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MATRIX INEQUALITIES FOR THE DIFFERENCE BETWEEN
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Abstract. Motivated by the refinements and reverses of arithmetic-geometric
mean and arithmetic-harmonic mean inequalities for scalars and matrices, in
this article, we generalize the scalar and matrix inequalities for the difference
between arithmetic mean and harmonic mean. In addition, relevant inequalities
for the Hilbert-Schmidt norm and determinant are established.

1. Introduction

Let Mn(C) be the space of n × n complex matrices. I stands for the identity
matrix. The Hilbert-Schmidt norm (l2 norm, Frobenius norm or Schur norm) of
A = [aij] ∈Mn(C) is defined by

‖A‖F =

(
n∑
i=1

n∑
j=1

|aij|2
)1/2

=
(
Tr |A|2

)1/2
=

(
n∑
i=1

s2i (A)

)1/2

,

where Tr is the trace functional, |A| = (A∗A)1/2 and s1(A) ≥ s2(A) ≥ · · · ≥ sn(A)
denote the singular values of A (i.e., the eigenvalues of positive semi-definite ma-
trix |A|) arranged in non-increasing order and repeated according to multiplicity
(see [8, p.341-342]). It is well-known that each unitarily invariant norm is a sym-
metric guage function of singular values [4, p.91], so the Hilbert-Schmidt norm is
unitarily invariant.

For a, b > 0, v ∈ [0, 1] and t ∈ R, the power mean

Mt(v; a, b) =
(
vat + (1− v)bt

)1/t
, t 6= 0
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makes a path of means from the harmonic mean at t = −1 to the arithmetic
mean at t = 1 via the geometric mean at t→ 0 and M0(v; a, b) = lim

t→0
Mt(v; a, b).

If s ≤ t, then Ms(v; a, b) ≤Mt(v; a, b) and the two means are equal if and only if
a = b (see [11, p.194-196]). So

M−1(v; a, b) ≤M0(v; a, b) ≤M1(v; a, b),

that is, (
va−1 + (1− v)b−1

)−1 ≤ avb1−v ≤ va+ (1− v)b. (1.1)

Note that it is the classical arithmetic-geometric-harmonic mean inequalities and
it’s worthwhile to mention that the second one is the Young inequality, for more
details about the refinements and reverses of the Young inequality, the reader is
referred to [1, 5, 9, 14].

The following is a noncommutative matrices version of the arithmetic-geometric-
harmonic mean inequalities which are the important results from [2, 3] (See also
[12]): For positive definite matrices A,B ∈Mn(C) and 0 ≤ v ≤ 1,(

vA−1 + (1− v)B−1
)−1 ≤ A

1
2 (A−

1
2BA−

1
2 )vA

1
2 ≤ vA+ (1− v)B. (1.2)

For convenience, we introduce the following notations to define the weighted
arithmetic mean, geometric mean and harmonic mean for scalars and matrices:

Av(a, b) = va+ (1− v)b, Hv(a, b) =
(
va−1 + (1− v)b−1

)−1
,

A∇vB = vA+ (1− v)B, A#vB = A
1
2 (A−

1
2BA−

1
2 )vA

1
2 ,

A!vB =
(
vA−1 + (1− v)B−1

)−1
,

where a, b > 0, 0 ≤ v ≤ 1 and A,B ∈Mn(C) are positive definite matrices. When
v = 1

2
, we write A(a, b), H(a, b), A∇B, A#B and A!B for brevity, respectively.

The above notations and definitions will be valid throughout the whole paper.
It is evident that the full matrix algebra of all n × n matrices with entries in

the complex field is the finite-dimensional case of the C∗-algebra of all bounded
linear operators on a complex separable Hilbert space. If one inequality is valid
for positive invertible operators, so is valid for positive definite matrices.

Motivated by Furuichi’s refinement of the Young inequality for positive invert-
ible operators A,B and v ∈ [0, 1] (see [5])

A∇vB ≥ A#vB + 2 min {v, 1− v} (A∇B − A#B) , (1.3)

and Kittaneh and Manasrh’s reverse Young inequality for two positive definite
matrices A,B and v ∈ [0, 1] (see [9])

A∇vB ≤ A#vB + 2 max {v, 1− v} (A∇B − A#B) , (1.4)

Hirzallah et al.[7] generalized the inequalities (1.3) and (1.4): For positive invert-
ible operators A, B and p = (p1, p2) ∈ R2

+, if A ≥ B, 0 < p1 ≤ p2 or A ≤ B,
0 < p2 ≤ p1, then

A∇ p1
p1+p2

B ≥ A# p1
p1+p2

B +
4p1p2

(p1 + p2)2
(A∇B − A#B) , (1.5)

in addition, if A ≥ B, 0 < p2 ≤ p1 or A ≤ B, 0 < p1 ≤ p2, then the inequality
(1.5) is reversed.
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Zuo et al.[14] refined the weighted arithmetic-harmonic mean inequality and
extended it to two invertible positive operators A,B as follows:

Av(a, b) ≥ Hv(a, b) + 2 min {v, 1− v} (A(a, b)−H(a, b)) , (1.6)

A∇vB ≥ A!vB + 2 min {v, 1− v} (A∇B − A!B) . (1.7)

Krnić et al.[10] presented a reverse of the inequality (1.7)

A∇vB ≤ A!vB + 2 max{1− v, v}(A∇B − A!B). (1.8)

According to (1.8), the following scalar inequality is valid:

Av(a, b) ≤ Hv(a, b) + 2 max{1− v, v} (A(a, b)−H(a, b)) . (1.9)

Our main task is to improve the scalar and matrix inequalities of the difference
between arithmetic mean and harmonic mean. This article is organized in the
following way: in Section 2, we derive several new weighted arithmetic-harmonic
mean inequalities. In Section 3, we extend these inequalities proved in Section
2 from the scalars setting to a matrix-algebra setting. In Sections 4 and 5, the
Hilbert-Schmidt norm and determinant inequalities for positive definite matrices
are established.

2. Scalar inequalities

The first theorem is our main result about the difference between arithmetic
and harmonic means which generalizes the inequalities (1.6) and (1.9).

Theorem 2.1. Let v, τ and λ be real numbers with 0 < v < τ < 1 and λ ≥ 1.
Then (v

τ

)λ
< Mv,τ ;λ(a, b) <

(
1− v
1− τ

)λ
(2.1)

hold for all positive and distinct real numbers a and b, where Mv,τ ;λ(a, b) =
Av(a,b)λ−Hv(a,b)λ
Aτ (a,b)λ−Hτ (a,b)λ . Moreover, lim

a→0
Mv,τ ;λ(a, b) =

(
1−v
1−τ

)λ
and lim

a→∞
Mv,τ ;λ(a, b) =

(
v
τ

)λ
.

Proof. Let λ ≥ 1, 0 < v < τ < 1 and 0 < x 6= 1. We define

F (v;λ;x) =
Av(x, 1)λ −Hv(x, 1)λ

vλ
=

(
x+

1

v
− 1

)λ
−
(
v2

x
+ v − v2

)−λ
,

G(v;λ;x) =
Av(x, 1)λ −Hv(x, 1)λ

(1− v)λ
=

(
vx

1− v
+ 1

)λ
−
(

(1− v)v

x
+ (1− v)2

)−λ
.
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The function Fλ,x(v) = F (v;λ;x) on (0, 1) is differentiable and its partial dif-
ferentiation at v can be expressed as

∂

∂v
F (v;λ;x) =

λ

vλ+1Hv(x, 1)1−λ

[
Hv(x, 1)2

(
2v

x
+ 1− 2v

)
−
(
Av(x, 1)

Hv(x, 1)

)λ−1]

≤ λ

vλ+1Hv(x, 1)1−λ

[
Hv(x, 1)2

(
2v

x
+ 1− 2v

)
− 1

]
=

λ

vλ+1Hv(x, 1)1−λ
· −v

2 (x−1 − 1)
2

(vx−1 + (1− v))2

< 0.

This implies that F (v;λ;x) is strictly decreasing with respect to v. Hence, for
0 < v < τ < 1, we obtain

Aτ (x, 1)λ −Hτ (x, 1)λ

τλ
<
Av(x, 1)λ −Hv(x, 1)λ

vλ
. (2.2)

The partial differentiation of G(v;λ;x) at v yields

∂

∂v
G(v;λ;x)

=
λx

(1− v)λ+1Hv(x, 1)1−λ

[(
Av(x, 1)

Hv(x, 1)

)λ−1
+Hv(x, 1)2

(
1− 2v

x2
+

2v − 2

x

)]

≥ λx

(1− v)λ+1Hv(x, 1)1−λ

[
1 +Hv(x, 1)2

(
1− 2v

x2
+

2v − 2

x

)]
=

λx

(1− v)λ+1Hv(x, 1)1−λ
· (1− v)2 (x−1 − 1)

2

(vx−1 + (1− v))2

> 0.

Thus, G(v;λ;x) is strictly increasing with respect to v. For 0 < v < τ < 1, we
obtain

Aτ (x, 1)λ −Hτ (x, 1)λ

(1− τ)λ
>
Av(x, 1)λ −Hv(x, 1)λ

(1− v)λ
. (2.3)

Next, taking x = a/b in (2.2) and (2.3) and multiplying both sides by bλ, we
obtain (2.1).

Further, we have

Mv,τ ;λ(a, b) =
Av(a, b)

λ −Hv(a, b)
λ

Aτ (a, b)λ −Hτ (a, b)λ

=
(va+ (1− v)b)λ − (va−1 + (1− v)b−1)

−λ

(τa+ (1− τ)b)λ − (τa−1 + (1− τ)b−1)−λ

=
(va+ (1− v)b)λ − [ab(vb+ (1− v)a)−1]

λ

(τa+ (1− τ)b)λ − [ab(τb+ (1− τ)a)−1]λ
,
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which satisfies

lim
a→0

Mv,τ ;λ(a, b) =
((1− v)b)λ − 0

((1− τ)b)λ − 0
=

(
1− v
1− τ

)λ
, (2.4)

and the representation

Mv,τ ;λ(a, b) =
Av(1,

b
a
)λ −Hv(1,

b
a
)λ

Aτ (1,
b
a
)λ −Hτ (1,

b
a
)λ

leads to

lim
a→∞

Mv,τ ;λ(a, b) =
vλ − 0

τλ − 0
=
(v
τ

)λ
. (2.5)

The limit relations (2.4) and (2.5) reveal that the upper and lower bounds given
in (2.1) are sharp. �

Remark 2.2. If λ = 1 and τ = 1/2 in the inequalities (2.1), then

2v(A(a, b)−H(a, b)) ≤ Av(a, b)−Hv(a, b) ≤ 2(1− v)(A(a, b)−H(a, b))

hold for 0 < v < 1/2, which are equivalent to (1.6) and (1.9), respectively.
If λ = 2 and τ = 1/2 in the inequalities (2.1), then

4v2(A(a, b)2 −H(a, b)2) ≤ Av(a, b)
2 −Hv(a, b)

2

≤ 4(1− v)2(A(a, b)2 −H(a, b)2)
(2.6)

hold for 0 < v < 1/2.

Next, we establish another type of upper and lower bounds for the difference
of Av(a, b) and Hv(a, b). We need the following lemma (see [1]).

Lemma 2.3. Let v ∈ (0, 1) and f : [a, b]→ R be twice differentiable with −∞ <
m ≤ f ′′(x) ≤M < +∞ for all x ∈ (a, b). Then

v(1− v)

2
(b− a)2m ≤ vf(a) + (1− v)f(b)− f(va+ (1− v)b)

≤ v(1− v)

2
(b− a)2M.

The factor v(1− v) is the best possible.

Theorem 2.4. Let v ∈ (0, 1) and a, b > 0 with a < b. Then we have

v(1− v)
(

1− a

b

)2
a ≤ Av(a, b)−Hv(a, b) ≤ v(1− v)

(
1− b

a

)2

b. (2.7)

Proof. Taking f(x) = 1/x in Lemma 2.3, then we have

v(1− v) (b− a)2
1

b3
≤ va−1 + (1− v)b−1 − (va+ (1− v)b)−1

≤ v(1− v) (b− a)2
1

a3
.
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Replace a by b−1 and b by a−1 in the above inequalities, respectively,

v(1− v)
(
b−1 − a−1

)2
a3 ≤ vb+ (1− v)a− (vb−1 + (1− v)a−1)−1

≤ v(1− v)
(
b−1 − a−1

)2
b3,

then we can obtain the desired result by replacing v by 1− v.
Setting t = b/a > 1, then (2.7) leads to

v(1− v) ≤ gv(t) ≤ v(1− v)
1

t
,

where

gv(t) =
v + (1− v)t− (v + (1− v)t−1)−1

(1− t)2
.

Since lim
t→1

gv(t) = v(1− v), the limit reveals that the factor v(1− v) is sharp. �

3. Matrix inequalities

In this section, we begin with the following lemma which is based on the in-
equalities (2.1) and the spectral theorem for Hermitian matrices.

Lemma 3.1. Let Q ∈ Mn(C) be positive definite and v, τ be real numbers with
0 < v ≤ τ < 1. Then

v

τ
(I∇τQ− I!τQ) ≤ I∇vQ− I!vQ ≤

1− v
1− τ

(I∇τQ− I!τQ). (3.1)

Proof. By the spectral theorem (see [8, Theorem 2.5.6]), there exists a unitary
matrix U such that Q = UDU∗, where D = diag(µ1, µ2, · · · , µn) with the eigen-
values µi > 0, i = 1, 2, · · · , n of Q. Applying (2.1) with λ = 1, we have

v

τ
(1∇τµi − 1!τµi) ≤ 1∇vµi − 1!vµi ≤

1− v
1− τ

(1∇τµi − 1!τµi).

For diagonal matrix D, the above inequality can be written as

v

τ
(I∇τD − I!τD) ≤ I∇vD − I!vD ≤

1− v
1− τ

(I∇τD − I!τD).

Using the fact that any ∗-conjugation preserves the Löewner partial order between
Hermitian matrices (see [8, Theorem 7.7.2]), we obtain (3.1) by applying the ∗-
conjugation • 7→ U •U∗ to the identity matrix I and the diagonal matrix D. �

The next theorem generalize the inequalities (1.7) and (1.8).

Theorem 3.2. Let A,B ∈ Mn(C) be positive definite. If v and τ are two real
numbers with 0 < v ≤ τ < 1, then

v

τ
(A∇τB − A!τB) ≤ A∇vB − A!vB ≤

1− v
1− τ

(A∇τB − A!τB). (3.2)

Proof. The matrices A−1/2 and A1/2 are positive definite under the condition
that A is positive definite. The result follows from putting Q = A−1/2BA−1/2 in
Lemma 3.1 and applying the ∗-conjugation • 7→ A1/2 • A1/2 to it. �



INEQUALITIES FOR ARITHMETIC MEAN AND HARMONIC MEAN 197

Corollary 3.3. Let A,B ∈Mn(C) be positive definite. If v is a real number with
0 < v ≤ 1/2, then

2v(A∇B − A!B) ≤ A∇vB − A!vB ≤ 2(1− v)(A∇B − A!B). (3.3)

Proof. Taking τ = 1/2 in the inequalities (3.2). �

Note that the inequalities (3.3) are equivalent to (1.7) and (1.8), respectively.
Based on Theorem 2.4, we establish another type of upper bound of the differ-

ence of arithmetic mean and harmonic mean for positive definite matrices which
is only related to one argument.

Theorem 3.4. Let A,B ∈ Mn(C) be positive definite with 0 < mI ≤ A ≤ B ≤
MI. If v is a real number with 0 ≤ v ≤ 1, then

A∇vB − A!vB ≤ v(1− v)

(
1− M

m

)2

B. (3.4)

Proof. Let t = b/a > 1 in the second inequality of (2.7). Then for 0 ≤ v ≤ 1 we
have

v + (1− v)t− (v + (1− v)t−1)−1 ≤ v(1− v) (1− t)2 t.
Thus we have the following inequality

v + (1− v)T − (v + (1− v)T−1)−1 ≤ v(1− v) max
1≤t≤M/m

(1− t)2 T,

for the positive definite matrix T with I ≤ T ≤ M/mI. Since I ≤ A−
1
2BA−

1
2 ≤

M/mI, putting T = A−
1
2BA−

1
2 in the above inequality, we deduce

v + (1− v)A−
1
2BA−

1
2 −

(
v + (1− v)

(
A−

1
2BA−

1
2

)−1)−1
≤ v(1− v)

(
1− M

m

)2

A−
1
2BA−

1
2 .

Multiplying the both sides by A
1
2 , we obtain the inequality (3.4). �

4. Hilbert-Schmidt norm inequalities

Based on the refinements and reverses of the Young inequality, Hirzallah and
Kittaneh [6] and Kittaneh and Manasrah [9] had shown that if A,B,X ∈Mn(C)
with two positive definite matrices A and B, then for v ∈ [0, 1],

min{v2, (1− v)2} ‖AX −XB‖2F ≤ ‖vAX + (1− v)XB‖2F −
∥∥AvXB1−v∥∥2

F
,

max{v2, (1− v)2} ‖AX −XB‖2F ≥ ‖vAX + (1− v)XB‖2F −
∥∥AvXB1−v∥∥2

F
.

From the above inequalities, it is evident that the following inequality holds:

‖vAX + (1− v)XB‖2F ≥
∥∥AvXB1−v∥∥2

F
,

and the authors of [13] pointed out that if A and B are positive semidefinite and
X ∈ Mn(C), then for unitarily invariant norm, ‖|AvXB1−v‖| ≤ ‖|vAX + (1 −
v)XB‖| does not holds in general.
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Inspired by the above Hilbert-Schmidt norm versions of the improved Young
inequalities, we derive the following theorem about the difference-type inequalities
between arithmetic and harmonic means for the Hilbert-Schmidt norm by the
inequalities (2.1) with λ = 2.

Theorem 4.1. Let A, B, X ∈ Mn(C) such that A and B are positive definite.
If v and τ are two real numbers with 0 < v ≤ τ < 1, then(v

τ

)2
≤ ‖Av(A,B;X)‖2F − ‖Hv(A,B;X)‖2F
‖Aτ (A,B;X)‖2F − ‖Hτ (A,B;X)‖2F

≤
(

1− v
1− τ

)2

, (4.1)

where

Av(A,B;X) = vAX + (1− v)XB,

Hv(A,B;X) =
[
vX−1A−1 + (1− v)B−1X−1

]−1
.

Proof. Since A and B are positive definite, it follows from the spectral theorem
that there exists unitary matrices U, V ∈Mn(C) such that

A = UΛ1U
∗, B = V Λ2V

∗,

where Λ1 = diag(µ1, µ2, · · · , µn), Λ2 = diag(ν1, ν2, · · · , νn) and µi, νi ≥ 0, i =
1, 2, · · · , n.

Let Y = U∗XV = [yij], then

vAX + (1− v)XB = U(vΛ1Y + (1− v)Y Λ2)V
∗

= U [(vµi + (1− v)νj)yij]V
∗,[

vX−1A−1 + (1− v)B−1X−1
]−1

= U
(
vY −1Λ−11 + (1− v)Λ−12 Y −1

)
V ∗

= U
[(
vµ−1i + (1− v)ν−1j

)−1
yij

]
V ∗.

Now by using the first inequality in (2.1) with λ = 2 and the unitary invariance
of the Hilbert-Schmidt norm, we have

‖vAX + (1− v)XB‖2F −
∥∥∥[vX−1A−1 + (1− v)B−1X−1

]−1∥∥∥2
F

=
n∑

i,j=1

(vλi + (1− v)νj)
2|yij|2 −

n∑
i,j=1

(
vλ−1i + (1− v)ν−1j

)−2 |yij|2
=

n∑
i,j=1

[
(vλi + (1− v)νj)

2 −
(
vλ−1i + (1− v)ν−1j

)−2] |yij|2
≥
(v
τ

)2 n∑
i,j=1

[
(τλi + (1− τ)νj)

2 −
(
τλ−1i + (1− τ)ν−1j

)−2] |yij|2
=
(v
τ

)2 [ n∑
i,j=1

(τλi + (1− τ)νj)
2|yij|2 −

n∑
i,j=1

(
τλ−1i + (1− τ)ν−1j

)−2|yij|2]

=
(v
τ

)2 [
‖τAX + (1− τ)XB‖2F −

∥∥∥(τX−1A−1 + (1− τ)B−1X−1
)−1∥∥∥2

F

]
,
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which proves the first inequality in (4.1).
The proof of the second inequality in (4.1) can be completed by a similar

argument. �

As direct consequences of Theorem 4.1, we have the next two corollarys.

Corollary 4.2. Let A,B,X ∈Mn(C) such that A and B are positive definite. If
v is a real number with 0 ≤ v ≤ 1, then

‖vAX + (1− v)XB‖2F ≥
∥∥AvXB1−v∥∥2

F

≥
∥∥∥[vX−1A−1 + (1− v)B−1X−1

]−1∥∥∥2
F
.

(4.2)

Proof. The inequalities (4.2) follow from the proof of Theorem 4.1 by the inequal-
ities (1.1). �

Corollary 4.3. Let A,B,X ∈Mn(C) such that A and B are positive definite. If
v is a real number with 0 ≤ v ≤ 1/2, then

4v2

∥∥∥∥AX +XB

2

∥∥∥∥2
F

−

∥∥∥∥∥
(
X−1A−1 +B−1X−1

2

)−1∥∥∥∥∥
2

F


≤ ‖vAX + (1− v)XB‖2F −

∥∥∥[vX−1A−1 + (1− v)B−1X−1
]−1∥∥∥2

F

≤ 4(1− v)2

∥∥∥∥AX +XB

2

∥∥∥∥2
F

−

∥∥∥∥∥
(
X−1A−1 +B−1X−1

2

)−1∥∥∥∥∥
2

F

 .
(4.3)

Note that (4.2) can be regarded as the arithmetic-geometric-harmonic mean
inequalities for the Hilbert-Schmidt norm. The inequalities (4.3) present the
Hilbert-Schmidt norm version of (2.6) which contain the refinement and reverse
of (4.2).

5. Determinant inequalities

In this section, the singular values of A are denoted by sj(A), j = 1, 2, · · · , n
and we adhere to the convention that singular values are sorted in non-increasing
order. det(A) denotes the determinant of A.

Obviously, by (1.2), for positive definite matrices A, B ∈Mn(C) and 0 ≤ v ≤ 1,

A!vB ≤ A∇vB.

So we have the following proposition.

Proposition 5.1. Let A, B ∈ Mn(C) be positive definite matrices, 0 ≤ v ≤ 1
and λ ≥ 1. Then

det (A!vB)λ ≤ det (A∇vB)λ . (5.1)
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Proof. Putting the positive definite matrix T = A−
1
2BA−

1
2 , by arithmetic-harmonic

mean inequality, then we have

(v + (1− v)si(T ))λ ≥
(
v + (1− v)si(T )−1

)−λ
for all i = 1, 2, · · · , n.

det(v + (1− v)T )λ =
n∏
i=1

(v + (1− v)si(T ))λ

≥
n∏
i=1

(
v + (1− v)si(T )−1

)−λ
= det(v + (1− v)T−1)−λ.

Multiplying the both sides by
(
detA1/2

)λ
, we deduce the result by the multiplica-

tivity of the determinant. �

Next, we will improve the inequality (5.1), the following two lemmas should be
mentioned.

Lemma 5.2. (Minkowski’s product inequality [8, p.560]) Let a = [ai], b = [bi], i =
1, 2, · · · , n such that ai and bi are positive real numbers. Then

(
n∏
i=1

ai

) 1
n

+

(
n∏
i=1

bi

) 1
n

≤

(
n∏
i=1

(ai + bi)

) 1
n

.

Equality holds if and only if a=b.

Lemma 5.3. Let a and b be positive real numbers with a > b. If λ ≥ 1, then

aλ − bλ ≥ (a− b)λ.

Theorem 5.4. Let A,B ∈ Mn(C) be positive definite. If v, τ and λ are real
numbers with 0 < v ≤ τ < 1 and λ ≥ 1, then(v

τ

)λ
det (A∇τB − A!τB)

λ
n ≤ det (A∇vB)

λ
n − det (A!vB)

λ
n . (5.2)

Proof. By the first inequality of (2.1) and taking the positive definite matrix

T = A−
1
2BA−

1
2 ,

(v
τ

)λ
≤ (v + (1− v)si(T ))λ − (v + (1− v)si(T )−1)

−λ

(τ + (1− τ)si(T ))λ − (τ + (1− τ)si(T )−1)−λ
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holds for all si(T ) 6= 1 (i = 1, 2, · · · , n). Since the determinant of a positive
definite matrix is the product of its singular values. Thus

det (vI + (1− v)T )
λ
n

=
(

det (vI + (1− v)T )λ
) 1
n

=

(
n∏
i=1

(vI + (1− v)si(T ))λ
) 1

n

=

(
n∏
i=1

Av(1, si(T ))λ

) 1
n

≥

(
n∏
i=1

[(v
τ

)λ (
Aτ (1, si(T ))λ −Hτ (1, si(T ))λ

)
+Hv(1, si(T ))λ

]) 1
n

≥
(v
τ

)λ n∏
i=1

[
Aτ (1, si(T ))λ −Hτ (1, si(T ))λ

] 1
n +

n∏
i=1

[
Hv(1, si(T ))λ

] 1
n

≥
(v
τ

)λ n∏
i=1

[
(Aτ (1, si(T ))−Hτ (1, si(T )))λ

] 1
n

+
n∏
i=1

[
Hv(1, si(T ))λ

] 1
n

=
(v
τ

)λ
det
[
(I∇τT − I!τT )λ

] 1
n

+
[
det (I!vT )λ

] 1
n
.

The second inequality is obtained by Minkowski’s product inequality and the
last inequality is obtained by Lemma 5.3. The inequality (5.2) follows from

multiplying the both sides by
(
detA1/2

)λ/n
. �

Remark 5.5. If λ = 1 in the inequality (5.2), then

v

τ
det (A∇τB − A!τB)

1
n ≤ det (A∇vB)

1
n − det (A!vB)

1
n .

If λ = 1 and τ = 1/2 in the inequality (5.2), then

2v det (A∇B − A!B)
1
n ≤ det (A∇vB)

1
n − det (A!vB)

1
n .

Corollary 5.6. Let A,B ∈ Mn(C) be positive definite. If v and τ are two real
numbers with 0 < v ≤ τ < 1, then

detA!vB +
(v
τ

)n
det (A∇τB − A!τB) ≤ detA∇vB. (5.3)

Proof. The proof is similar to that of Theorem 5.4. �

Corollary 5.7. Let A,B ∈Mn(C) be positive definite. If v is a real number with
0 ≤ v ≤ 1/2, then

detA!vB + (2v)n det (A∇B − A!B) ≤ detA∇vB. (5.4)

Note that the inequality (5.4) is the determinant version of the inequality (1.7).
The inequalities (5.2) and (5.3) can be treated as two generalizations of (5.4).
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10. M. Krnić, N. Lovričević and J. Pečarić, Jensen’s operator and applications to mean in-
equalities for operators in Hilbert space, Bull. Malays. Math. Sci. Soc. 35 (2012), no. 1,
1–14.

11. A.W. Roberts and D.E. Varberg, Convex Functions, Academic Press, New York, 1973.
12. M. Sagae and K. Tanabe, Upper and lower bounds for the arithmetic-geometric-harmonic

means of positive definite matrices, Linear Multilinear Algebra. 37 (1994), 279–282.
13. A. Salemi and A.S. Hosseini, On reversing of the modified Young inequality, Ann. Funct.

Anal. 5 (2014), no. 1, 70–76.
14. H.L. Zuo, G.H. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J.

Math. Inequal. 5 (2011), no. 4, 551–556.

College of Mathematics and Statistics, Chongqing University, Chongqing,
401331, P.R. China.

E-mail address: liaowenshi@gmail.com
E-mail address: jlwu678@163.com


	1. Introduction
	2. Scalar inequalities
	3. Matrix inequalities
	4. Hilbert-Schmidt norm inequalities
	5. Determinant inequalities
	References

