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Abstract. This paper deals with some classes of bounded linear operators
on Hilbert spaces. The main emphasis is put onto the classes A(k∗) and
A(k∗)P, k > 0. Some additional results are given for other classes, like PA(k∗),
M −A(k∗) and spectral properties of operators belonging to A(k∗) are consid-
ered. We also describe under what conditions a matrix-operator TA,B belongs
to A(k∗), A(k∗)P or PA(k∗).

1. Introduction

Let us denote by H a complex Hilbert space and with B(H) the space of all
bounded linear operators defined in H. In the following we will mention some
known classes of operators defined in H. An operator T ∈ B(H) is said to be
positive (denoted T ≥ 0) if 〈Tx, x〉 ≥ 0 for all x ∈ H. The operator T is said to be
a p-hyponormal operator if and only if (T ∗T )p ≥ (TT ∗)p for a positive number p,
and it is said to be a log-hyponormal if it is invertible and satisfies the following
relation log T ∗T ≥ log TT ∗, [26]. The class of p-hyponormal operators and the
class of log-hyponormal operators were defined as the extension of hyponormal
operators, i.e, T ∗T ≥ TT ∗. An operator T is called M -hyponormal if there is
a constant M > 0 such that M‖Tx‖ ≥ ‖T ∗x‖ for all x ∈ H, (see [5]). It is
well known that every p-hyponormal operator is a q-hyponormal operator for
p ≥ q > 0, by the Löwner-Heinz theorem ”A ≥ B ≥ 0 ensures Aα ≥ Bα for
any α ∈ [0, 1],” and every invertible p-hyponormal operator is a log-hyponormal
operator since log is an operator monotone function. An operator T is paranormal
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if ‖T 2x‖ ≥ ‖Tx‖2, for every unit vector x ∈ H, [9]. We will say that T is a ∗-
paranormal operator if it satisfies the following relation: ‖T 2x‖ ≥ ‖T ∗x‖2, for
every unit vector x ∈ H, [3]. An operator T is said to be M -paranormal if
M‖T 2x‖ ≥ ‖Tx‖2, for every unit vector x ∈ H(see [4]). An operator T is said to
be M∗-paranormal if M‖T 2x‖ ≥ ‖T ∗x‖2, for every unit vector x ∈ H(see [2]).

In [10], Furuta, Ito and Yamazaki introduced the class A of operators, respec-
tively class A(k) of operators defined as follows: For each k > 0, an operator T
is a class A(k) operator if (

T ∗|T |2kT
) 1

k+1 ≥ |T |2,

(for k = 1 it defines the class A operators) which includes the class of log-
hyponormal operators (see Theorem 2, in [10]) and it is included in the class of
paranormal operators, in case where k = 1 (see Theorem 1 in [10]). In the same
paper the absolute-k-paranormal operators were introduced as follows: For each
k > 0, an operator T is an absolute-k-paranormal operator if∥∥|T |kTx∥∥ ≥ ‖Tx‖k+1,

for every unit vector x ∈ H. The class A(k) of operators is included in the
absolute-k-paranormal operators for any k > 0 (see Theorem 2 in [10]).

In this paper we will show the behavior of the class A(k∗) which is defined as
follows: (

T ∗|T |2kT
) 1

k+1 ≥ |T ∗|2,
for every k > 0. In case where k = 1 it defines the class A∗ operators. Every class
A∗ operator is a ∗-paranormal operator, Theorem 1.3 in [8].

In paper [22] the absolute-k∗-paranormal class of operators was introduced as
follows:

A(k∗)P = {T ∈ B(H) : ‖|T |kTx‖ ≥ ‖T ∗x‖k+1, x ∈ H, ‖x‖ = 1}

for any k > 0. For each k > 0, every class A(k∗) operator is an absolute-k∗-
paranormal operator, Theorem 2.4 in [22].

Also, we will show the behavior of the class M − A(k∗) of operators which is
defined as follows: For each k > 0,M > 0 an operator T is a class M − A(k∗)
operator if (

T ∗|T |2kT
) 1

k+1 ≥M |T ∗|2,
and an absolute-k∗ −M -paranormal operator, if for each k > 0, M > 0∥∥|T |kTx∥∥ ≥M‖T ∗x‖k+1,

for every unit vector x ∈ H.
This paper deals with some classes of bounded linear operators on Hilbert

spaces. The main emphasis is put onto the classes A(k∗) and A(k∗)P, k > 0. Some
additional results are given for other classes, like PA(k∗), M−A(k∗) and spectral
properties of operators belonging to A(k∗) are considered. We also describe under
what conditions a matrix-operator TA,B belongs to A(k∗), A(k∗)P or PA(k∗).
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2. Class A(k∗) of operators

Now we will denote by:

PA(k∗) = {T ∈ B(H) : T ∗(T ∗T )kT ≥ (TT ∗)k+1}.

Theorem 2.1. Holds

(1) Every class PA(k∗) operator is a class A(k∗) operator for k > 0,
(2) Every ∗-paranormal operator is an absolute-k∗-paranormal operator for

k ≥ 1.

Proof. Let T ∈ B(H).
1). Let us suppose that T is a class PA(k∗) operator, it means that the

following relation

T ∗(T ∗T )kT ≥ (TT ∗)k+1,

holds for every k > 0. Now applying Löwner–Heinz inequality we get that T ∈
A(k∗) class operator.

2). Let us consider that T is a ∗-paranormal operator. Then we get:

‖T 2x‖ ≥ ‖T ∗x‖2,

for every unit vector x ∈ H, respectively

‖T 2x‖2 ≥ (‖T ∗x‖2)2.

By properties of real quadratic forms, this gives

t2 − 2t‖T ∗x‖2 + ‖T 2x‖2 ≥ 0,

for every t > 0. Hence

T ∗2T 2 − 2tTT ∗ + t2 ≥ 0. (2.1)

Based on [22, Theorem 2.5], the relation (2.1) defines the absolute-1∗-paranormal

operator. It is a known fact that the function f(k) = ‖|T |kTx‖
1

k+1 (see Theorem
4 in [10]) is increasing from which we get that the operator T belongs to the class
A(k∗)P, for every k ≥ 1. �

Remark 2.2. Based on the Theorem 2.1 and Theorem 2.4 in [22] we have this
relation between the above classes of operators:

PA(k∗) ⊂ A(k∗) ⊂ absolute-k∗-paranormal (2.2)

In what follows by examples, we will prove that the converse in the relation
(2.2) is not true in general. The following fact gives rise in the possibilities to
compare the class of operators defined above. For that let us define the following
operators: Suppose H is a direct sum of denumerable copies of two dimensional
Hilbert spaces R×R. Let A and B be any two positive operators on R×R. We



ON CLASS A(k∗) OPERATORS 93

define the operator T = TA,B on H as follows:

TA,B =



. . .
B 0 0
0 B 0
0 0 B

A
A

. . .


where shows the place of the (0, 0) matrix element.

The following Theorem 2.3 is obtained by easy calculations, so we omit to
describe this calculations.

Theorem 2.3. The following assertions holds:

(1) For each k > 0, TA,B is a class PA(k∗) operator if and only if

BA2kB ≥ B2(k+1),

and

A2(k+1) ≥ B2(k+1).

(2) For each k > 0, TA,B is a class A(k∗) operator if and only if

(BA2kB)
1

k+1 ≥ B2,

and

A2 ≥ B2.

(3) TA,B is a class A∗ operator if and only if

(BA2B)
1
2 ≥ B2,

and

A2 ≥ B2.

(4) For each k > 0, TA,B is a class A(k∗)P operator if and only if

BA2kB − (k + 1)λkB2 + kλk+1 ≥ 0,

and

A2(k+1) − (k + 1)λkB2 + kλk+1 ≥ 0,

for all λ > 0.
(5) TA,B is a ∗-paranormal operator if and only if

BA2B − 2λB2 + λ2 ≥ 0,

and

A4 − 2λB2 + λ2 ≥ 0,

for all λ > 0.
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Given a bounded sequence of complex numbers {αn : n ∈ Z}(called weights),
let T be the bilateral weighted shift on an infinite dimensional Hilbert space
operator H = l2, with the canonical orthonormal basis {en : n ∈ Z}, defined by
Ten = αnen+1 for all n ∈ Z. Based on the definition of the class A(k∗) operators
the following facts for bilateral weighted shift operators are valid:

Lemma 2.4. Let T be a bilateral weighted shift operator with weights {αn : n ∈
Z}. Then T is a class A(k∗) operator if and only if

|αn|2 · |αn+1|2k ≥ |αn−1|2(k+1),

for all n ∈ Z.

Proof. Let us define by Ten = αnen+1 for all n ∈ Z, the bilateral weighted shift
operator with weights {αn : n ∈ Z}. Then it follows that T ∗(en) = αn−1en−1. And
after some calculations we get:

(T ∗|T |2kT )(en) = |αn|2 · |αn+1|2k(en),

respectively

|αn|2 · |αn+1|2k ≥ |αn−1|2(k+1),

for all n ∈ Z. �

Lemma 2.5. Let T be a non-singular bilateral weighted shift operator with weights
{αn : n ∈ Z}. Then T−1 is a class A(k∗) operator if and only if

|αn−1|2 · |αn−2|2k ≤ |αn|2(k+1),

for all n ∈ Z.

Proof of this Lemma is omitted, because it is similar to the previous Lemma.
Considering the above lemmas, we will further show that if T ∈ A(k∗) class,

then it does not follow that T−1 ∈ A(k∗) class operator. This fact is shown by
the following example.

Example 2.6. Let us denote by T the bilateral weighted shift operator, with
weighted sequence {αn : n ∈ Z}, given by the relation:

αn =



1 if n ≤ 1
2 if n = 2
1 if n = 3
4 if n = 4
1 if n = 5
16 if n ≥ 6.

Following Lemma 2.4 it follows that T ∈ A(2∗), but T−1 /∈ A(2∗) which follows
from Lemma 2.5, for n = 3.

By the following example we will show that classes A(k∗) and A(k∗)P are dif-
ferent from each other. We will follow the ideas given in example 8 on paper
[10].
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Example 2.7. Let K = ⊕∞n=−∞Hn where Hn
∼= R2. For given positive operators

A,B on H, define the operator TA,B on K as in Theorem 2.3. Then we have the
following example:

(a) An example of non-class A(2∗), absolute-2∗-paranormal operator. Let us
denote by

B =

(
4 0
0 20

) 1
4

and A =
1

2

(
1 +
√

3 1−
√

3

1−
√

3 1 +
√

3

)
.

Then

(AB4A)
1
3 − A2,

is negative and from this it follows that TA,B /∈ A(2∗). In what follows we will show
that TA,B is an absolute-2∗-paranormal operator. To prove this (from Theorem
2.3, condition 4) it is enough to prove the following two relations:

BA4B − 3λ2B2 + 2λ3 ≥ 0

and

A6 − 3λ2B2 + 2λ3 ≥ 0,

for all λ > 0. The first one is proved in example 8-3, in [10]. We will prove just
the second one. Let us denote by A(λ) the trace of the matrix A6− 3λ2B2 + 2λ3,
so

A(λ) = Tr(A6 − 3λ2B2 + 2λ3) = 4λ3 − 12λ2 + 8 + 20
√

20

and the minimal value of this expression is achieved for λ = 12 from which follows
that

A(λ) ≥ A(12) = 5281.443,

respectively A(λ) ≥ 0, for all λ > 0. Let us denote by B(λ) the determinant for
the matrix A6 − 3λ2B2 + 2λ3,

Det(A6 − 3λ2B2 + 2λ3) = B(λ).

The function B(λ) has the minimum value for λ = 0, and from this we get
that B(λ) ≥ B(0) = 160

√
20 > 0, for every λ > 0. Calling again Theorem 2.3,

property 4 it follows that TA,B ∈ A(2∗)P.
(b) An example of non ∗-paranormal, absolute-2∗-paranormal operator. Let us

denote by

A =

(
1 1
1 3

)
and B =

(
2 0
0 0

)
.

Then

BA2B − 2λB2 + λ2,

is negative for λ = 4, where it follows that TA,B is a non ∗-paranormal operator.
In the following we will show that the following two relations are valid:

BA4B − 3λ2B2 + 2λ3 ≥ 0

and

A6 − 3λ2B2 + 2λ3 ≥ 0,
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for all λ > 0. The first relation is valid(see example 8-4 in [10]), we will prove the
second. From the above facts it follows that:

Tr(A6 − 3λ2B2 + 2λ3) = 4λ3 − 12λ2 + 1584 ≥ Tr(λ = 12) = 6768

from this relation we get:

Tr(A6 − 3λ2B2 + 2λ3) ≥ 0,

for all λ > 0. In the same way we show that

Det(A6 − 3λ2B2 + 2λ3) = 4λ6 − 24λ5 + 3168λ3 − 16224λ2 + 64 ≥ 0,

for every λ > 0. Based on Theorem 2.3, property 5, we get that TA,B is an
absolute-2∗-paranormal operator.

(c) An example of non-PA(3∗), which is A(3∗) operator. Let us denote by

A =

(
6 −5
−5 6.2

)
and B =

(
3 −2
−2 3

)
.

Then A2−B2 ≥ 0 and (BA6B)
1
4 ≥ B2. From which follows that TA,B ∈ A(3∗).

But relation

BA6B ≥ B8,

is not valid, hence we conclude that TA,B /∈ PA(3∗).

An operator T ∈ B(H) is normaloid if ‖T n‖ = ‖T‖n for all positive integers n.
It is known that every normal operator is normaloid(see [7, Theorem 4.5.12]) and
every paranormal operator is normaloid (see [13], [9]). In what follows we will
show that every absolute-k∗-paranormal operator is normaloid for 0 < k ≤ 1.

Theorem 2.8. Let T be an absolute-1∗-paranormal operator. Then T is nor-
maloid.

Proof. From the fact that T is from A(1∗)P and Theorem 2.5 in [22] we get the
following relation:

T ∗|T |2kT − (k + 1)λk|T ∗|2 + k · λk+1 ≥ 0, (2.3)

for every k > 0 and λ > 0. If we put k = 1 in the relation (2.3), we establish
the necessary and sufficient condition (see [2]) under which an operator T is ∗-
paranormal. Now the proof of the theorem follows from Theorem 1.1 given in
[3]. �

Now we show the general case of the Theorem 2.8.

Theorem 2.9. Let T be an absolute-k∗-paranormal operator for some 0 < k < 1.
Then T is normaloid.

Proof. Suppose that T is an absolute-k∗-paranormal operator. In the case where
0 < k < 1 based on Theorem 2.6 in [22] it follows that T is a ∗−paranormal
operator, then by Theorem 1.1 given in [3] it follows that T is normaloid. �
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Example 2.10. An example of non-absolute-k∗-paranormal operator which is
normaloid. Let us denote by

T =

 1 0 0
0 0 0
0 1 0

 .

Then ‖T n‖ = ‖T‖n for all positive integers n. However, the relation∥∥|T |kTx∥∥ ≥ ‖T ∗x‖k+1

does not hold for the unit vector e3 = (0, 0, 1), by which it is proved that T is a
non-absolute-k∗-paranormal operator, but it is normaloid.

3. Tensor product for A(k∗)

LetH andK denote the Hilbert spaces. For given non zero operators T ∈ B(H)
and S ∈ B(K), T ⊗ S denotes the tensor product on the product space H ⊗K.
The normaloid property is invariant under tensor products, [24]. There exist
paranormal operators T and S, such that T ⊗ S is not paranormal, [1]. T ⊗ S is
normal if and only if T and S are normal, [25]. This result was extended to the
class A operators, class A(k) operators, and ∗-class A operators in [14], [15], and
[8], respectively. In this section, we prove an analogues result for A(k∗) operators.

Let T ∈ B(H) and S ∈ B(K) be non zero operators. Then (T ⊗ S)∗(T ⊗
S) = T ∗T ⊗ S∗S holds. By the uniqueness of positive square roots, we have
|T ⊗ S|r = |T |r ⊗ |S|r for any positive rational number r. From the density of
the rationales in the real, we obtain |T ⊗ S|p = |T |p ⊗ |S|p for any positive real
number p.

Lemma 3.1. [25] Let T1, T2 ∈ B(H), S1, S2 ∈ B(K) be non-negative operators.
If T1 and S1 are non-zero, then the following assertions are equivalent:

(1) T1 ⊗ S1 ≤ T2 ⊗ S2,
(2) There exists c > 0, such that T1 ≤ cT2, and S1 ≤ c−1S2.

Lemma 3.2. [19, Hölder-McCarthy inequality] Let T be a positive operator.
Then the following inequalities hold for all x ∈ H:

(1) 〈T rx, x〉 ≤ 〈Tx, x〉r‖x‖2(1−r) for 0 < r < 1,
(2) 〈T rx, x〉 ≥ 〈Tx, x〉r‖x‖2(1−r) for r ≥ 1.

Theorem 3.3. Let T ∈ B(H) and S ∈ B(K) be non-zero operators. Then T ⊗S
belongs to class A(k∗) if and only if one of the following holds:

(1) T and S are A(k∗) operators.
(2) |T ∗|2 = 0 or |S∗|2 = 0.

Proof. Consider (
(T ⊗ S)∗|T ⊗ S|2k(T ⊗ S)

) 1
k+1 − |(T ⊗ S)∗|2 =(

(T ∗ ⊗ S∗)(|T |2k ⊗ |S|2k)(T ⊗ S)
) 1

k+1 − (|T ∗|2 ⊗ |S∗|2) =(
T ∗|T |2kT

) 1
k+1 ⊗

(
S∗|S|2kS

) 1
k+1 − (|T ∗|2 ⊗ |S∗|2) =
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(T ∗|T |2kT )
1

k+1 ⊗ (S∗|S|2kS)
1

k+1 − |T ∗|2 ⊗ (S∗|S|2kS)
1

k+1 +

|T ∗|2 ⊗ (S∗|S|2kS)
1

k+1 − (|T ∗|2 ⊗ |S∗|2) =(
(T ∗|T |2kT )

1
k+1 − |T ∗|2

)
⊗ (S∗|S|2kS)

1
k+1 + |T ∗|2 ⊗

(
(S∗|S|2kS)

1
k+1 − |S∗|2

)
.

Hence, if either (1) T and S are class A(k∗) operators, or (2) |T ∗|2 = 0 or
|S∗|2 = 0, then T ⊗ S is a class A(k∗) operator.

Conversely, suppose that T ⊗ S is class A(k∗). It suffices to show that if the
statement (1) does not hold, then the statement (2) holds. Assume that |T ∗|2
and |S∗|2 are non-zero operators. Since T ⊗ S is a class A(k∗) operator, then

(T ∗|T |2kT )
1

k+1 ⊗ (S∗|S|2kS)
1

k+1 ≥ |T ∗|2 ⊗ |S∗|2.
Therefore, by Lemma 3.1 there exists a positive real number c for which

c(T ∗|T |2kT )
1

k+1 ≥ |T ∗|2 and c−1(S∗|S|2kS)
1

k+1 ≥ |S∗|2.
Consequently, for arbitrary x, y ∈ H, by Hölder–McCarthy inequality we have

‖T ∗‖2

= sup
‖x‖=1

〈|T ∗|2x, x〉 ≤ sup
‖x‖=1

〈
c(T ∗|T |2kT

) 1
k+1 x, x〉

≤ c

(
sup
‖x‖=1

〈T ∗|T |2kTx, x〉

) 1
k+1

= c‖T ∗|T |2kT‖
1

k+1

≤ c‖T‖2 = c‖T ∗‖2.
So, ‖T ∗‖2 ≤ c‖T ∗‖2. In the same way we show ‖S∗‖2 ≤ c−1‖S∗‖2. Thus c = 1,

and hence T and S are class A(k∗) operators. �

4. Behavior of class M −A(k∗) operators

For each k > 0, an operator T is a class M−PA(k∗) operator, for some M > 0,
if (

T ∗|T |2kT
)
≥Mk+1|T ∗|2(k+1),

(for M = 1 it’s equal to the class PA(k∗) of operators). T is a class M −A(k∗)
operator, for some M > 0, if(

T ∗|T |2kT
) 1

k+1 ≥M |T ∗|2,
(for M = 1 it’s equal to the class A(k∗) of operators).

In what follows we will introduce the class of absolute-k∗ − M -paranormal
operators, as follows: For each k > 0, an operator T is an absolute-k∗ − M -
paranormal (class M −A(k∗)P ) operator if∥∥|T |kTx∥∥ ≥M‖T ∗x‖k+1,

for every unit vector x ∈ H.
The class A(k∗) of operators is included in the absolute-k∗-paranormal op-

erators for any k > 0 (see Remark 2.2). The same fact is valid for the class

M − A(k∗) of operators, which is included in absolute-k∗ −
√
Mk+1-paranormal

operators. The following Lemma holds.
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Lemma 4.1. For each k > 0 and each M > 0, every class M −A(k∗) operator

is absolute-k∗ −
√
Mk+1-paranormal operator.

The proof of the lemma is similar to Theorem 2 in [10] and is done by taking
into consideration the Hölder–McCarthy inequality.

The following lemma is valid:

Lemma 4.2. If T is an operator from Hilbert space H, then the following relation
holds:

M − PA(k∗) ⊂M −A(k∗), for every k > 0.

Remark 4.3. In the assertion given in Lemma 4.1 and Lemma 4.2 the equality
between the mentioned class of operators is not valid.

It is known that there exists a linear operator T for which an exponent of it,
let us say T n, is a compact operator but T itself is not compact. In this context
we will show that in the case where an operator T is from class M −A(k∗) and
if its exponent T n is compact, for some n, then T is compact too. In Lemma 4.1
it was proved that every class M − A(k∗) operator is an absolute-k∗ −

√
Mk+1-

paranormal operator. Using this fact we will show the following theorem.

Theorem 4.4. If T is an operator from M − A(k∗) and if T n is compact for
some n ∈ N, then it follows that T is compact too.

Proof. If T ∈ B(H) we have

‖T ∗T n−1x‖

=

∥∥∥∥T ∗T T n−2x

‖T n−2x‖

∥∥∥∥ ‖T n−2x‖
≥

∥∥∥∥T T n−2x

‖T n−2x‖

∥∥∥∥2 ‖T n−2x‖ =
‖T n−1x‖2

‖T n−2x‖
.

To prove theorem it is enough to prove that T n−1 is compact. Let us consider
the unit vector Tn−1x

||Tn−1x|| ∈ H, for n ≥ 2. Since T is an absolute-k∗ −
√
Mk+1-

paranormal operator, and from above relation, we have

√
Mk+1

‖T n−1x‖2(k+1)

‖T n−2x‖k+1||T n−1x||k+1

≤
√
Mk+1

∥∥∥∥T ∗ T n−1x

||T n−1x||

∥∥∥∥k+1

≤
∥∥∥∥|T |kT T n−1x

||T n−1x||

∥∥∥∥ .
Then,

√
Mk+1

∥∥T n−1x∥∥k+2

≤ ||T n−2x||k+1
∥∥|T |kTT n−1x∥∥

≤ ||T n−2x||k+1
∥∥|T |k∥∥ ‖T nx‖ .
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Let (xm) be any unit sequence of vectors from H, such that xm
w→ 0,m→∞.

Now from compactness of T n and above relation it follows that∥∥T n−1xm∥∥k+2 → 0, m→∞,
hence T n−1 is a compact operator. �

Corollary 4.5. If T, S are operators from M − A(k∗), and if T n and Sm are
compact operators for some n,m ∈ N, then it follows that T ⊕ S is compact too.

Proof. Let us suppose that T n and Sm are compact operators for some n,m ∈ N.
Then from Theorem 4.4 it follows that T and S are compact operators. Without
lose of generality we can consider that n = m. Let (xn, yn) be any unit vector

sequence from H ⊕H such that (xn, yn)
w→ (0, 0). Then

||(Txn, Syn)|| = ||Txn||+ ||Syn|| → 0,

when n→∞. �

Corollary 4.6. If Ti, i ∈ N are operators from M−A(k∗), and if T ni are compact
for each i ∈ N and for some n ∈ N, then it follows that (⊕iTi)mp , for 1 ≤ p ≤ ∞
is compact too.

A norm on the algebraic tensor product H ⊗ H is called a tensor norm or a
cross norm if ||x⊗ y|| = ||x|| · ||y|| for all decomposable tensors x⊗ y (for further
details see [18], [6]).

Theorem 4.7. If T,R are operators from M − A(k∗) and if T n is compact for
some n ∈ N or Rm is compact for some m ∈ N, then it follows that T ⊗ R is
compact too.

Proof. Let us suppose that T n is a compact operator for some n ∈ N. Then from
Theorem 4.4 it follows that T is a compact operator. Let xn ⊗ yn be any unit
vector sequence from H ⊗H such that xn ⊗ yn

w→ 0. Then

||Txn ⊗Ryn|| = ||Txn|| · ||Ryn|| → 0,

when n→∞, completing the proof. �

Lemma 4.8. Let T be a bilateral weighted shift operator with weights {αn : n ∈
Z}. Then T is a class M −A(k∗) operator if and only if

|αn|2 · |αn+1|2k ≥Mk+1|αn−1|2(k+1),

for all n ∈ Z.

Lemma 4.9. Let T be a non-singular bilateral weighted shift operator with weights
{αn : n ∈ Z}. Then T−1 is a class M −A(k∗) operator if and only if

|αn−1|2|αn−2|2kMk+1 ≤ |αn|2(k+1),

for all n ∈ Z.

Considering the above lemmas, we will further show that if T ∈ M − A(k∗)
class, then it does not follow that T−1 ∈ M −A(k∗) class operator. This fact is
shown by the following example.
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Example 4.10. Let us denote by T the bilateral weighted shift operator, with
weighted sequence {αn : n ∈ Z}, given by the relation:

αn =

{
1 if n ≤ 0
n
n+1

if n ≥ 1.

Following Lemma 4.8 it follows that T ∈ 1
3
−A(1∗) but T−1 /∈ 1

3
−A(1∗) which

follows from Lemma 4.9, for n = 1.

5. Spectral properties

A complex number λ ∈ C is said to be in the point spectrum σp(T ) of the
operator T if there is a vector x 6= 0 satisfying (T − λ)x = 0.

If T ∈ B(H), we shall write N(T ) and R(T ) for the null space and the range
of T , respectively. Also, let σ(T ) and σa(T ) denote the spectrum and the ap-
proximate point spectrum of T , respectively. An operator T is called Fredholm if
R(T ) is closed, α(T ) = dimN(T ) <∞ and β(T ) = dimH/R(T ) <∞. Moreover
if

ind(T ) = α(T )− β(T ) = 0,

then T is called Weyl operator. The essential spectrum σe(T ) and the Weyl
spectrum σw(T ) are defined by

σe(T ) = {λ ∈ C : T − λ is not Fredholm}
and

σw(T ) = {λ ∈ C : T − λ is not Weyl},
respectively. It is known that σe(T ) ⊂ σw(T ) ⊂ σe(T ) ∪ accσ(T ) where we write
acc K for the set of all accumulation points of K ⊂ C.

An operator T ∈ B(H) is said to have finite ascent if N(Tm) = N(Tm+1) for
some positive integer m, and finite descent if R(T n) = R(T n+1) for some positive
integer n. The operator T is called Browder if it is Fredholm of finite ascent and
descent. The Browder spectrum of T is given by

σb(T ) = {λ ∈ C : T − λ is not Browder}.
We say that Browder’s theorem holds for T if

σw(T ) = σb(T ).

T is said to have the single valued extension property, abbreviated, T has SVEP
if f(z) is an analytic vector valued function on some open set D ⊂ C such that
(T − z)f(z) = 0 for all z ∈ D, then f(z) = 0 for all z ∈ D.

In this section we study spectral properties of absolute-k∗-paranormal opera-
tors. It is shown that if T is an absolute-k∗-paranormal operator, then the spec-
tral mapping theorem holds for the essential approximate point spectrum and for
Weyl spectrum. It is also shown that a-Browder’s theorem holds for absolute-
k∗-paranormal operators. Spectral properties of different classes of operators are
given in [11, 21].

Theorem 5.1. Let T ∈ B(H) be an absolute-k∗-paranormal operator for 0 <
k ≤ 1. If (T − λ)x = 0, then (T − λ)∗x = 0 for all λ ∈ C.
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Proof. We have to show that N(T − λ) ⊆ N(T ∗ − λ).
Let λ = 0 and assume that x ∈ N(T ), then Tx = 0. Since T is absolute-k∗-

paranormal, from ‖T ∗x‖k+1 ≤ ‖|T |kTx‖, since Tx = 0, we have ‖T ∗x‖k+1 = 0,
therefore T ∗x = 0, so x ∈ N(T ∗).

Let λ 6= 0 and assume that x ∈ N(T − λ). Then Tx = λx and since T is
absolute-k∗-paranormal, we have

‖T ∗x‖k+1 ≤ ‖|T |kTx‖ = |λ|〈|T |2kx, x〉
1
2 ≤ |λ|〈|T |2x, x〉

k
2

= |λ|||Tx||k = |λ|k+1.

Then ‖T ∗x‖ ≤ |λ| for all x ∈ N(T − λ) with ‖x‖ = 1. So if x ∈ N(T − λ), then

〈(T − λ)∗x, (T − λ)∗x〉
= ||T ∗x||2 − 〈x, λTx〉 − 〈λTx, x〉+ |λ|2‖x‖2

≤ |λ|2 − |λ|2 − |λ|2 + |λ|2 = 0.

Therefore
‖T ∗ − λx‖ = 0,

and so x ∈ N(T ∗ − λ). Hence N(T − λ) ⊆ N(T ∗ − λ). �

Lemma 5.2. If T is an absolute-k∗-paranormal operator for 0 < k ≤ 1, then
T − λ has finite ascent for each λ ∈ C.
Proof. Since T is an absolute-k∗-paranormal operator, it follows that N(T −λ) ⊂
N(T ∗ − λ), for each λ ∈ C by Theorem 5.1. Thus we can represent T − λ as
the following 2x2 operator matrix with respect to the decomposition N(T −λ)⊕
N(T − λ)⊥:

T − λ =

(
0 0
0 S

)
.

Let x ∈ N((T − λ)2), and let’s write x = y + z, where y ∈ N(T − λ) and
z ∈ N(T − λ)⊥. Then 0 = (T − λ)2x = (T − λ)2z, so that

(T − λ)z ∈ N(T − λ) ∩N(T − λ)⊥ = {0},
which implies that z ∈ N(T−λ), and hence x ∈ N(T−λ). Therefore N(T−λ) =
N(T − λ)2. �

Corollary 5.3. If T is an absolute-k∗-paranormal operator for 0 < k ≤ 1, then
T has SVEP.

Proof. Proof of the corollary follows directly from Lemma 5.2 and Proposition
1.8 in [16]. �

Corollary 5.4. If T ∗ is absolute-k∗-paranormal for 0 < k ≤ 1, then β(T − λ) ≤
α(T − λ) for all λ ∈ C.

Proof. It is obvious from Theorem 5.1. �

Now we will show that the spectral mapping theorem holds for Weyl’s spectrum.

Theorem 5.5. If T or T ∗ is absolute-k∗-paranormal for 0 < k ≤ 1, then
σw(f(T )) = f(σw(T )) for every f ∈ Hol(σ(T )), where Hol(σ(T )) denotes the
set of all analytic functions on some open neighborhood of σ(T ).
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Proof. Since σw(f(T )) ⊆ f(σw(T )) holds for any operator, we need only to prove
that

f(σw(T )) ⊆ σw(f(T )). (5.1)

Note that (5.1) clearly holds if f is constant on some open neighborhood of σ(T ).
Let λ 6∈ σw(f(T )), we may assume that f(z)− λ has only a finitely number of

zeros in some open neighborhood G of σ(T ). Now we write

f(z)− λ = (z − λ1)(z − λ2) · ... · (z − λn)g(z),

where λj, j = 1, · · · , n are the zeros of f(z) − λ in G, listed according to multi-
plicity, and g(z) 6= 0 for all z ∈ G. Thus

f(T )− λ = (T − λ1)(T − λ2) · ... · (T − λn)g(T ). (5.2)

Clearly, λ ∈ f(σw(T )) if and only if λj ∈ σw(T ) for some j. Therefore, to prove
(5.1), it suffices to show that λj 6∈ σw(T ) for all j = 1, 2, · · · , n. First, suppose
that T is absolute-k∗-paranormal. Since f(T ) − λ is Weyl and the operators
T − λ1, T − λ2, · · · , T − λn commute, each T − λj is Fredholm. Moreover, since

N(T − λj) ⊆ N(f(T )− λ) and N((T − λj)∗) ⊆ N((f(T )− λ)∗),

both N(T − λj) and N((T − λj)∗) are finite dimensional. Then ind(T − λj) ≤ 0
by Theorem 5.1. Then ind(f(T ) − λ) = ind(g(T )) = 0, it follows from (5.2)
that ind(T − λj) = 0 for all j = 1, 2, · · · , n. Consequently, T − λj is Weyl, and
λj 6∈ σw(T ), for all j = 1, 2, · · · , n.

Now assume that T ∗ is absolute-k∗-paranormal. Then by Corollary 5.4 ind(T−
λ) ≥ 0 for each j = 1, 2, · · · , n. However,

n∑
i=1

ind(T − λj) = ind(f(T )− λ) = 0,

and so T − λj is Weyl for each j = 1, 2, · · · , n. Hence λ 6∈ f(σw(T )). Therefore
σw(f(T )) = f(σw(T )). �

Let T ∈ B(H). The essential approximate point spectrum σea(T ) is defined by

σea(T ) = ∩{σa(T +K) : K is a compact operator}.
We consider the set

Φ−+(H) = {T ∈ B(H) : T is left semi-Fredholm and ind(T ) ≤ 0}.
V. Rakoc̃ević [23], proved that

σea(T ) = {λ ∈ C : T − λ 6∈ Φ−+(H)}
and the inclusion σea(f(T )) ⊂ f(σea(T )) holds for every f ∈ Hol(σ(T )). The
next theorem shows the spectral mapping theorem on the essential approximate
point spectrum of absolute-k∗-paranormal operator.

Theorem 5.6. Let T or T ∗ be absolute-k∗-paranormal for 0 < k ≤ 1. Then
σea(f(T )) = f(σea(T )) for every f ∈ Hol(σ(T )).

Proof. The proof is similar to Theorem 2.9 given in [12], based on Corollary 5.4
and Lemma 5.2. �
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Recall [17] that S, T ∈ B(H) are said to be quasi-similar if there exist injections
X, Y ∈ B(H) with dense range such that XS = TX and Y T = SY , respectively,
and this relation is denoted by S ∼ T .

Theorem 5.7. Let T ∈ B(H) be absolute-k∗-paranormal for 0 < k ≤ 1. If
S ∼ T , then S has SVEP.

Proof. Since T is absolute-k∗-paranormal, it follows from Corollary 5.3 that T has
SVEP. Let U be any open set and f : U → H be any analytic function such that
(S − λ)f(λ) = 0 for all λ ∈ U . Since S ∼ T , there exists an injective operator A
with dense range such that AS = TA. Thus A(S − λ) = (T − λ)A for all λ ∈ U .
Since (S − λ)f(λ) = 0 for all λ ∈ U ,

A(S − λ)f(λ) = 0 = (T − λ)Af(λ),

for all λ ∈ U . But T has SVEP, hence Af(λ) = 0 for all λ ∈ U . Since A is
injective, f(λ) = 0 for all λ ∈ U . Thus S has SVEP. �

Now we will show that a-Browder’s theorem holds for absolute-k∗-paranormal
operators. For this we need the following definitions. The Browder essential
approximate point spectrum σab(T ) of T is defined by

σab(T ) = ∩{σa(T +K) : TK = KT, K is a compact operator}.
We say that a-Browder’s theorem holds for T if

σea(T ) = σab(T ).

It is well known that

a-Browder’s theorem⇒ Browder’s theorem.

Theorem 5.8. Let T ∈ B(H) be an absolute-k∗-paranormal operator for 0 <
k ≤ 1. Then T obeys a-Browder’s theorem.

Proof. Since an absolute-k∗-paranormal operator has SVEP, Theorem 2.8 in [20]
implies that T obeys a-Browder’s theorem. �

Theorem 5.9. Let T ∈ B(H) be an absolute-k∗-paranormal operator for 0 <
k ≤ 1. Then a-Browder’s theorem holds for f(T ) for every f ∈ Hol(σ(T )).

Proof. Since σea(f(T )) = f(σea(T )), the rest of the proof follows as in the proof
of Corollary 2.3 in [20]. �

Theorem 5.10. Let T ∈ B(H) be absolute-k∗-paranormal for 0 < k ≤ 1. If
S ∼ T , then a-Browder’s theorem holds for f(S) for every f ∈ Hol(σ(T )).

Proof. Since a-Browder’s theorem holds for S, we have

σab(f(S)) = f(σab(S)) = f(σea(S)) = σea(f(S)).

Hence a-Browder’s theorem holds for f(S). �

A complex number λ is said to be in the approximate point spectrum, σa(T ),
of T if there is a sequence {xn}∞n=1 of unit vectors in H such that (T −λ)xn → 0.
If in addition, (T −λ)∗xn → 0, then λ is said to be in the approximate joint point
spectrum, σja(T ), of T .
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Theorem 5.11. Let T ∈ B(H) be absolute-k∗-paranormal with 0 < k ≤ 1. If
λ ∈ σa(T ), then λ ∈ σja(T ).

Proof. Assume that λ ∈ σa(T ), then there is a sequence {xn}∞n=1 of unit vectors
in H such that (T − λ)xn → 0. Since T is absolute-k∗-paranormal, ‖T ∗xn‖k+1 ≤
‖|T |kTxn‖ for every unit sequence {xn}∞n=1 ⊂ H. Hence

‖T ∗xn‖k+1 ≤ ‖|T |kTxn‖
= 〈|T |2kTxn, Txn〉

1
2

≤ 〈|T |2Txn, Txn〉
k
2 ‖Txn‖1−k

= ‖T 2xn‖k‖Txn‖1−k

Since (T − λ)xn → 0, then limn→∞ ‖T ∗xn‖ ≤ |λ|, and we have

‖(T ∗ − λ)xn‖2

= 〈(T − λ)∗xn, (T − λ)∗xn〉
= ‖T ∗xn‖2 − 〈xn, λTxn〉 − 〈λTxn, xn〉+ |λ|2‖xn‖2.

Therefore ‖(T ∗−λ)xn‖2 → 0 as n→∞ and so (T ∗−λ)xn → 0 as n→∞. �

Acknowledgment. Authors would like to thank referee for valuable com-
ments given in the paper.
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