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ISOMORPHISMS OF DISCRETE MULTIPLIER HOPF
C∗-BIALGEBRAS: THE NONTRACIAL CASE

DAN Z. KUČEROVSKÝ

Communicated by G. Androulakis

Abstract. We construct Hopf algebra isomorphisms of discrete (multiplier)
Hopf C∗-bialgebras from K-theoretical data, without assuming that the Haar
weight is tracial.

1. Introduction

Classification is a recurring theme in mathematics, and it seems that the most
successful approach to classifying C∗-algebras is the Elliott program[7], whose
aim is to use K-theory, often augumented by some additional information, as a
classifying functor. In [12, 11], we considered the case of C∗-algebras with Hopf
algebra structure, and we found that in many cases there is a (fusion) product
structure on the K-theory group. We then addressed the problem of constructing
Hopf algebra maps from algebra maps respecting the product structure on the K-
theory group, with applications to constructing automorphisms and isomorphisms
of Hopf algebras. These results are slightly complicated to establish, and have
the significant limitation of requiring the Haar weight to be tracial. Moreover,
they depend on the theory of linear preservers, which results in certain technical
restrictions. In this article, we avoid using the theory of linear preservers, and
extend the scope of the results to the case where the Haar weight is not necessarily
tracial. A Hopf algebra is a bi-algebra with an antipode map S. See [1] for
information on Hopf algebras. A multiplier Hopf algebra is a generalization where
the co-product homomorphism takes values in a multiplier algebra. See [16] for
more information on multiplier Hopf algebras. Consider a compact Hopf algebra
A that is also, up to closure, a C∗-algebra; in the Baaj–Skandalis framework of
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C∗-bialgebras provided by [2], the dual object is both a discrete multiplier Hopf
algebra and a C∗-algebra, B. The given algebra A is also known as a compact-
type C∗-bialgebra, and the dual is called a discrete-type C∗-bialgebra. This dual
object will be a possibly infinite direct sum of matrix blocks at the level of C∗-
algebras, and the co-product homomorphism, ∆ : B →M(B ⊗ B), takes values
in a direct product of matrix blocks (see [17] for details). Our main result is
probably the set of related Corollaries 2.10, 2.11, and 2.12, which determine Hopf
C∗-bialgebra (co-anti)isomorphism classes in terms of a certain type of K-theory
(fusion) ring. We should mention that the K-theory group used in classification
of C∗-algebras is an ordered group. Thus our K-theory ring also has an order
structure. See [7], or [4, Section V.2.4], for more information on ordered K-theory
of C∗-algebras, and see [3] for more information on fusion rings. Our notation
is based on that of [13], denoting co-products by ∆, antipodes by S, pairings by
β(· , ·), and co-units by ε. We denote the flip, on a tensor product, by σ.

2. K-theory of discrete multiplier Hopf C∗-bialgebras

We recall, see [11, pg.99] and [12, Prop. 2.1], that the K-theory of a discrete-
type C∗-bialgebra is equipped with a product operation, � . Thus, given two
projective (sub)modules M1 and M2 over such an algebra, A, the product provides
a projective A-module M1�M2, and is compatible with the K-theory equivalence
relation. It is possible to define the K-theory group in terms of projections in
A ⊗ K, where K denotes the algebra of compact operators, instead of modules
(see, for example, [4, Section V.1]). Extending the domain of the product to finite
linear combinations of projections, we have:

Definition 2.1. We denote by � a binary operation on elements of A⊗K with
the following properties:

(1) (Pullback) a(b� c) =
∑

(a(1)b)� (a(2)c), where a ∈ A and ∆(a) =
∑
a(1)⊗

a(2) ; and
(2) (normalization) (ϕ⊗ t)(b� c) = (ϕ⊗ t)(b)(ϕ⊗ t)(c), where ϕ denotes the

left Haar weight of A and t denotes the standard trace on K.

The above definition is from [11, pg.99], but that reference only treats the finite-
dimensional case. The extension to the possibly infinite-dimensional discrete case
is justified by [12, Prop. 2.1]. The dual object of a discrete-type C∗-bialgebra is,
in the setting provided by [2], a compact-type C*-bialgebra. There is a (densely
defined) Fourier transform, see [9, Def. 3.4] that can be defined as F(b) :=
[ϕ(·b) ⊗ Id]V, where V is a multiplicative unitary coming from the left regular
representation, and ϕ is the (extension of the) left Haar weight. In terms of
(invariant) linear functionals, this Fourier transform can be defined, following
Van Daele[16], see also [9], by

β(a,F(b)) = ϕ(ab),

where the elements a and b belong to a Hopf C∗-algebra A, ϕ is the left Haar
weight, and β(· , ·) is the pairing with the dual algebra. Following [9, Def. 3.10], an
operator-valued convolution product, �, can be defined by the property F(a�b) =
F(a)F(b), where a and b are elements of a Hopf C∗-algebra A, and F is the Fourier



168 D.Z. KUČEROVSKÝ

transform defined previously. We remark that the Fourier transform is invertible
on its range, and that

β(a, w) = ϕ(aF−1(w))

for all w in the range of the Fourier transform.
The next Proposition relates � and �.

Proposition 2.2. Let A be a discrete Hopf C∗-algebra with faithful Haar weights.
Let `1 and `2 be compactly supported elements of A+. If t is the standard trace on
K, then (Id⊗ t)(`1� `2) = `1 � `2.

Proof. Let us denote by ϕ the left invariant Haar functional on A.
Consider a linear functional ω of the form ϕ(z·) with z ∈ A being supported

in finitely many matrix blocks. If ∆(z) =
∑
a(1)⊗ a(2), we use the normalization

property (ϕ⊗ t)(a� b) = ϕ(a)ϕ(b) of the operation � , to obtain:

(ω ⊗ t)(`1� `2) =
∑

(ϕ⊗ t)((a(1)`1)� (a(2)`2))

=
∑

ϕ(a(1)`1)ϕ(a(2)`2)

=
∑

(ϕ⊗ ϕ)((a(1)`1)⊗ (a(2)`2))

=
∑

β((a(1) ⊗ a(2),F(`1)⊗F(`2)),

In the last step we used the equation β(a,F(b)) = ϕ(ab). But since ∆(z) =∑
a(1) ⊗ a(2), we have∑

β((a(1) ⊗ a(2),F(`1)⊗F(`2)) = β(z,F(`1)F(`2))

= ϕ(zF−1(F(`1)F(`2))),

using the equation β(a, w) = ϕ(aF−1(w)). Thus it follows that (ω⊗ t)(`1� `2) is
equal to ϕ(zF−1(F(`1)F(`2))), and this last expression can be written ω(`1 � `2).
The linear functional ω is of the form ϕ(z·) with z supported in finitely many
matrix blocks. Thus, it follows by taking weak limits that

(Id⊗ t)(`1� `2)− `1 � `2 ∈ A

is zero under linear functionals of the form ω := ϕ(z·) with z ∈ A. The faithfulness
of ϕ then implies that (Id⊗ t)(`1� `2)− `1 � `2 = 0 as claimed. �

Lemma 2.3. Let A,B be Hopf C∗-algebras with faithful left Haar weights. Let
f : A→ B be a C∗-algebraic isomorphism that intertwines the left Haar weights.
Then, we have the identity

FB ◦ f = f ∗−1 ◦ FA,

where F denotes the Fourier transform, and f ∗−1, which is continuous, is the
inverse map for f ∗, the map induced by f on the dual algebras.

Proof. The Fourier transform on A can be written as FA : a 7→ ϕA(· a). A similar
statement holds for the Fourier transform on B. Then, using the property that
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ϕB(f(x)) = ϕA(x) for all x ∈ A, we get

f ∗(FB(f(a))) = f ∗ ◦ (ϕB(· f(a)))

= ϕB(f(·)f(a))

= ϕB(f((·)a))

= ϕA(· a).

From the above it follows that f ∗◦FB◦f = FA. That f ∗−1 exists follows from the
fact that f is invertible and the inverse induces a map of dual algebras. That f ∗−1

is continuous is seen by applying the open mapping theorem to f ∗. Composing
f ∗ ◦ FB ◦ f = FA with f ∗−1 on the left, we have the desired conclusion. �

Lemma 2.4. Let A and B be discrete-type C∗-bialgebras that have a faithful left
Haar weight. Let f : A → B be a C∗-isomorphism that intertwines left Haar
weights, and whose induced map on K-theory respects the product � . The map

f ∗ induced by f on the dual algebra(s) satisfies, for all yi in the dual algebra Â,

ϕ̂(f ∗−1(y1y2)) = ϕ̂(f ∗−1(y1)f
∗−1(y2))

where ϕ̂ is the Haar state of Â.

Proof. Proposition 4.8 in [18] gives εB(a) = ϕ̂ ◦ FB(a) for all a ∈ B, where εB
is the co-unit homomorphism of B, FB is the Fourier transform defined by the

left Haar weight of B, and ϕ̂ is the Haar state of the dual algebra, B̂. Since B̂ is
compact-type, it is unimodular, and the left and right Haar states coincide.

Since εB is a *-homomorphism, εB ⊗ t, where t is the canonical trace on the
compact operators, defines a state on the K-theory group of B. We denote by
f∗ : K(A)→ K(B) the map induced on K-theory by f : A→ B. Since f∗ respects
the product � , we have

(εB ⊗ t)(f∗(x1�x2)) = (εB ⊗ t)(f(x1)� f(x2)),

where x1, x2 are projections in A.
By Proposition 2.2, it follows that

εB(f(p) � f(q)) = εB(f(p � q)),

where � denotes convolution of operators. We may replace the xi in the above
by finite linear combinations of projections, and since such linear combinations
are dense in a discrete c0-direct sum of matrix algebras, the above equation holds
in general. The already established identities εB(a) = ϕ̂ ◦ FB(a) and FB ◦ f =
f ∗−1 ◦FA, from Lemma 2.3, together with the definition of convolution as p� q =
F−1(F(p)F(q)), let us rewrite the above equation as

ϕ̂(f ∗−1(p̂q̂)) = ϕ̂(f ∗−1(p̂)f ∗−1(q̂)),

where p̂ and q̂ denote the Fourier transforms of p and q. But then the equation
ϕ̂(f ∗−1(y1y2)) = ϕ̂(f ∗−1(y1)f

∗−1(y2)) holds for all yi in a dense subset of the

unital C∗-algebra Â, and since ϕ̂ is bounded and f ∗−1 is continuous, the equation

then holds for all y ∈ Â. �
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We recall that a linear and not necessarily multiplicative map f of algebras is
said to be a Jordan map if it is true that f(x)2 = f(x2) for all algebra elements
x. We now show how to construct an algebra map of discrete Hopf C∗-algebras
such that the induced pullback map on the compact duals is a Jordan map.

The Haar weight of a discrete multiplier Hopf C∗-algebra does not in general
itself define a state on the K-theory group of that algebra, except in the uni-
modular case. There is however the following useful K-theory state that can be
defined using a Haar weight.

Definition 2.5. The dimension state associated with a Haar weight ϕ : A → C
is the map dϕ : K(A)→ C defined on central minimal projections px by dϕ(px) :=
ϕ(px).

Since the central minimal projections generate the K-theory group, the above
map extends by linearity to obtain a state on the K-theory group. Thus we have
both a left and a right dimension state. The term dimension state seems appro-
priate because the state dϕ can be described in terms of the quantum dimensions
of certain representations, see for example [8, Prop. 2.1].

Proposition 2.6. Let A and B be separable discrete-type C∗-bialgebras that have
faithful Haar weights. Suppose that there exists an isomorphism of K-theory
groups that respects the product � , and intertwines the dimension states asso-
ciated with the left Haar weights. Then there exists a C∗-algebraic isomorphism
of A and B that intertwines left Haar weights, such that its pullback is a Jordan
map on the dual algebras.

Proof. Let us suppose that we are given an isomorphism of ordered K-theory
groups, f : K(A)→ K(B) that respects the product, � . Using the classification
theory[4, Theorem V.2.4.19] for AF-algebras, we may lift this isomorphism to a
C∗-algebraic isomorphism f∗ : A → B. This lifted map is not unique, because it
may be replaced by any map in its approximate unitary equivalence class. In
general, we expect that f∗ will not intertwine the left Haar weights, ϕA, and
ϕB. Thus, the linear functionals ϕB ◦ f∗ and ϕA are in general distinct linear
functionals on A. However, when we restrict both of these linear functionals to
some matrix block of A, the condition of intertwining dimension states makes the
restricted states equal on the identity element of the matrix block. We can then
make the restricted states unitarily equivalent by some unitary of that matrix
block (for example, using [4, Theorem III.2.6.7]). Since we may do this in every
matrix block, we obtain a unitary in the multiplier algebra of A that makes the
states ϕB◦f∗ and ϕA unitarily equivalent. We can therefore adjust f∗ by a unitary
from the multiplier algebra in order to ensure that f∗ will intertwine the left Haar
weights.

By Lemma 2.4, we have

ϕ̂(f ∗−1(b1)f
∗−1(b2)) = ϕ̂(f ∗−1(b1b2))

where f ∗−1 is the inverse of the pullback map on the duals induced by f∗, the bi
are elements of Â, and ϕ̂ is the Haar state of B̂. The same proof shows that

ϕ̂(f ∗−1(a)(f ∗−1(b)2 − f ∗−1(b2))) = 0
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for all a and b in Â. Since f ∗−1 is clearly a surjective map, we can deduce that

ω(f ∗−1(b)2 − f ∗−1(b2)) = 0

for all linear functionals ω of the form ϕ̂(z·) where z := f ∗−1(a) can be chosen

to be any element of B̂. But, linear functionals of this form separate the points

of B̂, so therefore f ∗−1(b)2 − f ∗−1(b2) = 0. This equation shows that f ∗−1, and
therefore f ∗, is a Jordan map. �

We now show that an algebra map of discrete-type C∗-bialgebras whose pull-
back on the dual algebras is Jordan will necessarily intertwine antipodes. The
next Proposition is a slight generalization of Proposition 3.1 from [12], which
in turn is based on an idea from [6]. We give a detailed proof for the reader’s
convenience.

Proposition 2.7. Let A and B be discrete-type Hopf C∗-bialgebras. Let f : A −→
B be an C∗-algebraic *-isomorphism that intertwines left Haar states and co-units.

Let the induced map f ∗ : B̂ −→ Â on the duals be Jordan. It then follows that f ∗

is a Jordan *-isomorphism.

Proof. The properties of Jordan maps of C∗-algebras[14] provide a central projec-

tion P of the enveloping von Neumann bialgebra of Â such that Pf ∗ : B̂ → Â is

multiplicative, and (1−P )f ∗ : B̂ → Â is antimultiplicative. (A similar statement
is true for f ∗−1.) Thus f ∗ can be written as the sum of a C∗-algebraic homomor-
phism and a C*-algebraic anti-homomorphism, each having range and support in
a complemented ideal of an enveloping von Neumann bi-algebra.

Recall that Â and B̂ contain dense compact algebraic quantum groups, Â0

and B̂0. (See [15, Theorem 5.4.1], for example). The duals of Â0 and B̂0 are
multiplier Hopf algebras. As algebras, they are algebraic direct sums inside A
and B, in other words, they are the subalgebras of compactly supported elements.
Since f is a C∗-isomorphism, it maps compactly supported elements to compactly

supported elements, and therefore f ∗ maps B̂0 to Â0.

The decomposition of the restricted map f ∗ : B̂0 → Â0 into a homomorphism
and an anti-homomorphism — still supported on complemented ideals — gives,
by duality, complementary linear subspaces of A0, denoted S1(A0) and S2(A0),
such that f restricted to S1(A0) is comultiplicative and f restricted to S2(A0)
is anti-comultiplicative. Recalling that the dual of a complemented ideal is a
sub-co-algebra[1, Theorem 2.3.1.ii], the Si(A0) are sub-co-algebras.

Now consider the convolution algebra C(S1(A0), B0), where convolution is de-
fined, following [1, pg. 61], by f∗g := mB0 [(f ⊗ g)∆A0 ].

Taking w in S1(A0), and writing ∆(w) =
∑
w(1)⊗w(2), the co-multiplicativity

of f on w gives

[(SB0 ◦ f)∗f ] =
∑

SB0(f(w(1)))f(w(2))

= εB0(f(w))1M(B0)

= εA0(w)1M(B0).
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We next consider [f∗(f ◦ SA)] (w). In this case, for all w ∈ A0, writing ∆(w) =∑
w(1) ⊗ w(2), we have

[f∗(f ◦ SA0)] (w) =
∑

f(w(1))f(SA0(w(2)))

= f
(∑

w(1)SA0(w(2))
)

= f(εB0(w)1M(A0))

= εA0(w)1M(B0).

We thus conclude that in the convolution algebra C(S1(A0), B0), we have

f∗(f ◦ SA0) = 1C

and

(SB0 ◦ f)∗f = 1C.

It follows by the associativity of the operation ∗ that SB0 ◦ f is in fact equal to
f ◦ SA0 , on S1(A0).

The algebraic subgroups inherit a ∗-involution from the enveloping C∗-algebras.
In Lemma 3.3 of [9], see also [19], it is shown that the C∗-involution of the dual
can be written in terms of the linear functional picture of the dual as

ω(·) 7→ ω#(·)

where the linear functional ω# is defined by ω#(x) = ω([S(x)]∗). Let y ∈ B̂0

be in the multiplicative domain of f ∗. Thus, f ∗(y) is in PÂ0. Written as a linear
functional on S1(A), the element f ∗(y) has the form ω(f(·)) : S1(A) → C. We
now show that [f ∗(ω)]#(x) = ω#(f(x)) for all x ∈ S1(x). We have

ω#(f(x)) = ω(SB0(f(x))∗)

= ω(f(SA0(x))∗)

= ω(f(SA0(x)∗))

= [ω(f( · ))]#(x).

This shows that the multiplicative part of f ∗ : B̂0 → Â0 is a *-homomorphism.
Replacing A by the co-opposite algebra Acop, it follows similarly that the multipli-

cative part of f ∗ : B̂0 → (Â0)
op is a *-homomorphism, and so the anti-multiplicative

part of f ∗ : B̂0 → Â0 is a *-antihomomorphism.

It follows that f ∗ : B̂0 → Â0 respects the ∗-involution inherited from the en-
veloping C∗-algebra. At the level of C∗-algebras, we have that the (necessarily

bounded) Jordan homomorphism f ∗ : B̂ → Â is *-preserving on the dense set B̂0,
and therefore is a Jordan *-homomorphism. �

We now give a generalization of [10, Lemma 2.7]. We note that in the following
the pullback is required to be a Jordan *-homomorphism, not just a Jordan
homomorphism.
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Lemma 2.8. Let A and B be discrete-type C∗-bialgebras. Let α : A → B be

a *-algebra isomorphism, and let α∗ : B̂ → Â be its action on the dual. We
suppose the action α∗ on the dual is a Jordan *-isomorphism. Then either α∗ is
multiplicative, or α∗ is anti-multiplicative.

Proof. A Jordan *-isomorphism maps the C∗-norm unit ball onto itself. If α∗

maps the unit ball onto itself, this implies that the map that it induces on linear
functionals is an isometry with respect to the usual dual norm (on linear func-
tionals.) Thus, the map α is an isometry with respect to this norm, which makes
α a bijective isometric algebra homomorphism in the sense of [5, Theorem 4.5 ].
It follows that α∗ is either multiplicative or anti-multiplicative, as claimed. �

In the next Theorem, the term co-unit state refers to the state on K-theory
induced by the co-unit homomorphism.

Theorem 2.9. Let A and B be reduced discrete separable C∗-bialgebras. Let
f : A→ B be a C∗-isomorphism that intertwines left dimension states and co-unit
states. We suppose that the induced map on K-theory intertwines the products
� A and � B. Then A and B are isomorphic or co-anti-isomorphic as Hopf
algebras. If the K-theory rings are not commutative, then A and B are isomorphic
as Hopf algebras.

Proof. By the proof of Proposition 2.6, the pullback f ∗ : B̂ −→ Â of f is a Jordan
isomorphism at the level of C∗-algebras. Proposition 2.7 ensures that the pullback
map f ∗ is a Jordan *-isomorphism. By Lemma 2.8 the pullback map f ∗ is either
multiplicative or anti-multiplicative. We thus have, by duality, that f is either an
isomorphism or a co-anti-isomorphism of bi-algebras. It follows from uniqueness
of the Hopf algebra antipode(s) that f is a Hopf algebra (co-anti)isomorphism.
We note that a co-anti-isomorphism reverses the product � , and by hypothesis,
f intertwines the products � A and � B. Therefore, either f cannot be a co-anti-
isomorphism or the K-theory rings must be commutative. �

From the viewpoint of the Elliott classification program[7], it is of interest to
obtain C∗-(bi)algebra isomorphisms from purely K-theoretical data. Thus we
mention the following related Corollaries, which come from lifting a K-theory
map to a C∗-algebraic isomorphism, as in the proof of Proposition 2.6, and then
applying Theorem 2.9.

Corollary 2.10. Let A and B be reduced discrete separable Hopf C∗-bialgebras.
Let f : K(A) → K(B) be a K-theory ring isomorphism that intertwines left di-
mension states and co-unit states. Then A and B are isomorphic or co-anti-
isomorphic as Hopf algebras.

Corollary 2.11. Let A and B be reduced discrete separable Hopf C∗-bialgebras
with K-theory rings that are not commutative. Then the following are equivalent:

(1) there exists a K-theory ring isomorphism f : K(A) → K(B) that inter-
twines left dimension states and co-unit states, and

(2) there exists a Hopf algebra isomorphism f : A→ B.
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We can also consider ring anti-isomorphisms that interchange the left and right
dimension states. Applying Corollary 2.10 to either A and B or A and Bcop, we
have:

Corollary 2.12. Let A and B be reduced discrete separable Hopf C∗-bialgebras.
Then the following are equivalent:

(1) there exists a K-theory ring (anti)isomorphism f : K(A) → K(B) that
intertwines dimension states and co-unit states, and

(2) there exists a Hopf algebra (co-anti)isomorphism f : A→ B.

The above corollaries give an abstract classification, in terms of an Elliott in-
variant, of discrete quantum groups in the C∗-algebraic picture. An isomorphism
of discrete quantum groups can equally be regarded as an isomorphism of the
compact duals, thus by passing to the dual we implicitly obtain an abstract clas-
sification of compact quantum groups.
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11. D. Kučerovský, An abstract classification of finite-dimensional Hopf C∗-algebras, Comptes
Rendus Math. (Canada), 36 (4) 2014, 97–105.
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