈
z∫
y

u(t)

 z∫
t

u(s)ds


q

1−q
 t∫

y

w(s)ds


q

θ(1−q)

dt. (2.19)
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Now, we estimate the left side of (1.1) for f = fy,z from below. Let the function
σ(x) ≡ σy(x) be such that σ(x) < x and

x∫
y

w(t)dt = 2

σ(x)∫
y

w(t)dt for all x ∈ (y,∞).

Then  x∫
y

w(t)


 x∫

y

w(s)ds


q

θ(1−q)

−

 t∫
y

w(s)ds


q

θ(1−q)

θ

dt


q
θ

≥

 σ(x)∫
y

w(t)


 x∫

y

w(s)ds


q

θ(1−q)

−

 t∫
y

w(s)ds


q

θ(1−q)

θ

dt


q
θ

≥

 σ(x)∫
y

w(t)dt


q
θ

 x∫

y

w(s)ds


q

θ(1−q)

−

 σ(x)∫
y

w(s)ds


q

θ(1−q)

q

=

(
1

2

) q
θ

(
1−

(
1

2

) q
θ(1−q)

) x∫
y

w(s)ds


q

θ(1−q)

. (2.20)

Using estimate (2.20) for x ∈ (y, z) we get

(
T+
θ fy,z(x)

)q
=

 x∫
y

w(t)

 x∫
t

fy,z(s)ds

θ

dt


q
θ

≥

 z∫
x

u(s)ds


q

1−q
 x∫

y

w(t)

 x∫
t

 s∫
y

w(τ)dτ


q

θ(1−q)−1

w(s)ds


θ

dt


q
θ

�

 z∫
x

u(s)ds


q

1−q
 x∫

y

w(t)dt


q

θ(1−q)

. (2.21)

Then
∞∫
0

u(x)
(
T+
θ fy,z(x)

)q
dx ≥

z∫
y

u(x)
(
T+
θ fy,z(x)

)q
dx

�
z∫
y

u(x)

 z∫
x

u(s)ds


q

1−q
 x∫

y

w(t)dt


q

θ(1−q)

dx. (2.22)
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From (1.1), (2.19) and (2.22) we have z∫
y

u(x)

 z∫
x

u(s)ds


q

1−q
 x∫

y

w(t)dt


q

θ(1−q)

dx


1−q
q

� C+

for all (y, z) ⊂ I.
Taking the limits y → 0 and z → ∞ we get the estimate F+

1 � C+ which,
together with the estimate E+ � C+ from the sufficiency part, gives E+ ≈ C+.
The proof of Theorem 2.3 is complete. �

3. Applications

In the paper [3] the following inequalities

‖ϕH̃nf‖LMθq,τ
≤ C‖f‖Lp,V (3.1)

and
‖ϕHnf‖CLMθq,τ

≤ C‖f‖Lp,V (3.2)

were studied, where LMθq,τ is the local Morrey-type space with the norm

‖f‖LMθq,τ
= ‖τ(r)‖f‖Lθ(Br)‖Lq(0,∞),

and CLMθq,τ is the complementary local Morrey-type space with the norm

‖f‖CLMθq,τ
= ‖τ(r)‖f‖Lθ(CBr)‖Lq(0,∞),

Br is the open ball in Rn centered at 0 with radius r and CBr is the complement
of the ball Br in Rn,

Hnf(x) =

∫
B|x|

f(s)ds and H̃nf(x) =

∫
CB|x|

f(s)ds

are multidimensional Hardy operators.
In [3] assuming that ϕ(x) ≡ ϕ(|x|) and V (x) ≡ V (|x|) it was proved that

the validity of inequalities (3.1) and (3.2) are equivalent to the validity of the
inequalities

∞∫
0

u(x)

 x∫
0

w(t)

 ∞∫
t

f(s)ds

θ

dt


q
θ

dx


1
q

≤ C

 ∞∫
0

v(t)fp(t)dt

 1
p

(3.3)

and
∞∫
0

u(x)

 ∞∫
x

w(t)

 t∫
0

f(s)ds

θ

dt


q
θ

dx


1
q

≤ C

 ∞∫
0

v(t)fp(t)dt

 1
p

, (3.4)

respectively, where u(x) = τ q(x), w(t) = ϕ(t)t
n−1
θ and v(t) = V (t)t

−n−1
p′ .

In the papers [1], [2] and [6] by different approaches necessary and sufficient
conditions for the validity of inequalities (3.3) and (3.4) are obtained for different
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relations between the parameters 0 < p, q, θ ≤ ∞. Moreover, in [6] other inequal-
ities of the type (3.3) and (3.4) are considered. In [3] characterizations of (3.3)
and (3.4) are found only for the case 1 ≤ p ≤ q < ∞ and 0 < θ < ∞ but by a
method different from those in [1], [2] and [6].

Investigation of inequality (1.1) gives this alternative method to characterize
inequality (3.3) since the validity of inequality (3.3) is equivalent to the validity
of inequality (1.1) for T+

θ and the Hardy inequality ∞∫
0

u(x)

 x∫
0

w(t)dt


q
θ
 ∞∫

x

f(s)ds

q

dx


1
q

≤ C1

 ∞∫
0

v(t)fp(t)dt

 1
p

.

The similar splitting can be done for inequality (3.4).
Therefore, for example, from Theorem 2.2 and Lemma A we have

Theorem 3.1. Let 0 < θ, q < ∞, p > 1 and max{θ, q} < p. Let ϕ(x) = ϕ(|x|),
V (x) = V (|x|), u(x) = τ q(x), w(t) = ϕ(t)t

n−1
θ and v(t) = V (t)t

−n−1
p′ . Then

inequality (3.1) ((3.3)) holds if and only if E+ <∞ and

G+ =


∞∫
0

u(x)

 x∫
0

w


q
θ

 x∫
0

u(t)

 t∫
0

w


q
θ

dt


q
p−q

×

 ∞∫
x

v1−p
′


q(p−1)
p−q

dx


p−q
pq

<∞.

Moreover, max{E+, G+} ≈ C, where C > 0 is the best constant in (3.1) ((3.3)).

The similar statement follows from Theorem 2.2 and Lemma A for inequality
(3.2) ((3.4)).

The characterizations of inequality (3.3) in Theorem 3.1 are respectively equiv-
alent to those obtained earlier in [1](Theorem 3.1, (iv)) and in [6](Theorem 5,
max{θ, q} < p).

Let us also note that inequalities of the type (3.3) and (3.4) with kernels are
considered in [7].
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