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ON GENERALIZED BECKNER’S INEQUALITY

KICHI-SUKE SAITO∗1 AND RYOTARO TANAKA2

Communicated by Y. Seo

Abstract. In this paper, we present generalizations of Beckner’s inequality
by using symmetric absolute normalized norms on R2.

1. Introduction

The aim of this paper is to present generalizations of the following inequality.

Theorem. Let 1 < p ≤ q < ∞, and let γp,q =
√

(p− 1)/(q − 1). Then the
inequality (

|u+ γp,qv|q + |u− γp,qv|q

2

)1/q

≤
(
|u+ v|p + |u− v|p

2

)1/p

holds for all u, v ∈ R.

This was shown in 1975 by Beckner [1]. It is known that γp,q in Theorem 1 is
the best constant for the inequality, that is, if γ ∈ [0, 1] and the inequality(

|u+ γv|q + |u− γv|q

2

)1/q

≤
(
|u+ v|p + |u− v|p

2

)1/p

holds for all u, v ∈ R, then we have γ ≤ γp,q. In [9], we constructed an elementary
proof of these facts.

To generalize Beckner’s inequality, we make use of symmetric absolute normal-
ized norms on R2. A norm ‖·‖ on R2 is said to be absolute if ‖(x, y)‖ = ‖(|x|, |y|)‖
for all (x, y) ∈ R2, normalized if ‖(1, 0)‖ = ‖(0, 1)‖ = 1, and symmetric if
‖(x, y)‖ = ‖(y, x)‖. The set of all absolute normalized norms on R2 is denoted by
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AN2. Bonsall and Duncan [3] showed the following characterization of absolute
normalized norms on R2. Namely, the set AN2 of all absolute normalized norms
on R2 is in a one-to-one correspondence with the set Ψ2 of all convex functions
ψ on [0, 1] satisfying max{1 − t, t} ≤ ψ(t) ≤ 1 for all t ∈ [0, 1] (cf. [6]). The
correspondence is given by the equation ψ(t) = ‖(1− t, t)‖ for all t ∈ [0, 1]. Note
that the norm ‖ · ‖ψ associated with the function ψ ∈ Ψ2 is given by

‖(x, y)‖ψ =

 (|x|+ |y|)ψ
(

|y|
|x|+ |y|

)
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

For some other results concerning absolute normalized norms, we refer the readers
to [5, 6, 7, 8]. We remark that the norm ‖ · ‖ ∈ AN2 is symmetric if and only if
ψ(t) = ψ(1 − t) for all t ∈ [0, 1]. For example, the function ψp corresponding to
the `p-norm ‖ · ‖p is given by

ψp(t) =

{
((1− t)p + tp)1/p if 1 ≤ p <∞,
max{1− t, t} if p = ∞,

and satisfies ψp(t) = ψp(1 − t) for all t ∈ [0, 1]. Let ΨS
2 = {ψ ∈ Ψ2 : ψ(t) =

ψ(1− t) for all t ∈ [0, 1]}.
Using the functions ψp and ψq, Beckner’s inequality can be viewed as follows:

Let 1 < p ≤ q <∞, and let γp,q =
√

(p− 1)/(q − 1). Then the inequality

‖(u+ γp,qv, u− γp,qv)‖q
2ψq(

1
2
)

≤ ‖(u+ v, u− v)‖p
2ψp(

1
2
)

holds for all u, v ∈ R. Inspired by this observation, in this paper, we consider the
following problem.

Problem 1.1. Let ϕ, ψ ∈ ΨS
2 , and let γ ∈ [0, 1]. When does the inequality

‖(u+ γv, u− γv)‖ϕ
2ϕ(1

2
)

≤ ‖(u+ v, u− v)‖ψ
2ψ(1

2
)

hold for all u, v ∈ R?

For each ϕ, ψ ∈ ΨS
2 , let Γ(ϕ, ψ) be the set of all γ ∈ [0, 1] such that

‖(u+ γv, u− γv)‖ϕ
2ϕ(1

2
)

≤ ‖(u+ v, u− v)‖ψ
2ψ(1

2
)

holds for all u, v ∈ R. Needless to say, the inequality is trivial if γ = 0. Thus our
main purpose is to clarify the condition that Γ(ϕ, ψ) 6= {0}.

2. Generalizations of Beckner’s inequality

The following is an important characterization of absolute norms on R2. The
proof can be found in [2, Proposition IV.1.1] (see, also [7, Lemma 4.1]).

Lemma 2.1. A norm ‖ · ‖ on R2 is absolute if and only if it is monotone, that
is, if |x1| ≤ |x2| and |y1| ≤ |y2| then ‖(x1, y1)‖ ≤ ‖(x2, y2)‖.

The following lemma is a key.
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Lemma 2.2. Let ϕ, ψ ∈ ΨS
2 , and let γ ∈ [0, 1]. Then the following are equivalent:

(i) The inequality

‖(u+ γv, u− γv)‖ϕ
2ϕ(1

2
)

≤ ‖(u+ v, u− v)‖ψ
2ψ(1

2
)

holds for all u, v ∈ R.
(ii) The inequality

‖(1 + γu, 1− γu)‖ϕ
2ϕ(1

2
)

≤ ‖(1 + u, 1− u)‖ψ
2ψ(1

2
)

holds for all u ∈ [0, 1].

Proof. It is enough to show that (ii) ⇒ (i). Suppose that (ii) holds. We first take
an arbitrary u > 1. Then |1± γu| ≤ |u± γ|, which and Lemma 2.1 imply that

‖(1 + γu, 1− γu)‖ϕ
2ϕ(1

2
)

≤ ‖(u+ γ, u− γ)‖ϕ
2ϕ(1

2
)

=
u ‖(1 + γu−1, 1− γu−1)‖ϕ

2ϕ(1
2
)

≤
u ‖(1 + u−1, 1− u−1)‖ψ

2ψ(1
2
)

=
‖(1 + u, 1− u)‖ψ

2ψ(1
2
)

.

Next, let u ≤ 0. Since ϕ, ψ ∈ ΨS
2 , the assumption and above inequality show

that

‖(1 + γu, 1− γu)‖ϕ
2ϕ(1

2
)

=
‖(1− γu, 1 + γu)‖ϕ

2ϕ(1
2
)

≤ ‖(1− u, 1 + u)‖ψ
2ψ(1

2
)

=
‖(1 + u, 1− u)‖ψ

2ψ(1
2
)

.

Thus the inequality

‖(1 + γu, 1− γu)‖ϕ
2ϕ(1

2
)

≤ ‖(1 + u, 1− u)‖ψ
2ψ(1

2
)

holds for all u ∈ R.
Finally, take arbitrary u, v ∈ R. If u = 0, we have

‖(γv,−γv)‖ϕ
2ϕ(1

2
)

= γ|v| ≤ |v| = ‖(v,−v)‖ψ
2ψ(1

2
)

.
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So we assume that u 6= 0. Then

‖(u+ γv, u− γv)‖ϕ
2ϕ(1

2
)

=
|u| ‖(1 + γu−1v, 1− γu−1v)‖ϕ

2ϕ(1
2
)

≤
|u| ‖(1 + u−1v, 1− u−1v)‖ψ

2ψ(1
2
)

=
‖(u+ v, u− v)‖ψ

2ψ(1
2
)

.

This completes the proof. �

We remark that (ii) in the preceding lemma is equivalent to the following
condition:

ϕ(1−γu
2

)

ψ(1−u
2

)
≤
ϕ(1

2
)

ψ(1
2
)

for all u ∈ [0, 1]. Thus it follows that

Γ(ϕ, ψ) =

{
γ ∈ [0, 1] :

ϕ(1−γu
2

)

ψ(1−u
2

)
≤
ϕ(1

2
)

ψ(1
2
)

for all u ∈ [0, 1]

}
.

for all ϕ, ψ ∈ ΨS
2 . Moreover, since the function

[0, 1] 3 γ →
ϕ(1−γu

2
)

ψ(1−u
2

)

is continuous and convex for each fixed u ∈ [0, 1], the set Γ(ϕ, ψ) is closed and
convex. This means that Γ(ϕ, ψ) is a subinterval of [0, 1]. Let γϕ,ψ = max Γ(ϕ, ψ).
We note that γϕ,ψ is the best constant for the inequality.

In what follows, we study the condition for γϕ,ψ > 0. The following is the
simplest result in this direction.

Proposition 2.3. Let ϕ, ψ ∈ ΨS
2 . Suppose that ϕ(t) = ϕ(1/2) on [δ, 1 − δ] for

some 0 ≤ δ < 1/2. Then γϕ,ψ > 0.

Proof. Let γ = 1− 2δ > 0. Then we have

1

2
≥ 1− γu

2
≥ 1− γ

2
= δ

for all u ∈ [0, 1], which implies that

ϕ(1−γu
2

)

ψ(1−u
2

)
=

ϕ(1
2
)

ψ(1−u
2

)
≤
ϕ(1

2
)

ψ(1
2
)
.

Thus γ ∈ Γ(ϕ, ψ), and so γϕ,ψ ≥ γ > 0. �

For each ψ ∈ ΨS
2 , remark that ψ′L(1/2) ≤ 0, and that ψ′L(1/2) = 0 if and

only if ψ is differentiable at 1/2, where ψ′L denotes the left derivative of ψ. Let
ϕ, ψ ∈ ΨS

2 . We consider the following four cases:

(I) ϕ′L(1/2) = 0 and ψ′L(1/2) = 0.
(II) ϕ′L(1/2) = 0 and ψ′L(1/2) < 0.

(III) ϕ′L(1/2) < 0 and ψ′L(1/2) = 0.
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(IV) ϕ′L(1/2) < 0 and ψ′L(1/2) < 0.

We first present the following theorem concerning cases (II), (III) and (IV).

Theorem 2.4. Let ϕ, ψ ∈ ΨS
2 . Then the following hold:

(i) If ϕ′L(1/2) = 0 and ψ′L(1/2) < 0, then γϕ,ψ > 0.
(ii) If ϕ′L(1/2) < 0 and ψ′L(1/2) = 0, then γϕ,ψ = 0.
(iii) If ϕ′L(1/2) < 0 and ψ′L(1/2) < 0, then γϕ,ψ > 0.

In particular, if ϕ′L(1/2) < 0 then

γϕ,ψ ≤
ϕ(1

2
)ψ′L(1

2
)

ψ(1
2
)ϕ′L(1

2
)
.

Proof. (i) We first remark that

ψ(t) ≥ ψ

(
1

2

)
− ψ′L

(
1

2

)(
1

2
− t

)
for all t ∈ [0, 1/2]. Since ϕ′(1/2) = 0, there exists t0 ∈ [0, 1/2) such that

ϕ(1
2
)− ϕ(t)
1
2
− t

≥
ψ′L(1

2
)

2

for all t ∈ [t0, 1/2), that is,

ϕ(t) ≤ ϕ

(
1

2

)
−
ψ′L(1

2
)

2

(
1

2
− t

)
for all t ∈ [t0, 1/2]. Putting γ = 1− 2t0 > 0, we have

1

2
≥ 1− γu

2
≥ 1− γ

2
= t0

for u ∈ [0, 1], and hence, by an easy calculation, it follows that

ϕ(1−γu
2

)

ψ(1−u
2

)
≤
ϕ(1

2
)− ψ′L(1

2
)γu

4

ψ(1
2
)− ψ′L(1

2
)u

2

≤
ϕ(1

2
)− ψ′L(1

2
)u

4

ψ(1
2
)− ψ′L(1

2
)u

2

≤
ϕ(1

2
)

ψ(1
2
)
.

This means that γ ∈ Γ(ϕ, ψ). Thus we obtain γϕψ ≥ γ > 0.
(ii) and (iii): Assume that ϕ′L(1/2) < 0. Put

k0 =
ϕ(1

2
)ψ′L(1

2
)

ψ(1
2
)ϕ′L(1

2
)
.

We first show the inequality γϕ,ψ ≤ k0. Suppose that k0 < 1, and that k0 < γ ≤ 1.
Since

γψ(1
2
)ϕ′L(1

2
)

ϕ(1
2
)

< ψ′L

(
1

2

)
,

there exists t0 ∈ [0, 1/2) such that t ∈ [t0, 1/2) implies

ψ(1
2
)− ψ(t)
1
2
− t

>
γψ(1

2
)ϕ′L(1

2
)

ϕ(1
2
)

,
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that is,

ψ(t) < ψ

(
1

2

)
−
γψ(1

2
)ϕ′L(1

2
)

ϕ(1
2
)

(
1

2
− t

)
for all t ∈ [t0, 1/2). On the other hand, since

ϕ(t) ≥ ϕ

(
1

2

)
− ϕ′L

(
1

2

)(
1

2
− t

)
for all t ∈ [0, 1/2], putting u0 = 1− 2t0, we have

ψ

(
1− u0

2

)
= ψ(t0) <

ψ(1
2
)

ϕ(1
2
)

(
ϕ

(
1

2

)
− γϕ′L

(
1

2

)(
1

2
− t0

))
=
ψ(1

2
)

ϕ(1
2
)

(
ϕ

(
1

2

)
− γu0

2
ϕ′L

(
1

2

))
,

and

ϕ

(
1− γu0

2

)
≥ ϕ

(
1

2

)
− γu0

2
ϕ′L

(
1

2

)
.

These imply that

ϕ(1−γu0

2
)

ψ(1−u0

2
)
>
ϕ(1

2
)

ψ(1
2
)
,

which shows γ 6∈ Γ(ϕ, ψ). Thus we obtain γϕ,ψ ≤ k0, which also proves (ii).
In the case of (iii), we have k0 > 0. Take an arbitrary γ satisfying 0 < γ <

min{k0, 1}. Since

ϕ′L

(
1

2

)
>
ϕ(1

2
)ψ′L(1

2
)

γψ(1
2
)

,

there exists t0 ∈ [0, 1/2) such that t ∈ [t0, 1/2) implies

ϕ(1
2
)− ϕ(t)
1
2
− t

≥
ϕ(1

2
)ψ′L(1

2
)

γψ(1
2
)

,

that is,

ϕ(t) ≤ ϕ

(
1

2

)
−
ϕ(1

2
)ψ′L(1

2
)

γψ(1
2
)

(
1

2
− t

)
for all t ∈ [t0, 1/2). Moreover, we note that

ψ(t) ≥ ψ

(
1

2

)
− ψ′L

(
1

2

)(
1

2
− t

)
for all t ∈ [0, 1/2]. Now, putting γ0 = min{1− 2t0, γ} > 0, we have

1

2
≥ 1− γ0u

2
≥ 1− γ0

2
≥ t0
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for all u ∈ [0, 1], which implies that

ϕ

(
1− γ0u

2

)
≤ ϕ

(
1

2

)
−
γ0uϕ(1

2
)ψ′L(1

2
)

2γψ(1
2
)

=
ϕ(1

2
)

ψ(1
2
)

(
ψ

(
1

2

)
− γ0u

2γ
ψ′L

(
1

2

))
≤
ϕ(1

2
)

ψ(1
2
)

(
ψ

(
1

2

)
− u

2
ψ′L

(
1

2

))
.

Then, it follows from

ψ

(
1− u

2

)
≥ ψ

(
1

2

)
− u

2
ψ′L

(
1

2

)
that

ϕ(1−γ0u
2

)

ψ(1−u
2

)
≤
ϕ(1

2
)

ψ(1
2
)
.

for all u ∈ [0, 1]. This shows γ0 ∈ Γ(ϕ, ψ), and so we have γϕ,ψ ≥ γ0 > 0. �

The following is an application of Theorem 2.4.

Example 2.5. For each α ∈ (1/2, 1), let ψα be an element of ΨS
2 defined by

ψα(t) =

{
1 + 2(α− 1)t if t ∈ [0, 1/2],
2α− 1 + 2(1− α)t if t ∈ [1/2, 1].

Suppose that α, β ∈ (1/2, 1), and that α ≤ β. Then

k0 =
ψα(

1
2
)(ψβ)

′
L(1

2
)

ψβ(
1
2
)(ψα)′L(1

2
)

=
α(1− β)

β(1− α)
≤ 1.

On the other hand, for each u ∈ [0, 1], we have

ψα

(
1− k0u

2

)
= 1 + (α− 1)(1− k0u)

= α− (α− 1)k0u

= α− α(1− β)

β
u

=
α

β
(β − (1− β)u)

=
α

β
(1 + (β − 1)(1− u))

=
α

β
ψβ

(
1− u

2

)
.

Thus k0 ∈ Γ(ψα, ψβ), which and Theorem 2.4 imply that

γψα,ψβ = k0 =
α(1− β)

β(1− α)
.
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Theorem 2.4 clarifies the relationship between γϕ,ψ and cases (II), (III) or (IV).
However, we have no information about (I). So we next consider several special
subcases of (I).

Let ϕ, ψ ∈ ΨS
2 . Suppose that the second derivatives ϕ′′ and ψ′′ are continuous

on (δ, 1− δ) for some 0 ≤ δ < 1/2. Then we remark that ϕ′′(1/2) ≥ 0 and
ψ′′(1/2) ≥ 0 by convexity. This allows us to consider the following four subcases
of (I):

(I-a) ϕ′′(1/2) = 0 and ψ′′(1/2) = 0.
(I-b) ϕ′′(1/2) = 0 and ψ′′(1/2) > 0.
(I-c) ϕ′′(1/2) > 0 and ψ′′(1/2) = 0.
(I-d) ϕ′′(1/2) > 0 and ψ′′(1/2) > 0.

Here we do not consider the case (I-a) because of its complexity. For cases
(I-b), (I-c) and (I-d), we have the following result.

Theorem 2.6. Let ϕ, ψ ∈ ΨS
2 . Suppose that the second derivatives ϕ′′ and ψ′′

are continuous on (δ, 1− δ) for some 0 ≤ δ < 1/2. Then the following hold:

(i) If ϕ′′(1/2) = 0 and ψ′′(1/2) > 0, then γϕ,ψ > 0.
(ii) If ϕ′′(1/2) > 0 and ψ′′(1/2) = 0, then γϕ,ψ = 0.
(iii) If ϕ′′(1/2) > 0 and ψ′′(1/2) > 0, then γϕ,ψ > 0.

In particular, if ϕ′′(1/2) > 0 then

γϕ,ψ ≤

√
ϕ(1

2
)ψ′′(1

2
)

ψ(1
2
)ϕ′′(1

2
)
.

Proof. (i) For each γ ∈ (0, 1], define the function fγ : [0, 1 − 2δ) → R by the
formula

fγ(u) =
ψ(1−u

2
)

ψ(1
2
)
−
ϕ(1−γu

2
)

ϕ(1
2
)
.

Then, the first and second derivative of fγ are as follows:

f ′γ(u) =
1

2

(
γ
ϕ′(1−γu

2
)

ϕ(1
2
)

−
ψ′(1−u

2
)

ψ(1
2
)

)
,

f ′′γ (u) =
1

4

(
ψ′′(1−u

2
)

ψ(1
2
)

− γ2ϕ
′′(1−γu

2
)

ϕ(1
2
)

)
.

So we have f ′γ(0) = 0 and

f ′′γ (0) =
1

4

(
ψ′′(1

2
)

ψ(1
2
)
− γ2ϕ

′′(1
2
)

ϕ(1
2
)

)
=
ψ′′(1

2
)

4ψ(1
2
)
> 0.

From these facts, the function fγ is positive on the interval [0, u0] for some u0 ∈
(0, 1]. Let γ0 = γu0 > 0. Take an arbitrary u ∈ [0, 1] and put v = u0u. Then

0 ≤ v ≤ min{u0, u},
and so

1− u

2
≤ 1− v

2
≤ 1

2
,
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which implies that

ψ

(
1− u

2

)
≥ ψ

(
1− v

2

)
.

Hence we have

fγ0(u) =
ψ(1−u

2
)

ψ(1
2
)
−
ϕ(1−γ0u

2
)

ϕ(1
2
)

≥
ψ(1−v

2
)

ψ(1
2
)
−
ϕ(1−γv

2
)

ϕ(1
2
)

= fγ(v) ≥ 0.

This shows that γ0 ∈ Γ(ϕ, ψ). Thus γϕ,ψ ≥ γ0 > 0.
We next suppose that ϕ′′(1/2) > 0. Put

k0 =

√
ϕ(1

2
)ψ′′(1

2
)

ψ(1
2
)ϕ′′(1

2
)
.

(ii) As in the proof of (i), f ′′γ (0) < 0 if γ > k0. Then it follows that fγ(u0) < 0
for some u0 ∈ (0, 1 − 2δ). This means that γ 6∈ Γ(ϕ, ψ), which shows that
γϕ,ψ ≤ k0. This proves (ii).

(iii) In this case, we obtain k0 > 0. Moreover, for each γ with 0 < γ <
min{1, k0}, we have f ′′γ (0) > 0. Hence the function fγ is positive on some non-
trivial interval [0, u0]. Finally, we obtain γϕ,ψ > 0 by an argument similar to that
in the first paragraph. �

Remark 2.7. We remark that√
ψq(

1
2
)ψ′′p(

1
2
)

ψp(
1
2
)ψ′′q (

1
2
)

=

√
p− 1

q − 1
= γp,q,

where γp,q is the best constant for Beckner’s inequality. This gives another aspect
of the value γp,q.

We next consider the duality of the Beckner type inequality. Then we need the
following lemma.

Lemma 2.8. Suppose that ϕ, ψ ∈ ΨS
2 . For each γ ∈ [0, 1], let

Aγ =

(
1 + γ 1− γ
1− γ 1 + γ

)
.

Then γ ∈ Γ(ϕ, ψ) if and only if∥∥Aγ : (R2, ‖ · ‖ψ) → (R2, ‖ · ‖ϕ)
∥∥ ≤ 2ϕ(1

2
)

ψ(1
2
)
.

Proof. Let γ ∈ Γ(ϕ, ψ). Then, by Lemma 2.2,

‖(u+ γv, u− γv)‖ϕ
2ϕ(1

2
)

≤ ‖(u+ v, u− v)‖ψ
2ψ(1

2
)
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for all u, v ∈ R. Take arbitrary u, v ∈ R, and put

u1 = u+ v and v1 = u− v,

respectively. Applying the inequality for u1 and v1, we obtain

‖((1 + γ)u+ (1− γ)v, (1− γ)u+ (1 + γ)v)‖ϕ
2ϕ(1

2
)

≤ ‖(2u, 2v)‖ψ
2ψ(1

2
)

,

that is,

‖Aγ(u, v)‖ϕ ≤
2ϕ(1

2
)

ψ(1
2
)
‖(u, v)‖ψ.

Thus we have ∥∥A : (R2, ‖ · ‖ψ) → (R2, ‖ · ‖ϕ)
∥∥ ≤ 2ϕ(1

2
)

ψ(1
2
)
.

Conversely, suppose that∥∥Aγ : (R2, ‖ · ‖ψ) → (R2, ‖ · ‖ϕ)
∥∥ ≤ 2ϕ(1

2
)

ψ(1
2
)
.

Let u, v ∈ R. Putting

u1 =
u+ v

2
and v1 =

u− v

2
,

we have

‖(u+ γv, u− γv)‖ϕ = ‖((1 + γ)u1 + (1− γ)v1, (1− γ)u1 + (1 + γ)v1)‖ϕ
= ‖Aγ(u1, v1)‖ϕ

≤
2ϕ(1

2
)

ψ(1
2
)
‖(u1, v1)‖ψ

=
ϕ(1

2
)

ψ(1
2
)
‖(u+ v, u− v)‖ψ.

Then it follows that γ ∈ Γ(ϕ, ψ). �

Let ψ ∈ Ψ2, and let ‖ · ‖∗ψ be the dual norm of ‖ · ‖ψ. Then, as in [4], one has
‖ · ‖∗ψ ∈ AN2, and the function ψ∗ ∈ Ψ2 corresponding to ‖ · ‖∗ψ is given by

ψ∗(s) = sup
0≤t≤1

(1− s)(1− t) + st

ψ(t)

for all s ∈ [0, 1]. We remark that ψ ∈ ΨS
2 implies ψ∗ ∈ ΨS

2 .
The following is our purpose.

Theorem 2.9. Let ϕ, ψ ∈ ΨS
2 . Then γϕ,ψ = γψ∗,ϕ∗.

Proof. Since min0≤t≤1 ϕ(t) = ϕ(1/2), it follows that

ϕ∗
(

1

2

)
= sup

0≤t≤1

(1− t)/2 + t/2

ϕ(t)
=

1

2ϕ(1
2
)
.
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We similarly have ψ∗(1/2) = 1/2ψ(1/2), which implies that

ψ∗(1
2
)

ϕ∗(1
2
)

=
ϕ(1

2
)

ψ(1
2
)
.

Now, take an arbitrary γ ∈ [0, 1] and define a matrix Aγ as in Lemma 2.8. We
remark that A∗

γ = Aγ, where A∗
γ is the adjoint operator of Aγ. Hence Lemma 2.8

assures that γ ∈ Γ(ϕ, ψ) if and only if∥∥Aγ : (R2, ‖ · ‖ψ) → (R2, ‖ · ‖ϕ)
∥∥ ≤ 2ϕ(1

2
)

ψ(1
2
)

if and only if ∥∥Aγ : (R2, ‖ · ‖ϕ∗) → (R2, ‖ · ‖ψ∗)
∥∥ ≤ 2ψ∗(1

2
)

ϕ∗(1
2
)

if and only if γ ∈ Γ(ψ∗, ϕ∗). Thus we have Γ(ϕ, ψ) = Γ(ψ∗, ϕ∗). The proof is
complete. �

Finally, we extend generalized Beckner’s inequality to normed spaces.

Theorem 2.10. Let X be a normed space. Suppose that ϕ, ψ ∈ ΨS
2 , and that

γ ∈ Γ(ϕ, ψ). Then the inequality

‖(x+ γy, x− γy)‖ϕ
2ϕ(1

2
)

≤ ‖(x+ y, x− y)‖ψ
2ψ(1

2
)

holds for all x, y ∈ X.

Proof. Take arbitrary x, y ∈ X, and put

z = x+ y and w = x− y,

respectively. We also put

u =
‖z‖+ ‖w‖

2
and v =

‖z‖ − ‖w‖
2

.

Then we have

‖(x+ γy, x− γy)‖ϕ
2ϕ(1

2
)

=
‖(1+γ

2
z + 1−γ

2
w, 1−γ

2
z + 1+γ

2
w)‖ϕ

2ϕ(1
2
)

≤
‖(1+γ

2
‖z‖+ 1−γ

2
‖w‖, 1−γ

2
‖z‖+ 1+γ

2
‖w‖)‖ϕ

2ϕ(1
2
)

=
‖(u+ γv, u− γv)‖ϕ

2ϕ(1
2
)

≤ ‖(u+ v, u− v)‖ϕ
2ψ(1

2
)

=
‖(x+ y, x− y)‖ψ

2ψ(1
2
)

.

This completes the proof. �
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