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Abstract. Given a normed space X we consider the hyperspace k(X) of all
non-empty compact convex subsets of X endowed with the Hausdorff distance.
We prove that if T : X −→ X is an (m, q)-isometry, then it is possible that
the map k(T ) : k(X) −→ k(X), k(T )C := TC, is not an (m, q)-isometry.

Moreover, if k̂(X) is the R̊adström space associated to the hyperspace k(X),

then T : k(X) −→ k(X) is an (m, q)-isometry if and only if T̂ : k̂(X) −→ k̂(X)
is an (m, q)-isometry.

1. Introduction

Throughout this paper, X is a real normed space and ‖ · ‖ its norm, L(X) the
class of all bounded linear operators T : X −→ X, m a positive integer and q a
positive real number, unless stated otherwise.

The notion of (m, q)-isometry in the setting of metric spaces was introduced
in [3]: a map T : E −→ E, on a metric space E with distance d, is called an
(m, q)-isometry if

m∑
i=0

(−1)m−i
(
m

i

)
d(T ix, T iy)q = 0 (x, y ∈ E) . (1.1)

An (m, q)-isometry is called strict whenever is not an (m − 1, q)-isometry. Of
course, the (1, q)-isometries are the isometries. This definition generalizes the
concept of m-isometry firstly introduced on Hilbert spaces by J. Agler [1]. Some
time after the notion of (m, q)-isometry on Banach spaces was defined by Bayart
[2] and Sid Ahmed [7].
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In [4] it was introduced a notion of m-isometry on certain hyperspaces of a
Banach space. In this paper we study (m, q)-isometries on the hyperspace k(X)
of all non-empty convex compact subsets of a normed space X. Given an operator
T ∈ L(X) we consider the map k(T ) : k(X) −→ k(X), defined by k(T )C := TC.
It is possible that T is an (m, q)-isometry but k(T ) is not an (m, q)-isometry.
More precisely, we prove that any weighted shift operator Sw ∈ L(`2) which is
a (2, 2)-isometry induces a map k(Sw) : k(`2) −→ k(`2) which is not an (2, 2)-
isometry.

Using a construction by R̊adström we associate to k(X) the normed space

k̂(X), being k(X) a subspace of k̂(X). We prove that T : k(X) −→ k(X) is an

(m, q)-isometry if and only if T̂ : k̂(X) −→ k̂(X) is an (m, q)-isometry.

2. The hyperspace k(X)

Given a real normed space X, we consider the hyperspace

k(X) := {C ⊂ X : ∅ 6= C compact convex} .
For C,D ∈ k(X) and α scalar, we write C + D := {x + y : x ∈ C, y ∈ D} and
αC := {αx : x ∈ C}. Some properties of the class k(X) are given in the following
proposition:

Proposition 2.1. For C,D,E ∈ k(X); λ, µ ≥ 0 and α scalars,

(1) C +D ∈ k(X)
(2) (C +D) + E = C + (D + E) and C +D = D + C
(3) C + E = D + E =⇒ C = D
(4) αC ∈ k(X)
(5) α(C +D) = αC + αD and (λ+ µ)C = λC + µC

Proof. The property (3) is [6, Lemma 2]. The other properties are simple. �

We introduce the norm of C ∈ k(X):

‖C‖ := sup
x∈C
‖x‖ .

Proposition 2.2. For C,D ∈ k(X) and α scalar,

(1) ‖C‖ = 0⇐⇒ C = {0}
(2) ‖C +D‖ ≤ ‖C‖+ ‖D‖
(3) ‖αC‖ = |α|‖C‖

Proof. Routine. �

The class k(X) is endowed with the Hausdorff distance h: given C,D ∈ k(X),
we put

h(C,D) := inf{ε > 0 : C ⊂ D + εBX and D ⊂ C + εBX} ,
where BX is the unit closed ball of X. In the next result we collect some basic
facts about the distance h.

Proposition 2.3. For C,D,E ∈ k(X) and α scalar,
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(1) h is a metric on k(X); moreover, if X is a Banach space, then k(X) is
complete.

(2) h(C + E,D + E) = h(C,D)
(3) h(αC, αD) = |α|h(C,D)
(4) h(C, {0}) = ‖C‖

Proof. The property (1) is well known and (4) is clear. In order to prove (2),
notice that, for every ε > 0, we can write

h(C + E,D + E) < ε =⇒ C + E ⊂ D + E + εBX and D + E ⊂ C + E + εBX

=⇒ C ⊂ D + εBX and D ⊂ C + εBX

=⇒ h(C,D) ≤ ε ,

by Proposition 2.1 (3). Analogously, h(C,D) < ε =⇒ h(C + E,D + E) ≤ ε.
Therefore, (2) is true.

Now we prove (3). We have that the equality is obvious if α = 0. Assume
α 6= 0. Then

h(αC, αD) < ε =⇒ αC ⊂ αD + εBX and αD ⊂ αC + εBX

=⇒ C ⊂ D + α−1εBX=D + |α|−1εBX

and D ⊂ C + α−1εBX = C + |α|−1εBX

=⇒ h(C,D) ≤ |α|−1ε
=⇒ |α|h(C,D) ≤ ε .

Analogously, |α|h(C,D) < ε =⇒ h(αC, αD) ≤ ε. Consequently, (3) holds. �

Observe that the property (2) in the above proposition depends on the fact
that E is bounded and that both sets C + εBX and D + εBX are convex closed,
since C and D are convex compact (see [6, Lemmas 2 and 3]).

It is obvious that we can identify X with {{x} : x ∈ X} ⊂ k(X). For x, y ∈ X
and α scalar we have that {x}+ {y} = {x+ y}, α{x} = {αx} and h({x}, {y}) =
‖x− y‖. Notice that, in general,

h(C,D) ≤ ‖C −D‖ (C,D ∈ k(X))

and it is possible that h(C,D) < ‖C−D‖. For example, h(C,C) = 0 < ‖C−C‖
whenever C is not a singleton.

3. Maps on k(X)

We say that a map T : k(X) −→ k(X) is linear if, for C,D ∈ k(X) and α
scalar,

T (C +D) = T C + T D and T (αC) = αT C .

Given T : k(X) −→ k(X) linear we define the norm of T by

‖T ‖ = sup
{0}6=C∈k(X)

‖T C‖
‖C‖

= sup
C∈k(X),‖C‖=1

‖T C‖ .

Hence, for every C ∈ k(X), we have that ‖T C‖ ≤ ‖T ‖‖C‖. We say that T is
bounded if ‖T ‖ <∞.
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The following results are very similar to analogous facts about linear operators
between normed spaces and we omit the proof.

Proposition 3.1. Let T : k(X) −→ k(X) a linear map. The following assertions
are equivalent:

(1) T is uniformly continuous
(2) T is continuous
(3) T is continuous at {0}
(4) There exists M > 0 such that, for every C ∈ k(X), ‖T C‖ ≤M‖C‖
(5) T is bounded

We denote by L(k(X)) the class of all bounded linear maps T : k(X) −→ k(X).

Proposition 3.2. For T ,S ∈ L(k(X)) and scalar α,

(1) T + S ∈ L(k(X)) and ‖T + S‖ ≤ ‖T ‖+ ‖S‖
(2) αT ∈ L(k(X)) and ‖αT ‖ = |α|‖T ‖
(3) T S ∈ L(k(X)) and ‖T S‖ ≤ ‖T ‖‖S‖

Proof. Routine. �

Given T ∈ L(X) we define the map

k(T ) : k(X) −→ k(X) , k(T )C := TC .

Obviously, the restriction of k(T ) to X is T : k(T ){x} = T{x} = {Tx}, for any
x ∈ X.

Proposition 3.3. Let T ∈ L(X). Then k(T ) ∈ L(k(X)) and ‖k(T )‖ = ‖T‖.

Proof. For C ∈ k(X), we have that ‖TC‖ ≤ ‖T‖‖C‖, hence

‖k(T )‖ = sup
{0}6=C∈k(X)

‖k(T )C‖
‖C‖

= sup
{0}6=C∈k(X)

‖TC‖
‖C‖

≤ ‖T‖ .

Moreover

‖T‖ = sup
0 6=x∈X

‖Tx‖
‖x‖

≤ sup
{0}6=C∈k(X)

‖TC‖
‖C‖

= ‖k(T )‖

and the proof is completed. �

Proposition 3.4. Let T ∈ L(X). Then T is an isometry if and only if the map
k(T ) is an isometry.

Proof. It is enough to observe that the equalities

‖k(T )C‖ = ‖C‖ = ‖TC‖
are equivalent to that both k(T ) and T are isometries. �

Our main interest is the study of (m, q)-isometries (m ≥ 1 integer, q > 0 real)
on the hyperspace k(X). Recall that the general definition was given in (1.1).
For T : k(X) −→ k(X) the condition (1.1) is equivalent to

m∑
i=0

(−1)m−i
(
m

i

)
h(T iC, T iD)q = 0 (C,D ∈ k(X)) . (3.1)
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The equivalence given in Proposition 3.4 can not be extended to (m, q)-isometries,
although an implication is true.

Proposition 3.5. Let T ∈ L(X). If the map k(T ) is an (m, q)-isometry, then T
is an (m, q)-isometry.

Proof. It is enough to observe that any restriction of an (m, q)-isometry to an
invariant subset is also an (m, q)-isometry and that T is the restriction of k(T )
to X as explained before. �

The converse of above proposition is false, as we show in the next example.

Example 3.6. Let Sw : `2 −→ `2 the weighted shift operator on `2 with weight
sequence w = (wn)n≥1 ∈ `∞. That is, for x = (xn)n≥1 ∈ `2,

Swx = Sw(x1, x2, x3...) = (0, w1x1, w2x2, w3x3...) .

If Sw is a strict (2, 2)-isometry, then k(Sw) is not a (2, 2)-isometry.

Proof. We put α := |w1|2. Then, for n ≥ 1 [4, Remark 3.9(1)(b)]

|wn|2 =
αn− (n− 1)

α(n− 1)− (n− 2)
,

hence

|w2|2 =
2α− 1

α
and |w3|2 =

3α− 2

2α− 1
.

We have that α 6= 1 since Sw is not an isometry, and α > 1 since Sw is a (2, 2)-
isometry ([4, Remark 3.9(1)(b)], [5, Corollary 2.3]).

Let (en)n≥1 be the canonical basis of `2. Take x = e1 and y = λe2, such that λ
is a scalar with

1 < |λ|2 < α2

2α− 1
.

We obtain

‖x‖2 = 1 , ‖Swx‖2 = α , ‖S2
wx‖2 = 2α− 1 ,

‖y‖2 = |λ|2 , ‖Swy‖2 = |λ|22α− 1

α
, ‖S2

wy‖2 = |λ|23α− 2

α
.

Consider the segment

C = [x, y] := {tx+ (1− t)y : 0 ≤ t ≤ 1} ∈ k(`2) .

Then

‖C‖2 = sup
0≤t≤1

‖tx+ (1− t)y‖2

= sup
0≤t≤1

‖(t, (1− t)λ, 0, 0, 0...)‖2

= sup
0≤t≤1

(t2 + (1− t)2|λ|2)

= |λ|2 ,
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since 1 < |λ|2. Moroever,

‖SwC‖2 = sup
0≤t≤1

‖(0, w1t, w2(1− t)λ, 0, 0, 0...)‖2

= sup
0≤t≤1

(|w1|2t2 + |w2|2(1− t)2|λ|2)

= sup
0≤t≤1

(αt2 +
2α− 1

α
(1− t)2|λ|2)

= α

and

‖S2
wC‖2 = sup

0≤t≤1
‖(0, 0, w1w2t, w2w3(1− t)λ, 0, 0, 0...)‖2

= sup
0≤t≤1

(|w1w2|2t2 + |w2w3|2(1− t)2|λ|2)

= sup
0≤t≤1

((2α− 1)t2 +
3α− 2

α
(1− t)2|λ|2)

= 2α− 1 .

We have that

h(k(Sw)2C, k(Sw)2{0})2 − 2h(k(Sw)C, k(Sw){0})2 + h(C, {0})2 =

= ‖k(Sw)2C‖2 − 2‖k(Sw)C‖2 + ‖C‖2 = 2α− 1− 2α + |λ|2 = |λ|2 − 1 6= 0 ,

because of 1 < |λ|2. By (3.1) we obtain that Sw is not a (2, 2)-isometry. �

4. The Rådström space k̂(X)

R̊adström [6] proved that k(X) endowed with the Hausdorff distance can be

isometrically embedded in a normed space k̂(X) in such a way that addition in

k̂(X) induces addition in k(X) and multiplication by scalars in k̂(X) induces
multiplication by scalars in k(X).

Now we give a description of the R̊adström space associated to the hyperspace
k(X) (see [6]). On k(X) × k(X) we consider the equivalence relation (C,D) ∼
(E,F ) ⇐⇒ C + F = D + E, where C,D,E, F ∈ k(X). The class of (C,D) is
denoted by [C,D].

The quotient space

k̂(X) :=
k(X)× k(X)

∼
is a normed space with the following: for C,D,E, F ∈ k(X) and λ ≥ 0 scalar,

‖[C,D]‖ = h(C,D) , [C,D] + [E,F ] = [C + E,D + F ] ,

λ[C,D] = [λC, λD] , (−λ)[C,D] = [λD, λC] , .

From this, the distance between two classes of k̂(X) is given by

ĥ([C,D], [E,F ]) = ‖[C,D]− [E,F ]‖ = ‖[C + F,D + E]‖ = h(C + F,D + E) .
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Moreover the map ψ : k(X) −→ k̂(X) defined by ψC := [C, {0}], is an isometric

embedding of k(X) into k̂(X); in fact, we have that ψ(C + D) = ψ(C) + ψ(D),
ψ(λC) = λψ(C) and ‖ψ(C)‖ = ‖C‖.

Given a map T : k(X) −→ k(X), we define

T̂ : k̂(X) −→ k̂(X) , T̂ [C,D] := [T C, T D] .

Notice that the restriction of T̂ to k(X) is T .

Proposition 4.1. Let T : k(X) −→ k(X) a linear map.Then

(1) T̂ is linear

(2) T bounded =⇒ T̂ bounded and ‖T̂ ‖ = ‖T ‖.

Proof. (1) Straightforward.

(2) As T is restriction of T̂ , we have that ‖T ‖ ≤ ‖T̂ ‖. Now we show ‖T ‖ ≥
‖T̂ ‖. For this purpose, first we prove

h(T C, T D) ≤ ‖T ‖h(C,D) (C,D ∈ k(X)) . (4.1)

Fix C,D ∈ k(X). Let ε > h(C,D). Then C ⊂ D + εBX and D ⊂ C + εBX .

Hence T C ⊂ T D + εT̃ BX and T D ⊂ T C + εT̃ BX , where

T̃ BX :=
⋃

b∈BX

T {b} .

(Observe that T BX is not always defined because of BX /∈ k(X) if X is infinited-

imensional). Notice that from T {b} ⊂ ‖T ‖‖b‖BX ⊂ ‖T ‖BX , we obtain T̃ BX ⊂
‖T ‖BX and consequently T C ⊂ T D + ε‖T ‖BX and T D ⊂ T C + ε‖T ‖BX .
Therefore h(T C, T D) ≤ ε‖T ‖. Hence (4.1) follows. From this

‖T̂ ‖ = sup
‖[C,D]‖≤1

‖T̂ [C,D]‖

= sup
h(C,D)≤1

‖[T C, T D]‖

≤ sup
h(C,D)≤1

‖T ‖h(C,D)

= ‖T ‖ .

So the proof is completed. �

Proposition 4.2. Let T ∈ L(k(X)). The following assertions are equivalent:

(1) T is a strict (m, q)-isometry

(2) T̂ is a strict (m, q)-isometry

Proof. For C,D ∈ k(X) and 1 ≤ k ≤ m, we have the following equalities

‖T̂ k[C,D]‖ = ‖[T kC, T kD]‖ = h(T kC, T kD) .
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Consequently, T is an (m, q)-isometry, that is it verifies (3.1), if and only if T̂
verifies

m∑
i=0

(−1)m−i
(
m

i

)
‖T̂ i[C,D]‖q = 0 (C,D ∈ k(X)) ;

that is, T̂ is an (m, q)-isometry. From this, it is obvious that T is a strict (m, q)-

isometry if and only if T̂ is also a strict (m, q)-isometry. �
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