
Ann. Funct. Anal. 6 (2015), no. 3, 275–295

http://doi.org/10.15352/afa/06-3-20

ISSN: 2008-8752 (electronic)

http://projecteuclid.org/afa

ADVANCES IN OPERATOR CAUCHY–SCHWARZ INEQUALITIES AND
THEIR REVERSES

J. M. ALDAZ1, S. BARZA2∗, M. FUJII3, M. S. MOSLEHIAN4

Communicated by T. Yamazaki

Abstract. The Cauchy-Schwarz (C-S) inequality is one of the most famous inequalities in

mathematics. In this survey article, we first give a brief history of the inequality. Afterward,

we present the C-S inequality for inner product spaces. Focusing on operator inequalities, we

then review some significant recent developments of the C-S inequality and its reverses for

Hilbert space operators and elements of Hilbert C∗-modules. In particular, we pay special

attention to an operator Wielandt inequality.

1. Introduction

One of the fundamental inequalities in mathematics is the Cauchy–Schwarz (C-S) inequal-

ity, which is known in the literature also as the Cauchy inequality, the Schwarz inequality

or the Cauchy–Bunyakovsky–Schwarz inequality. Its most familiar version states that in a

semi-inner product space (X , 〈·, ·〉), it holds

|〈x, y〉| ≤ ‖x‖‖y‖ (x, y ∈X ), (1.1)
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where ‖x‖ := 〈x, x〉1/2. Equality in (1.1) occurs if and only if any one of x, y is a scalar

multiple of the other. Inequality (1.1) is equivalent to the positive semi-definiteness of the

Gram matrix

[
〈x, x〉 〈x, y〉
〈y, x〉 〈y, y〉

]
.

Let us have a look at its historical origin. In 1821, Augustin-Louis Cauchy [12] established

the inequality for sums, namely(
n∑
i=1

aibi

)2

≤
n∑
i=1

a2
i

n∑
i=1

b2
i (ai, bi ∈ R) . (1.2)

In 1859, Viktor Bunyakovsky [10], who was a student of Cauchy, gave a version for integrals

in the form ∣∣∣∣∫ b

a

f(t)g(t)dt

∣∣∣∣2 ≤ ∫ b

a

|f(t)|2dt
∫ b

a

|g(t)|2dt (f, g ∈ L2([a, b])),

with equality when there exist constants α, β not both equal to zero such that α
∫ s
a
f(t)dt =

β
∫ s
a
g(t)dt for all s ∈ [a, b]. The general form of the C-S inequality for inner product spaces

was proved by Hermann Amandus Schwarz in 1885; see also [45].

The C-S inequality is a very important inequality with many elegant applications, for

instance, in

• Classical and modern analysis

The C-S inequality is used

(i) to show the triangle inequality for ‖x‖ := 〈x, x〉1/2;

(ii) to prove the continuity of the inner product 〈·, ·〉;
(iii) to establish the Bessel inequality;

(iv) to extend the notion of “angle θx,y between two vectors x, y in the Euclidean

plane” to any real inner product space by cos θx,y := 〈x,y〉
‖x‖ ‖y‖ ;

(v) to prove some classical inequalities. For example, in order to prove that if

a1, · · · , an are non-negative real numbers such that a1 + · · · + an ≤ n, then 1
a1

+

· · ·+ 1
an
≥ n, it is enough to put xi =

√
ai and yi = 1/

√
ai in the C-S inequality (1.1).

• Partial differential equations

One may seek some inequalities, which relates norms of functions to norms of their

derivatives

• Multivariable calculus

Using the C-S inequality we have |Du(f)| ≤ |∇f | |u|, where Du(f) denotes the direc-

tional derivative of f in the direction u and ∇f is the gradient vector of f .



ADVANCES IN OPERATOR CAUCHY–SCHWARZ INEQUALITIES AND THEIR REVERSES 277

• Probability theory

The variance-covariance inequality cov(X, Y ) ≤ var(X)var(Y ) for random variables

X and Y is a consequence of the C-S inequality.

• Physics

Schrödinger derived the so-called Schrödinger uncertainity relation from the C-S in-

equality and then obtained the Heisenberg uncertainty relation σ2
xσ

2
y ≥ ~2/4 in the

Hilbert space of quantum observables as a special case.

2. C-S inequality in classical analysis

For real inner product spaces, there are some elegant proofs of the C-S inequality. Assume

that ‖x‖ = ‖y‖ = 1. Then, the fact that 0 ≤ 〈x− y, x− y〉 = 〈x, x〉 − 2〈x, y〉+ 〈y, y〉 implies

that 〈x, y〉 ≤ 1 = ‖x‖ ‖y‖.
A similar argument can be used to derive the C-S inequality from the parallelogram

identity

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2. (2.1)

This was noticed in [1] for real inner product spaces, with the modifications in the complex

case appearing in the latter paper [2]. In the real case, for non-zero vectors x and y, the

parallelogram identity can simply be rewritten (we give the details in the proof of the next

theorem) as

〈x, y〉 = ‖x‖‖y‖

(
1− 1

2

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)
. (2.2)

Thus, the size of 〈x, y〉 is determined by the angular distance
∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥ between x and y.

In particular, 〈x, y〉 ≤ ‖x‖‖y‖, with equality precisely when the angular distance is zero.

In what follows it is convenient to replace the nonzero vectors x and y by unit vectors

u = x/‖x‖ and v = y/‖y‖.

Theorem 2.1. For all nonzero vectors x and y in a complex inner product space,

Re〈x, y〉 = ‖x‖‖y‖

(
1− 1

2

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)

(2.3)

and

Im〈x, y〉 = ‖x‖‖y‖

(
1− 1

2

∥∥∥∥ x

‖x‖
− iy

‖y‖

∥∥∥∥2
)
. (2.4)
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Proof. Let ‖u‖ = ‖v‖ = 1. From (2.1) we obtain

4− ‖u− v‖2 = ‖u+ v‖2 = 2 + 〈u, v〉+ 〈v, u〉 = 2 + 〈u, v〉+ 〈u, v〉 = 2 + 2 Re〈u, v〉.

Thus, Re〈u, v〉 = 1− 1
2
‖u− v‖2 . The same argument, applied to ‖u+ iv‖2, yields Im〈u, v〉 =

1− 1
2
‖u− iv‖2 . �

Let Arg z denote the principal argument of z ∈ C, z 6= 0. That is, −π < Arg z ≤ π, and

in polar coordinates, z = eiArg zr, where r = |z|.

Theorem 2.2. Let x and y be nonzero vectors in a complex inner product space. Then

|〈x, y〉| = ‖x‖‖y‖

(
1− 1

2

∥∥∥∥e−iArg〈x,y〉x

‖x‖
− y

‖y‖

∥∥∥∥2
)
. (2.5)

Proof. By a normalization, it is enough to consider unit vectors u and v. Set t = Arg〈u, v〉,
so 〈u, v〉 = eitr in polar form. Using (2.3) we obtain

|〈u, v〉| = r = 〈e−itu, v〉 = Re〈e−itu, v〉 = 1− 1

2

∥∥e−itu− v∥∥2
.

�

And now C-S inequality follows, with equality for nonzero x, y precisely when one of the

vectors is a scalar multiple of the other, that is, when for some α ∈ R, eiαx
‖x‖ = y

‖y‖ .

There are also several proofs “without words”. Among them we mention the following

interesting one for (1.2) due to Nelsen [40]:
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There are some inequalities equivalent to the C-S inequality. One of them is the Wagner

inequality which follows by employing the C-S inequality (1.1) to the following semi-inner

product

[f, g] :=

∫
Ω

Re 〈f(t), g(t)〉 dµ+ α

∫∫
Ω×Ω−∆(Ω×Ω)

Re 〈f(t), g(s)〉 d(µ× µ) .

Theorem 2.3. [17] Suppose that (Ω, µ) is a measure space, f, g are Bochner integrable

Hilbert space-valued functions on Ω and α ∈ [0, 1]. Then(∫
Ω

Re 〈f(t), g(t)〉 dµ+ α

∫∫
Ω×Ω−∆(Ω×Ω)

Re 〈f(t), g(s)〉 d(µ× µ)
)2

(2.6)

≤
(∫

Ω

‖f(t)‖2dµ+ α

∫∫
Ω×Ω−∆(Ω×Ω)

Re 〈f(t), f(s)〉 d(µ× µ)

)
×
(∫

Ω

‖g(t)‖2dµ+ α

∫∫
Ω×Ω−∆(Ω×Ω)

Re 〈g(t), g(s)〉 d(µ× µ)

)
.

If Ω = {1, · · · , n}, µ({i}) = 1, f(i) = ai ∈ R, g(i) = bi ∈ R, then we get the following

classical Wagner inequality:

Corollary 2.4. [48] Let a1, . . . , an and b1, . . . , bn be real numbers. Then(
n∑
i=1

aibi + α
∑

1≤i 6=j≤n

aibj

)2

≤

(
n∑
i=1

a2
i + α

∑
1≤i 6=j≤n

aiaj

)(
n∑
i=1

b2
i + α

∑
1≤i 6=j≤n

bibj

)
Let (Ω, µ) be a measure space, ρ : Ω→ [0,∞) be a measurable function and

L2
ρ(Ω, µ) := {f : Ω→ C | f is measurable and

∫
Ω

ρ(t)|f(t)|2dµ(t) <∞} ,

which is a Hilbert space equipped with the natural inner product 〈f, g〉 =
∫

Ω
ρfgdµ (f, g ∈

L2
ρ(Ω, µ)). From Theorem 2.3 we get now the following corollary.

Corollary 2.5. Let (Ω, µ) be a positive measure space, ρ : Ω → [0,∞) be a measurable

function and f1, · · · , fn, g1, · · · , gn be real-valued functions of L2
ρ(Ω, µ). Then( n∑

i=1

∫
Ω

ρ(t)fi(t)gi(t)dµ(t) + α
∑

1≤i 6=j≤n

∫
Ω

ρ(t)fi(t)gj(t)dµ(t)
)2

≤

(
n∑
i=1

∫
Ω

ρ(t)|fi(t)|2dµ(t) + 2α
∑

1≤i<j≤n

∫
Ω

ρ(t)fi(t)fj(t)dµ(t)

)

×

(
n∑
i=1

∫
Ω

ρ(t)|gi(t)|2dµ(t) + 2α
∑

1≤i<j≤n

∫
Ω

ρ(t)gi(t)gj(t)dµ(t)

)
.
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Several mathematicians generalized the C-S inequality in different ways; see [16]. For

instance, Buzano [11] showed that |〈x, z〉〈z, y〉| ≤ 1
2
(‖x‖‖y‖+|〈x, y〉|)·‖z‖2 for three elements

x, y, z in a real or complex Hilbert space. In addition, Alzer [3] proved that the inequality( n∑
k=1

akbk

)2

≤
n∑
k=1

bk

n∑
k=1

(
α +

β

k

)
a2
kbk

holds for all natural numbers n and for all real numbers ak and bk (k = 1, · · · , n) with

0 < a1 ≤ a2/2 ≤ · · · ≤ an/n and 0 < bn ≤ bn−1 ≤ · · · ≤ b1, if and only if α ≥ 3/4 and

β ≥ 1− α.

3. Operator versions of the C-S inequality

Let B(H ) denote the C∗-algebra of all bounded linear operators on a complex Hilbert

space (H , 〈·, ·〉) equipped with the operator norm and the adjoint operation A 7→ A∗ via

〈Ax, y〉 = 〈x,A∗y〉. From now on, a capital letter denotes an operator in B(H ). If dim H =

n, then B(H ) can be identified with the space Mn of all n×n complex matrices. We identify

a scalar with the identity operator I multiplied by this scalar. An operator A ∈ B(H ) is

called self-adjoint if A∗ = A.

For self-adjoint operators A,B ∈ B(H ) the partially ordered relation B ≤ A means that

〈Bx, x〉 ≤ 〈Ax, x〉 for all x ∈ H . In particular, if A ≥ 0, then A is called positive. If A

is a positive invertible operator, then we write A > 0. A map Φ : A → B between two

C∗-algebras is said to be positive if Φ(A) ≥ 0 whenever A ≥ 0. It is called n-positive if

Φ ⊗ In : Mn(A ) → Mn(B) is positive, where Mn(A ) is the C∗-algebra of n × n matrices

with entries in A and In denotes its identity matrix. We say that Φ is completely positive

if it is n-positive for all n. If Φ preserves the identity, then it is called unital. The reader is

referred to [26] for undefined notations and terminologies.

Let Φ : A → B be a unital positive linear map between C∗-algebras. Kadison [31]

generalized the C-S inequality by showing that Φ(A2) ≥ Φ(A)2 for every self-adjoint operator

A in A . Choi [14] extended the result of Kadison. To establish Choi’s result we need the

following two theorems:

Theorem 3.1. [46] If Φ : A → B is a unital positive linear map and A is commutative,

then Φ is completely positive.

Theorem 3.2 (Stinespring Theorem). [46] Suppose that Φ is a completely positive unital

map from a C∗-algebra A into B(K ). Then there exist a representation π of A on a Hilbert

space H and an isometry V from H into K such that Φ(X) = V ∗π(X)V for all X ∈ A .
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Theorem 3.3 (Choi inequality). [14] Suppose that Φ : A → B is a unital positive linear

map. Then

Φ(A∗A) ≥ Φ(A)∗Φ(A)

for all normal operators A ∈ B(H ).

Proof. Let C∗(A, I) denote the commutative C∗-algebra generated by A and I. The restric-

tion of Φ to C∗(A, I) is completely positive. Hence, by the Stinespring Theorem, it admits

a decomposition of the form Φ(X) = V ∗π(X)V (X ∈ C∗(A, I)), where π is a representation

of C∗(A, I) on a Hilbert space L and V is an isometry from L into K . We have

Φ(A)∗Φ(A) = V ∗π(A∗)V V ∗π(A)V ≤ V ∗π(A∗)π(A)V = V ∗π(A∗A)V = Φ(A∗A) ,

since V ∗V = I. Therefore ‖V V ∗‖ = ‖V ∗V ‖ = 1 and hence V V ∗ ≤ I . �

If Φ is a completely positive map on B(H ), then the covariance between any two op-

erators is defined by cov(A,B) = φ(A∗B) − φ(A)∗φ(B). Bhatia and Davis [9] generalized

Kadison’s Schwarz inequality by showing that for any operators A1, . . . , An, the block matrix

[cov(Ai, Aj)] is positive. Mathias [37] proved that for any (n + 1)-positive map Φ and any

bounded linear operators Ai, i = 1, . . . , n, it holds that [Φ(A∗iAj)]
n
i,j=1 ≥ [Φ(Ai)

∗Φ(Aj)]
n
i,j=1

and showed that if (n+ 1)-positive is replaced by n-positive, then the statement is not valid

in general. An application of the covariance-variance inequality to the C-S inequality was

obtained by M. Fujii et al. [22].

For positive operators {Ai}mi=1 and {Bi}mi=1 in B(H ), the inequality

m∑
i=1

Ai]Bi ≤

(
m∑
i=1

Ai

)
]

(
m∑
i=1

Bi

)
,

which is equivalent to the concavity of the operator geometric mean ], defined by A]B :=

A1/2(A−1/2BA−1/2)1/2A1/2, is an operator C-S type inequality; see, e.g, [26, Chapter V]. Fur-

thermore, some C-S inequalities for Hilbert space operators and matrices involving unitarily

invariant norms were given by Jocić [29] and Kittaneh [32]. A refinement of the C-S inequal-

ity involving operator means is investigated by Wada [47]. Some operator versions of the

C-S inequality with simple conditions for the case of equality are presented by Fujii [19].

In addition, there are some generalization of the C-S inequality for matrices and unitarily

invariant norms. For instance, Bhatia and Davis [8] proved that

||| |A∗XB|r |||2 ≤ ||| |AA∗X| r|||.||| |XBB∗| r|||, (3.1)

holds for all A,B,X ∈Mn and any real number r > 0.
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4. C-S inequality and its reverse in Hilbert C∗-modules

The notion of semi-inner product C∗-module is a natural generalization of that of semi-

inner product space arising under replacement of the field of scalars C by a C∗-algebra. Let

A be a C∗-algebra and let X be an algebraic right A -module which is a complex linear

space with (λx)A = x(λA) = λ(xA) for all x ∈ X , A ∈ A , λ ∈ C. The space X is said to

be a (right) semi-inner product A -module if there exists an A -valued inner product, i.e., a

mapping 〈·, ·〉 : X ×X → A satisfying

(i) 〈x, x〉 ≥ 0, where “≥” denotes the usual order in the real space of self-adjoint elements

of A ;

(ii) 〈x, λy + z〉 = λ〈x, y〉+ 〈x, z〉;
(iii) 〈x, yA〉 = 〈x, y〉A;

(iv) 〈x, y〉∗ = 〈y, x〉.

for all x, y, z ∈X , A ∈ A , λ ∈ C. Moreover, if

(v) x = 0 whenever 〈x, x〉 = 0,

then X is called an inner product C∗-module over the C∗-algebra A . Clearly, every inner

product space is an inner product C-module. One can define a norm on X by ‖x‖ =

‖〈x, x〉‖ 1
2 , where the latter norm is the norm in the C∗-algebra A . If this normed space is

complete, then X is called a Hilbert A -module. A left inner product A -module can be

defined analogously. Any C∗-algebra A under 〈A,B〉 := A∗B (A,B ∈ A ) can be regarded

as a right Hilbert C∗-module over itself.

Let A be a C∗-algebra with center Z(A ) = {A ∈ A : AB = BA for all B ∈ A } and let

(X , 〈·, ·〉) be a semi-inner product A -module. The following C-S inequality, whose proof is

analogue to that of the classical one, is known [34]

〈x, y〉∗〈x, y〉 ≤ ‖〈x, x〉‖〈y, y〉 (x, y ∈X ).

Ilǐsević and Varošanec [28] improved this inequality by showing that if x, y ∈X and 〈x, x〉 ∈
Z(A ), then

〈x, y〉∗〈x, y〉 ≤ 〈x, x〉〈y, y〉.

Another version of the C-S inequality is presented in [20], in which the authors assume the

invertibility of 〈y, y〉 instead of 〈x, x〉 ∈ Z(A ). More precisely, they showed that if X is a

semi-inner product C∗-module over A and x, y ∈X such that 〈y, y〉 is invertible, then

〈x, y〉〈y, y〉−1〈x, y〉∗ ≤ 〈x, x〉.
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Ma [36] proved that∣∣‖z‖2〈x, y〉 − 〈x, z〉〈y, z〉
∣∣2 ≤ (‖z‖2‖x‖2 − 〈x, z〉2

) (
‖z‖2‖y‖2 − 〈y, z〉2

)
.

for x, y, z in a real inner product space (H , 〈·, ·〉), which is nothing else than the C-S in-

equality for the semi-inner product 〈x, y〉z := ‖z‖2 〈x, y〉 − 〈x, z〉〈z, y〉. Arambasić et al. [5]

showed the following C-S inequality for the semi-inner product 〈·, ·〉z on a semi-inner product

module X :

(‖z‖2 〈y, x〉 − 〈y, z〉〈z, x〉)(‖z‖2 〈x, y〉 − 〈x, z〉〈z, y〉)

≤
∥∥‖z‖2 〈x, x〉 − 〈x, z〉〈z, x〉

∥∥ (‖z‖2 〈y, y〉 − 〈y, z〉〈z, y〉), (4.1)

which generalizes the result of [36]. In particular, if 〈x, z〉 = 0, then

|〈z, y〉|2 ≤ ‖z‖
2

‖x‖2
(‖x‖2|y|2 − |〈x, y〉|2), (4.2)

which presents an Ostrowski type inequality in a semi-inner product C∗-module.

The next result is a generalization of both Klamkin–Mclenaghan’s inequality and Shisha–

Mond’s inequality, see also [18, Theorem 2]. To prove it we need the following lemma.

Lemma 4.1. [20] Let X be a semi-inner product C∗-module over A . Suppose that x, y ∈X

such that 〈x, y〉 is normal and

Re〈Ay − x, x−By〉 ≥ 0 (4.3)

for some A,B ∈ Z(A ). Then

〈x, x〉+ Re(AB∗)〈y, y〉 ≤ |B + A| |〈x, y〉| , (4.4)

where |A| denotes the positive square root of the positive operator A∗A for A ∈ A and

ReA = (A+ A∗)/2 is the real part of A.

Theorem 4.2. [20] Let X be a semi-inner product C∗-module over A . Suppose that x, y ∈
X such that 〈x, y〉 is normal and invertible, 〈y, y〉 is invertible and A,B ∈ Z(A ) satisfy

Re(AB∗) ≥ 0 and (4.3). Then

|〈x, y〉|−
1
2 〈x, x〉|〈x, y〉|−

1
2 − |〈x, y〉|

1
2 〈y, y〉−1|〈x, y〉|

1
2 ≤ |A+B| − 2Re(AB∗)

1
2 .
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Proof. Employing Lemma 4.1 we get

|〈x, y〉|−
1
2 〈x, x〉|〈x, y〉|−

1
2 − |〈x, y〉|

1
2 〈y, y〉−1|〈x, y〉|

1
2

≤ |A+B| − Re(AB∗)|〈x, y〉|−
1
2 〈y, y〉|〈x, y〉|−

1
2 − |〈x, y〉|

1
2 〈y, y〉−1|〈x, y〉|

1
2

= |A+B| − 2Re(AB∗)
1
2

−
(

Re(AB∗)
1
2 (|〈x, y〉|−

1
2 〈y, y〉|〈x, y〉|−

1
2 )

1
2 − (|〈x, y〉|

1
2 〈y, y〉−1|〈x, y〉|

1
2 )

1
2

)2

≤ |A+B| − 2Re(AB∗)
1
2 .

�

A weighted integral version of Klamkin–Mclenaghan’s inequality reads as follows.

Corollary 4.3. Let f, g ∈ L2
ρ(Ω, µ) be real functions such that

∫
Ω
ρfgdµ 6= 0, g 6= 0 almost

everywhere and mg ≤ f ≤Mg for some scalars M > m > 0. Then∫
Ω
ρ|f |2dµ∣∣∫

Ω
ρfgdµ

∣∣ −
∣∣∫

Ω
ρfgdµ

∣∣∫
Ω
ρ|g|2dµ

≤ (
√
M −

√
m)2 .

Proof. Theorem 4.2 ensures the desired inequality since 〈Mg − f, f −mg〉 ≥ 0. �

The next result gives an additive reverse C-S inequality.

Theorem 4.4. [20] Let X be a semi-inner product C∗-module over A . Suppose that x, y ∈
X such that 〈x, y〉 is normal, and A,B ∈ Z(A ), |A+B| is invertible and (4.3) holds. Then

Re
(
〈x, x〉

1
2 〈y, y〉

1
2

)
− |〈x, y〉| ≤ 1

4
|A−B|2|A+B|−1〈y, y〉 .

Proof. It follows from Lemma 4.1 that

Re
(
〈x, x〉

1
2 〈y, y〉

1
2

)
− |〈x, y〉|

≤ Re
(
〈x, x〉

1
2 〈y, y〉

1
2

)
− |A+B|−1〈x, x〉 − |A+B|−1Re(AB∗)〈y, y〉

=

[
1

4
|A+B| − Re(AB∗)|A+B|−1

]
〈y, y〉

−|A+B|−1

(
〈x, x〉

1
2 − 1

2
|A+B| 〈y, y〉

1
2

)2

≤ 1

4

[
|A+B|2 − 4Re(AB∗)

]
|A+B|−1〈y, y〉

=
1

4
|A−B|2|A+B|−1〈y, y〉 .

�
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Corollary 4.5. Let ϕ be a positive linear functional on a C∗-algebra A and let A,B ∈ A

be such that

Reϕ((ΛB − A)∗(A− λB)) ≥ 0

for some λ,Λ ∈ C. Then

ϕ(A∗A)1/2ϕ(B∗B)1/2 − |ϕ(B∗A)| ≤ |Λ− λ|
2

4|Λ + λ|
min{ϕ(B∗B), ϕ(A∗A)} .

Proof. The C∗-algebra A can be regarded as a semi-inner product module over C via

〈A,B〉 = ϕ(B∗A). Now the required inequality follows from Theorem 4.4 and an obvious

symmetry argument. �

5. Reverse C-S inequality in the classical analysis

Probably the first reverse C-S inequality for positive real numbers a1, · · · , an is the follow-

ing one due to G. Pólya and G. Szegö; see e.g. [42, p. 57 and 213-214]):

n∑
i=1

a2
i

n∑
i=1

b2
i ≤

(m1m2 +M1M2)2

4m1m2M1M2

(
n∑
i=1

aibi

)2

, (5.1)

where 0 < m1 ≤ ai ≤M1 , 0 < m2 ≤ bi ≤M2 (1 ≤ i ≤ n) for some constants m1,m2,M1,M2.

The inequality is sharp in the sense that 1/4 is the best possible constant. Another version

of (5.1), which is a direct consequence of the arithmetic–geometric mean inequality reads as

follows:

n∑
i=1

a2
i

n∑
i=1

b2
i ≤

(M +m)2

4Mm

(
n∑
i=1

aibi

)2

, (5.2)

whenever 0 < mbi ≤ ai ≤ Mbi. Equality holds if and only if there exist a permutation σ of

{1, · · · , n} and 0 ≤ j ≤ n such that aσ(i) = mbσ(i) for 1 ≤ σ(i) ≤ j and aσ(i) = Mbσ(i) for

j + 1 ≤ σ(i) ≤ n as well as m
∑j

σ(i)=1 b
2
σ(i) = M

∑n
σ(i)=j+1 b

2
σ(i).

We remark that (5.1) can be rewritten in the following equivalent form

n∑
i=1

a2
i

n∑
i=1

b2
i −

(
n∑
i=1

aibi

)2

≤ (M1M2 −m1m2)2

4m1m2M1M2

(
n∑
i=1

aibi

)2

. (5.3)

Inequality (5.1) is a multiplicative form and inequality (5.3) is an additive form of the reverse

C-S inequality.

There are several reverse C-S inequalities in the literature:

(i) If (a1, . . . , an) and (b1, . . . , bn) are n-tuples of real numbers with 0 < m1 ≤ ai ≤
M1 (1 ≤ i ≤ n), 0 < m2 ≤ bi ≤M2 (1 ≤ i ≤ n), then
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• Diaz–Metcalf inequality [15]

n∑
k=1

b2
k +

m2M2

m1M1

n∑
k=1

a2
k ≤

(
M2

m1

+
m2

M1

) n∑
k=1

akbk .

• Pólya–Szegö inequality [42]∑n
k=1 a

2
k

∑n
k=1 b

2
k

(
∑n

k=1 akbk)
2 ≤ 1

4

(√
M1M2

m1m2

+

√
m1m2

M1M2

)2

;

• Shisha–Mond inequality [44]∑n
k=1 a

2
k∑n

k=1 akbk
−
∑n

k=1 akbk∑n
k=1 b

2
k

≤

(√
M1

m2

−
√
m1

M2

)2

;

(ii) If (a1, . . . , an) and (b1, . . . , bn) are n-tuples of real numbers with 0 < mbi ≤ ai ≤
Mbi (1 ≤ i ≤ n), then

• Cassels inequality [49]∑n
k=1 wka

2
k

∑n
k=1wkb

2
k

(
∑n

k=1 wkakbk)
2 ≤ (M +m)2

4mM
;

• Klamkin–McLenaghan inequality [33]

n∑
k=1

wka
2
k

n∑
k=1

wkb
2
k −

(
n∑
k=1

wkakbk

)2

≤
(√

M −
√
m
)2

n∑
k=1

wkakbk

n∑
k=1

wka
2
k.

Now, let Γ be a nonempty set and let L be a linear space of real-valued functions h : Γ→ R
having the property that e(t) = 1 (t ∈ Γ) belongs to L. A linear functional ψ on L with

ψ(f) ≥ 0 for f(t) ≥ 0 (t ∈ Γ) is called an isotonic linear functional. Dragomir [16] gave some

generalizations of the C-S inequality. In particular, he showed that if f , g, fg, f 2, g2, f |f |,
f |g|, g|g|, |f |g all belong to L, then for any two isotonic linear functionals ψ, τ : L → R, one

has

ψ(f 2)τ(g2)− 2ψ(fg)τ(fg) + ψ(g2)τ(f 2)

≥
∣∣ψ(f |f |)τ(g|g|) + ψ(g|g|)τ(f |f |)− ψ(|f |g)τ(f |g|)− ψ(f |g|)τ(|f |g)

∣∣.
Similar results for integrals, isotonic functionals as well as generalizations of reverse C-S

inequality in the setting of inner product spaces are well-studied; see e.g. [16]. Zagier [50]

showed that if f, g : [0,∞)→ [0,∞) are decreasing functions, then

max

{
f(0)

∫ ∞
0

g(t) dt, g(0)

∫ ∞
0

f(t) dt

}
.

∫ ∞
0

f(t)g(t) dt ≥
(∫ ∞

0

f(t)2 dt

)(∫ ∞
0

g(t)2 dt

)
.
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Cerone et al. [13] presented a number of reverses of the C-S inequality in the general setting

of 2-inner product spaces and an application to integral inequalities in a weighted space.

6. Operator reverse C-S inequalities

In the content of C∗-algebras, Joiţa [30] presented a condition being equivalent to the

commutativity of a C∗-algebra.

Niculescu [41] gave some multiplicative and additive converses of the C-S inequality in the

setting of C∗-algebras. He showed that if ϕ is a positive linear functional on a C∗-algebra,

〈C,D〉 is the semi-inner product defined by ϕ(D∗C), mB ≤ A ≤ MB, where A,B are

selfadjoint and m,M are positive real numbers, then

Re〈A,B〉 ≥ 2
√
mM

m+M
〈A,A〉

1
2 · 〈B,B〉

1
2

provided that either AB = BA or ϕ(CD) = ϕ(DC) for all C,D in the C∗-algebra.

Moslehian and Persson [39] proved other reverse C-S inequalities in the framework of

C∗-algebras and C∗-modules. See also the books [26, 23] and references therein.

In [38] the authors presented a Diaz–Metcalf type operator inequality and applied it to get

the operator versions of the Pólya–Szegö, Kantorovich, Shisha–Mond, Cassels and Klamkin–

McLenaghan inequalities as some reverse C-S inequalities via a unified approach as follows:

• operator Diaz–Metcalf inequality of first type

MmΦ(A) + Φ(B) ≤ (M +m)Φ(A]B) ;

• operator Cassels inequality

Φ(A)]Φ(B) ≤ M +m

2
√
Mm

Φ(A]B) ;

• operator Klamkin–McLenaghan inequality

Φ(A]B)
−1
2 Φ(B)Φ(A]B)

−1
2 − Φ(A]B)

1
2 Φ(A)−1Φ(A]B)

1
2 ≤ (

√
M −

√
m)2 ;

• operator Kantorovich inequality

Φ(A)]Φ(A−1) ≤ M2 +m2

2Mm
,

where A,B ∈ B(H ) are positive invertible operators satisfying m2A ≤ B ≤ M2A for

some positive real numbers m,M and Φ : B(H ) → B(K ) is a positive linear map. They

also showed that if the condition m2A ≤ B ≤ M2A is replaced by m2
1 ≤ A ≤ M2

1 and
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m2
2 ≤ B ≤M2

2 for some positive real numbers m1,m2,M1,M2, then the following inequalities

hold instead:

• operator Diaz–Metcalf inequality of second type

M2m2

M1m1

Φ(A) + Φ(B) ≤
(
M2

m1

+
m2

M1

)
Φ(A]B) ;

• operator Pólya–Szegö inequality

Φ(A)]Φ(B) ≤ 1

2

(√
M1M2

m1m2

+

√
m1m2

M1M2

)
Φ(A]B) ;

• operator Shisha–Mond inequality

Φ(A]B)
−1
2 Φ(B)Φ(A]B)

−1
2 − Φ(A]B)

1
2 Φ(A)−1Φ(A]B)

1
2 ≤

(√
M2

m1

−
√
m2

M1

)2

;

These inequalities are indeed the operator version of the corresponding classical inequalities

mentioned in the previous section.

One can get the integral versions of discrete reverse inequalities by considering L2
ρ(Ω, µ)

as a Hilbert space, multiplication operators A,B ∈ B(L2
ρ(Ω, µ))) defined by A(h) = f 2h and

B(h) = g2h for bounded f, g ∈ L2
ρ(Ω, µ) and a positive linear map Φ by Φ(T ) =

∫
Ω
ρT (1)dµ

on B(L2(Ω, µ))). For instance, let us state integral versions of the Cassels and Klamkin–

McLenaghan inequalities.

Corollary 6.1. [38, Corollary 3.1] Let f, g ∈ L2
ρ(Ω, µ) with 0 ≤ mg(t) ≤ f(t) ≤ Mg(t) for

some positive scalars m,M a.e.. Then∫
Ω

ρ(t)f(t)2dµ(t)

∫
Ω

ρ(t)g(t)2dµ(t) ≤ (M +m)2

4Mm

(∫
Ω

ρ(t)f(t)g(t)dµ(t)

)2

and∫
Ω

ρ(t)f(t)2dµ(t)

∫
Ω

ρ(t)g(t)2dµ(t) −
(∫

Ω

ρ(t)f(t)g(t)dµ(t)

)2

≤
(√

M −
√
m
)2
∫

Ω

ρ(t)f(t)g(t)dµ(t)

∫
Ω

ρ(t)f(t)2dµ(t) .

If we consider the positive linear functional Φ(A) =
∑n

i=1〈Axi, xi〉 (A ∈ B(H )), where

x1, . . . , xn ∈ H are fixed vectors, we get the following versions of the Diaz–Metcalf and

Pólya–Szegö inequalities in the framework of Hilbert spaces.
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Corollary 6.2. [38, Corollary 3.2] Let H be a Hilbert space, let x1, . . . , xn ∈ H and let

A,B ∈ B(H ) be positive operators satisfying 0 < m1 ≤ A ≤ M1 and 0 < m2 ≤ B ≤ M2.

Then

M2m2

M1m1

n∑
i=1

‖Axi‖2 +
n∑
i=1

‖Bxi‖2 ≤
(
M2

m1

+
m2

M1

) n∑
i=1

‖(A2]B2)1/2xi‖2

and (
n∑
i=1

‖Axi‖2

)1/2( n∑
i=1

‖Bxi‖2

)1/2

≤ 1

2

(√
M1M2

m1m2

+

√
m1m2

M1M2

)
n∑
i=1

‖(A2]B2)1/2xi‖2 .

An inequality complementary to the C-S inequality is given by Lee [35]. She showed that if

Φ is a positive linear map and A,B are positive definite matrices such that mA ≤ B ≤MA

for some positive real numbers m,M , then

Φ(A)]Φ(B) ≤ (M/m)1/4 + (m/M)1/4

2
Φ(A]B).

For a fixed orthonormal basis {en} of a separable Hilbert space H , the Hadamard (or

Schur) product A ◦B of two bounded operators A and B acting on H is defined by

〈(A ◦B)ei, ej〉 = 〈Aei, ej〉〈Bei, ej〉.

There are some C-S inequalities for Hadamard product. The following inequality is due to

Ando [4]

A ◦B ≤ (A2 ◦ I)1/2(B2 ◦ I)1/2 (A,B ≥ 0)

and another is proved by Aujla and Vasudeva [6]

A ◦B ≤ (A2 ◦B2)1/2 (A,B ≥ 0).

Horn and Mathias [43] proved the following C-S type inequalities for n×n complex matrices

A,B, the inequalities ‖A∗B‖2 ≤ ‖A∗A‖ ‖B∗B‖ and ‖A ◦B‖2 ≤ ‖A∗A‖ ‖B∗B‖ hold.

7. Operator Wielandt inequality

In this section, we pay attention to the Wielandt inequality [27, 7.4.32], an improvement

of the C-S inequality,

|〈Ay, x〉|2 ≤
(
M −m
M +m

)2

〈Ax, x〉〈Ay, y〉 , (7.1)
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where A is a positive operator with m ≤ A ≤ M for some positive real numbers m,M and

x, y are orthogonal vectors.

In accordance with [21], we pose two proofs of the Wielandt inequality.

The first one is inspired by that of C-S inequality, in which the discriminant is used.

Proof I. It follows from m ≤ A ≤M that for all complex numbers λ,

m‖x+ λy‖2 ≤ 〈A(x+ λy), x+ λy〉 ≤M‖x+ λy‖2.

Without loss of generality we may assume that 〈Ay, x〉 ≥ 0. We have

(〈Ay, y〉 −m)t2 + 2〈Ay, x〉t+ 〈Ax, x〉 −m ≥ 0, and

(M − 〈Ay, y〉)t2 + 2〈Ay, x〉t+M − 〈Ax, x〉 ≥ 0

for all real numbers t. By (first) ×M + (second)×m, we observe that

(M −m)〈Ay, y〉t2 + 2(M +m)〈Ay, x〉t+ (M −m)〈Ax, x〉 ≥ 0 (t ∈ R),

or equivalently,

(M +m)2〈Ay, x〉2 ≤ (M −m)2〈Ax, x〉〈Ay, y〉,

which implies (7.1). �

Another proof is along with [7.4.26] in Horn-Johnson’s textbook [27].

Proof II. Set

C =

(
〈Ax, x〉 〈Ay, x〉
〈x,Ay〉 〈Ay, y〉

)
.

Then m ≤ C ≤ M since for any unit vector z = t(α, β) ∈ C2, ‖αx + βy‖ = ‖z‖ = 1 and

〈Cz, z〉 = 〈A(αx+ βy), αx+ βy〉 ∈ [m,M ]. So the spectrum σ(C) = {a, b} ⊆ [m,M ]. Since

1− |〈Ay, x〉|2

〈Ax, x〉〈Ay, y〉
=

4 detC

(trC)2 − (〈Ax, x〉 − 〈Ay, y〉)2
≥ 4 detC

(trC)2
=

4ab

(a+ b)2
,

we have

|〈Ay, x〉|2

〈Ax, x〉〈Ay, y〉
≤ 1− 4ab

(a+ b)2
=

(
1− b

a

1 + b
a

)2

≤

(
1− M

m

1 + M
m

)2

=

(
M −m
M +m

)2

by the monotonicity of the function t−1
t+1

. �

The Wielandt inequality was generalized by Bauer and Householder, see e.g. [7, Theorem

II]:

|〈Ay, x〉|2 ≤
(
M0 −m0

M0 +m0

)2

〈Ax, x〉〈Ay, y〉 ,
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A is a positive operator satisfying m ≤ A ≤M for some positive real numbers m,M , x, y are

unit vectors, M0 = M(1+|〈x, y〉|) and m0 = m(1−|〈x, y〉|). This is called Bauer–Householder

inequality.

The second proof is generalized in order to correspond to the Bauer–Householder inequal-

ity.

Lemma 7.1. If A satisfies m ≤ A ≤M for some positive real numbers m,M and

C =

(
〈Ax, x〉 〈Ay, x〉
〈x,Ay〉 〈Ay, y〉

)
for given unit vectors x, y. Then m0 ≤ C ≤ M0, where M0 = M(1 + |〈x, y〉|) and m0 =

m(1− |〈x, y〉|).

Proof. We take X = [x, y] of C2 into H , i.e., [x, y] t(α β) = αx + βy. Then we have

C = X∗AX and W−(X∗X) = co σ(X∗X) = [1 − t, 1 + t], where W−(Y ) is the closed

numerical range of Y and t = |〈x, y〉|. Hence it follows that

σ(C) ⊆ W−(C) = W−(X∗AX) ⊆ W−(A)W−(X∗X) ⊆ [m,M ][1− t, 1 + t] = [m0,M0].

�

By Lemma 7.1, we have a simple proof of the Bauer–Householder inequality. As a matter

of fact, as in the second proof,

|〈Ay, x〉|2

〈Ax, x〉〈Ay, y〉
≤ 1− 4ab

(a+ b)2
=

(
1− b

a

1 + b
a

)2

for a, b with {a, b} = σ(C). Since σ(C) ⊆ [m0,M0], we have the desired inclusion.

Next, using a similar argument as in the first proof of the Wielandt inequality, we have

the following more general inequality.

Theorem 7.2. If A satisfies m ≤ A ≤M for some positive real numbers m,M , then

|〈Ay, x〉| ≤ M −m
M +m

〈Ax, x〉
1
2 〈Ay, y〉

1
2 +

2Mm

M +m
|〈x, y〉|. (7.2)

The extension of the Heinz–Kato inequality by Furuta in [25] is called now the Heinz–

Kato–Furuta inequality. Wielandt type inequalities associated to the Heinz–Kato–Furuta

inequality are given in [24]. In the next corollary we present an equivalent inequality to

(7.2).
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Corollary 7.3. T ∈ B(H ) satisfying m ≤ T ≤ M for some positive real numbers m,M ,

Then for each γ > 0

|〈T |T |α+β−1y, x〉| ≤ Mγ −mγ

Mγ +mγ
‖|T |αy‖‖|T ∗|βx‖+

2Mγmγ

Mγ +mγ
|〈T |T |α+β−γ−1y, x〉|

holds for x, y ∈ H and α, β ∈ R.

Proof. Let T = U |T | be the polar decomposition of T . For given x, y ∈ H, we put x1 =

|T |β− γ2U∗x and y1 = |T |α− γ2 y. Since 0 < mγ ≤ |T |γ ≤ Mγ and U |T |βU∗ = |T ∗|β, we have

the conclusion by applying Theorem 7.2 to x1, y1 and A = |T |γ. �

If we take two real numbers α, β with α + β = 1 and γ = 1 in the above corollary, we

reach another equivalent inequality to (7.2).

Corollary 7.4. Let T ∈ B(H ) satisfying m ≤ T ≤M for some positive real numbers m,M .

Then

|〈Ty, x〉| ≤ M −m
M +m

‖|T |αy‖‖|T ∗|βx‖+
2Mm

M +m
|〈T |T |−1y, x〉|

holds for x, y ∈ H and α, β ∈ R.

We conclude this section with a discussion on relations among the C-S, Wielandt and

Kantorovich inequalities.

For given unit vectors x, y, we put v = y − 〈y, x〉x. Since 〈v, x〉 = 0, we get

|〈Av, x〉|2 ≤ K〈Ax, x〉〈Av, v〉,

where K =
(
M−m
M+m

)2
. The latter inequality is equivalent to

|〈Ay, x〉|2 ≤ 〈Ax, x〉〈Ay, y〉 − (
1

K
− 1)|〈y, x〉〈Ax, x〉 − 〈Ay, x〉|2,

which clearly improves C-S inequality.

If we take y = A−1x for a unit vector x in the above inequality, we obtain the Kantorovich

inequality,

〈Ax, x〉〈A−1x, x〉 ≤ (M +m)2

4Mm
if M ≥ A ≥ m > 0.
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