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ABSTRACT. It is well known that every function in Hardy space can be fac-
torized into an inner function and outer function. Since the factorization is
unique, if we fix a function in Hardy space, inner and outer factors must be
control by each other. In this note, we give an inner-outer factorization on Q,
spaces and some subspace of Q,, spaces, where 0 < p < 1.

1. INTRODUCTION

We denote the unit disc {z € C : |z| < 1} by D and its boundary {z € C : |z| = 1}
by OD. Let H(D) be the space of all analytic functions in D. For 0 < p < oo, the
Hardy space H? is the set of f € H(D) with

2

1 .
| f1%e = sup 2 /. |f(re)|Pdf < oco.
0<r<1
As usual, H* is the set of f € H(D) with sup,.p | f(2)| < oo (See [7]).

Let 0 < p < co. The Q, space is the set of f € H(D) such that

I£lle, = 151+ (sup [ 1) Pate apaae >)%<oo,

where g denotes the Green function given by

1
g(z,a) = log PRI z,a €D,z # a,

@a(z) = £2, dA(z) = Ldazdy. If p =1, Qi = BMOA, the space of analytic
functions in the Hardy space H'(D) whose boundary functions have bounded
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mean oscillation (see, for example [14, 18]). When p > 1, Q, spaces coincide with
the Bloch space. For more information on Q, spaces, we refer to [17, 20, 21].

Let 0 < ¢ < 00 and —1 < a < oo. The A% space is the set of f € H(D) such
that

/ FEIL — |2)°dA(z) <

For 1 < ¢ < oo and 0 < s < 1, the Besov space B; is the set of functions
f € L%(0D) such that

/ et / (") = f(O)|"dm(¢) < 0.

The analytic subspace AB; = B; N HY is the set of functions f € H? such that

1Fllass = LSO + (/|f 91— |20 A >>‘1<oo.

We refer the reader to [2, 3, 4, 10].

An f € H(D) is said to be an mner function if it is bounded and has boundary
values of modulus 1 almost everywhere on dD. If 6 is an inner function, for
0 < € < 1, define the level set of order € of # as follows.

QO e) ={ze€D:|0(2)| < €}

For more information about inner function, we refer to [1, 12, 15, 16, 19].
We say that g € H(D) is an outer function if there exists a positive function h
with log h € L'(0D) and a complex number C' of modulus 1 such that

Moreover, the boundary values of g satisfy h(¢) = |g(¢)| for almost all ¢ € ID.
It is well known that every f € HP has a factorization fg, where 6 is an
inner function and ¢ is an outer function. If we fix an f € HP, there must be
some relationship between 6 and g, since the factorization is unique. Dyakonov
gave many interesting theorems on inner-outer factorization and characterized the
modulus of analytic functions in the disc whose boundary values belong to certain
smoothness classes. For many results concern this topic, we refer to [6, 7, 9, 11].
The following theorem can be found in [7, Theorem 1].
Theorem A. If f € BMOA and 6 is an inner function, then the following
conditions are equivalent:

(1) f0 € BMO;

(2) f0 € BMOA;
(3

(

(

)

) sup.ep | f(2)]2(1 = 10(2)]*) < oo;

) SUP,cq, o |f(2)] < oo, for everye, 0 < e < 1;
5) SUD,eq, o |f(2)] < 00, for some e, 0 <e < 1.
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Before we state next theorem, we need to give the definition of Q,(0D). Let 0 <
p < oo. The Q, (D) space is the set of f € L?*(9D) such that

- (O = f)P?
oup (1 [ [ =IO i)y < o
ICHD IR (]
In this paper, if we control the inner factor, in some sense, we first extend
Theorem A from the BMOA space to Q, spaces, 0 < p < 1.
Theorem 1. Let 0 <p < 1. If f € Q, and 8 € Q, is an inner function, then
the following conditions are equivalent:
(1) f0 € Qy(0D);
(2) f9 S QP;
(3) sup.ep [f(2)[*(1 = [0(2)[*) < oo;
(4) SuD-cog, o |£(2)] < o0, for cvery e, 0 < ¢ < 1;
(5) Sup,eqq, ¢ If(2)] < o0, for somee, 0 <e<1.
Let M (X) denote the space of multipliers of X. The next theorem was another
main theorem in [7, Theorem 6.
Theorem B. If f € M(BMOA) and 0 is an inner function, then the following
conditions are equivalent:
(1) f60 € M(BMOA);
(2) sup,eqq, ¢ |f(2)]log 1%|Z| < 00, for every e, 0 <e<1;
(3) supeqq, o 1/ (2)]log 1+|Z| < 00, for some e, 0 <€ < 1.
Using Theorem 1, we also have the following theorem.

Theorem 2. Let 0 < p < 1. If f € M(Q,) and 0 € Q, is an inner function,
then the following conditions are equivalent:

(1) f0 € M(Qp);

(2) sup,eqq, o 1f(2)]log 1_#|Z| < 00, for everye, 0 <e<1;

(3) Supeqq, o 1 f(2)[log 1+|Z| < 00, for some e, 0 <€ < 1.

Using the idea as Theorems 1 and 2, we can also get the similar result on

AB:N Q.
Theorem 3. Let 1 <g<oo, 0<p<land0<s<1/q. If f€ Q,NAB; and
0 € Q,N AB, is an inner function, then the following conditions are equivalent:

(1) f0 € Q,(0D) N B

(2) f0 e Q,NAB;;

(3) sup.cp |F(2)X(1 — 18()) < oc;

(4) Supoee, o |F(2)] < 00, for every e, 0 < e < 1;

(5) supzeﬂ 76)|f( 2)| < o0, for some €, 0 < e < 1.

Throughout this paper, for two functions f and g, f < g means that there is a
positive constant C' such that f < Cg.
2. PROOFS OF MAIN RESULTS

To prove our main results in this paper, we need some lemmas which will be
stated as follows.
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Lemma A. [20] Let 0 <p < 1. f € Q, if and only if

2 2 (1 - |80a<2)|2)p
o [ ( NIGRAGEIE! ) dA(2) < o0,

aeD Jp (1 —1]=)?

where dpu,(¢) = %%
Before state the next lemma, we first recall some properties of the system I',
of the so-called Carleson curves associated with € and ¢, see [14, Chapter VIII]

and [8]. T'. = U;7; is a countable union of simple closed rectifiable curves +; in D
with the following properties:

(1) The curves ~; have pairwise disjoint interiors; for each of them one has
[(y; N OD) = 0, where [(.) denotes length.
(2) Arc length measure |dz| on I'. N D is a Carleson measure.
(3) For z € I'.ND we have n < |0(2)| < €, where n(¢) is some positive constant
depending on e. Moreover, ', NID C Q(6,¢).
Lemma B. [8] Let 1 < q < oo and s > 0. Suppose that f € H? and 0 is an inner
function. If
%9d
[ o
r. (1—[z]?)>

then P_(0f) € B;. Here P_ denoted by the orthogonal projection from L?(0D)
onto L*(0D) & H?.
Lemma C. [19] Let 1 < g < c0o and 0 < s < 1. Suppose that f € B; and
u € H*®. Then the following are equivalent:

(1) fue B;;

(2) fue B;;

(3) P_(uf) € B;.
Here P_ denoted by the orthogonal projection from L?(0D) onto L*(0D) & H?.
Lemma D. [19] Let 1 <g< o0, ¢—2<a<qg—1and0<e<1. Suppose that
0 is an inner function and By, is its associated interpolating Blaschke product,
then the following are equivalent:

(1) ¢ € AL;

(2) By, € AL;

(3) If {ar}2, is the sequence of zeros of By, then

[e.e]

3 (1 Ja?) < oo

k=0

F(2)]1]dz]
/n (1— [o)aoTt =%

Now we are in a position to prove our main results.

(4)

Proof of Theorem 1. Since @1 = BMOA and § € H>* C BMOA, it is only to
prove the case of p € (0, 1).
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(1) & (2). Suppose that f € Q, and # is an inner function. From Theorem
2.1 of [13], we have f0 € Q, if and only if

(OB — FomP N
sup |1| /1/1 C— P |dC||dn| < oo.

ICoD

Noting that
F(QO(C) = f(m)b(n) = (f(¢) = f()6(C) + f(m(0(C) — 0(n)),
we can deduce that f0 € Q, if and only if

9 2
sup 117 [ [ A 208 0 < o,

1COD

and if and only if f0 € Q,(OD).

(2) = (4) = (5) = (3). If f € Q,C BMOA, f € Q, C BMOA. From
Theorem A, we easily to obtain the desired result.

(3) = (2). From Lemma A, we see that § € Q, if and only if

gy LGB
sup [ (1= 10 ) S <

acD
Suppose 0 € Q,, f € Q,. To prove ff € Q,, we only need to prove
sup [ IFEFIF P = leu() PPIAG) < oo,
ac
Applying the well known Schwarz lemma and (3) of Theorem A, we obtain that

sup / FEPIO R = gal2)2)dA()

a€D

<sup [ 1137 (5 l(‘l‘z) (1~ palz) PYPdA(2)

a€D

< (i&g )P - |e<z>|2>)
X sup/ LO(Z)E(l — |pa(2)[P)PdA(2) < o0

aeb Jp (1= |2]?)

The proof is complete.

Proof of Theorem 2. (1) = (2). Let f € M(Q,) and § € Q, be an inner
function. For any g € Q,,, we have fgf € Q, by the assumption. From Theorem
1, we know that fgf € Q, if and only if

sup | f(2)g(z)] < o0

z€Q(0,¢)

for every €, 0 < e < 1.
For any a € (0, ¢), we define
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Clearly, g, € Q, and notice the fact that ||-||g, is Mdbius invariant, hence, ||g4 o,
is independent of a. Thus, for any a € Q(0, €),

|f(a)ga(a)| < oo.
Since
log(1 — |a|)| = |Relo i—a) lo (i—a> = |9.(a)|,
tog(1 o = etog (£~ ) | < 1og (1~ @) | = (o)

we easily get the desired result by the arbitrary of a.
(2) = (3). It is obvious.
(3) = (1). Let g € Q, C B. Using the fact that

9()] 5 log = lgla < log = lsla,
we have
12902 5 log =1/ e
for f € M(Q,). Therefore,
s fRC S s dos pIf(E) < o

for some €, 0 < € < 1. From Theorem 1, we deduce that

Jg0 € Qp.
Hence, f0 € M(Q,). The proof is complete.
Proof of Theorem 3.(1) < (2) = (3) = (4) = (5). Combine with Theorem 1
and Lemma C, similarly to the proof of Theorem 1, we can easily get the desired

result.
(5) = (2). From Theorem 1, we have f € Q,. Using Lemmas B and C, it is

only to prove
d
[t
r. (1—[z?)

If 0 € QN AB; C AB;, then @ € A% .

.
r, (1= [z[?)% '

Using the fact that I'. N D C (6, ¢), we deduce that

£(2)]9]dz] ! d2]
IR <ze§§3§? o (Z”) f o <

The proof is complete.

Thus, by Lemma D, we have
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