

Ann. Funct. Anal. 6 (2015), no. 1, 267–278

http://doi.org/10.15352/afa/06-1-20

ISSN: 2008-8752 (electronic) http://projecteuclid.org/afa

ON GENERALIZED BECKNER'S INEQUALITY

KICHI-SUKE SAITO*1 AND RYOTARO TANAKA2

Communicated by Y. Seo

ABSTRACT. In this paper, we present generalizations of Beckner's inequality by using symmetric absolute normalized norms on \mathbb{R}^2 .

1. Introduction

The aim of this paper is to present generalizations of the following inequality.

Theorem. Let $1 , and let <math>\gamma_{p,q} = \sqrt{(p-1)/(q-1)}$. Then the inequality

$$\left(\frac{|u+\gamma_{p,q}v|^q + |u-\gamma_{p,q}v|^q}{2}\right)^{1/q} \le \left(\frac{|u+v|^p + |u-v|^p}{2}\right)^{1/p}$$

holds for all $u, v \in \mathbb{R}$.

This was shown in 1975 by Beckner [1]. It is known that $\gamma_{p,q}$ in Theorem 1 is the best constant for the inequality, that is, if $\gamma \in [0, 1]$ and the inequality

$$\left(\frac{|u+\gamma v|^q + |u-\gamma v|^q}{2}\right)^{1/q} \le \left(\frac{|u+v|^p + |u-v|^p}{2}\right)^{1/p}$$

holds for all $u, v \in \mathbb{R}$, then we have $\gamma \leq \gamma_{p,q}$. In [9], we constructed an elementary proof of these facts.

To generalize Beckner's inequality, we make use of symmetric absolute normalized norms on \mathbb{R}^2 . A norm $\|\cdot\|$ on \mathbb{R}^2 is said to be absolute if $\|(x,y)\| = \|(|x|,|y|)\|$ for all $(x,y) \in \mathbb{R}^2$, normalized if $\|(1,0)\| = \|(0,1)\| = 1$, and symmetric if $\|(x,y)\| = \|(y,x)\|$. The set of all absolute normalized norms on \mathbb{R}^2 is denoted by

Date: Received: Dec. 4, 2013; Accepted: Feb. 7, 2014.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46B20; Secondary 46B99.

Key words and phrases. Beckner's inequality, symmetric absolute normalized norm, norm inequality.

 AN_2 . Bonsall and Duncan [3] showed the following characterization of absolute normalized norms on \mathbb{R}^2 . Namely, the set AN_2 of all absolute normalized norms on \mathbb{R}^2 is in a one-to-one correspondence with the set Ψ_2 of all convex functions ψ on [0,1] satisfying $\max\{1-t,t\} \leq \psi(t) \leq 1$ for all $t \in [0,1]$ (cf. [6]). The correspondence is given by the equation $\psi(t) = \|(1-t,t)\|$ for all $t \in [0,1]$. Note that the norm $\|\cdot\|_{\psi}$ associated with the function $\psi \in \Psi_2$ is given by

$$\|(x,y)\|_{\psi} = \begin{cases} (|x| + |y|)\psi\left(\frac{|y|}{|x| + |y|}\right) & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

For some other results concerning absolute normalized norms, we refer the readers to [5, 6, 7, 8]. We remark that the norm $\|\cdot\| \in AN_2$ is symmetric if and only if $\psi(t) = \psi(1-t)$ for all $t \in [0,1]$. For example, the function ψ_p corresponding to the ℓ_p -norm $\|\cdot\|_p$ is given by

$$\psi_p(t) = \begin{cases} ((1-t)^p + t^p)^{1/p} & \text{if } 1 \le p < \infty, \\ \max\{1-t,t\} & \text{if } p = \infty, \end{cases}$$

and satisfies $\psi_p(t) = \psi_p(1-t)$ for all $t \in [0,1]$. Let $\Psi_2^S = \{\psi \in \Psi_2 : \psi(t) = \psi(1-t) \text{ for all } t \in [0,1]\}.$

Using the functions ψ_p and ψ_q , Beckner's inequality can be viewed as follows: Let $1 , and let <math>\gamma_{p,q} = \sqrt{(p-1)/(q-1)}$. Then the inequality

$$\frac{\|(u+\gamma_{p,q}v, u-\gamma_{p,q}v)\|_{q}}{2\psi_{q}(\frac{1}{2})} \le \frac{\|(u+v, u-v)\|_{p}}{2\psi_{p}(\frac{1}{2})}$$

holds for all $u, v \in \mathbb{R}$. Inspired by this observation, in this paper, we consider the following problem.

Problem 1.1. Let $\varphi, \psi \in \Psi_2^S$, and let $\gamma \in [0,1]$. When does the inequality

$$\frac{\|(u + \gamma v, u - \gamma v)\|_{\varphi}}{2\varphi(\frac{1}{2})} \le \frac{\|(u + v, u - v)\|_{\psi}}{2\psi(\frac{1}{2})}$$

hold for all $u, v \in \mathbb{R}$?

For each $\varphi, \psi \in \Psi_2^S$, let $\Gamma(\varphi, \psi)$ be the set of all $\gamma \in [0, 1]$ such that

$$\frac{\|(u+\gamma v, u-\gamma v)\|_{\varphi}}{2\varphi(\frac{1}{2})} \le \frac{\|(u+v, u-v)\|_{\psi}}{2\psi(\frac{1}{2})}$$

holds for all $u, v \in \mathbb{R}$. Needless to say, the inequality is trivial if $\gamma = 0$. Thus our main purpose is to clarify the condition that $\Gamma(\varphi, \psi) \neq \{0\}$.

2. Generalizations of Beckner's inequality

The following is an important characterization of absolute norms on \mathbb{R}^2 . The proof can be found in [2, Proposition IV.1.1] (see, also [7, Lemma 4.1]).

Lemma 2.1. A norm $\|\cdot\|$ on \mathbb{R}^2 is absolute if and only if it is monotone, that is, if $|x_1| \leq |x_2|$ and $|y_1| \leq |y_2|$ then $\|(x_1, y_1)\| \leq \|(x_2, y_2)\|$.

The following lemma is a key.

Lemma 2.2. Let $\varphi, \psi \in \Psi_2^S$, and let $\gamma \in [0,1]$. Then the following are equivalent:

(i) The inequality

$$\frac{\|(u+\gamma v, u-\gamma v)\|_{\varphi}}{2\varphi(\frac{1}{2})} \le \frac{\|(u+v, u-v)\|_{\psi}}{2\psi(\frac{1}{2})}$$

holds for all $u, v \in \mathbb{R}$.

(ii) The inequality

$$\frac{\|(1+\gamma u, 1-\gamma u)\|_{\varphi}}{2\varphi(\frac{1}{2})} \le \frac{\|(1+u, 1-u)\|_{\psi}}{2\psi(\frac{1}{2})}$$

holds for all $u \in [0, 1]$.

Proof. It is enough to show that (ii) \Rightarrow (i). Suppose that (ii) holds. We first take an arbitrary u > 1. Then $|1 \pm \gamma u| \leq |u \pm \gamma|$, which and Lemma 2.1 imply that

$$\begin{split} \frac{\|(1+\gamma u,1-\gamma u)\|_{\varphi}}{2\varphi(\frac{1}{2})} &\leq \frac{\|(u+\gamma,u-\gamma)\|_{\varphi}}{2\varphi(\frac{1}{2})} \\ &= \frac{u\,\|(1+\gamma u^{-1},1-\gamma u^{-1})\|_{\varphi}}{2\varphi(\frac{1}{2})} \\ &\leq \frac{u\,\|(1+u^{-1},1-u^{-1})\|_{\psi}}{2\psi(\frac{1}{2})} \\ &= \frac{\|(1+u,1-u)\|_{\psi}}{2\psi(\frac{1}{2})}. \end{split}$$

Next, let $u \leq 0$. Since $\varphi, \psi \in \Psi_2^S$, the assumption and above inequality show that

$$\frac{\|(1+\gamma u, 1-\gamma u)\|_{\varphi}}{2\varphi(\frac{1}{2})} = \frac{\|(1-\gamma u, 1+\gamma u)\|_{\varphi}}{2\varphi(\frac{1}{2})}$$

$$\leq \frac{\|(1-u, 1+u)\|_{\psi}}{2\psi(\frac{1}{2})}$$

$$= \frac{\|(1+u, 1-u)\|_{\psi}}{2\psi(\frac{1}{2})}.$$

Thus the inequality

$$\frac{\|(1+\gamma u, 1-\gamma u)\|_{\varphi}}{2\varphi(\frac{1}{2})} \le \frac{\|(1+u, 1-u)\|_{\psi}}{2\psi(\frac{1}{2})}$$

holds for all $u \in \mathbb{R}$.

Finally, take arbitrary $u, v \in \mathbb{R}$. If u = 0, we have

$$\frac{\|(\gamma v, -\gamma v)\|_{\varphi}}{2\varphi(\frac{1}{2})} = \gamma |v| \le |v| = \frac{\|(v, -v)\|_{\psi}}{2\psi(\frac{1}{2})}.$$

So we assume that $u \neq 0$. Then

$$\frac{\|(u+\gamma v, u-\gamma v)\|_{\varphi}}{2\varphi(\frac{1}{2})} = \frac{\|u\| \|(1+\gamma u^{-1}v, 1-\gamma u^{-1}v)\|_{\varphi}}{2\varphi(\frac{1}{2})}$$

$$\leq \frac{\|u\| \|(1+u^{-1}v, 1-u^{-1}v)\|_{\psi}}{2\psi(\frac{1}{2})}$$

$$= \frac{\|(u+v, u-v)\|_{\psi}}{2\psi(\frac{1}{2})}.$$

This completes the proof.

We remark that (ii) in the preceding lemma is equivalent to the following condition:

$$\frac{\varphi(\frac{1-\gamma u}{2})}{\psi(\frac{1-u}{2})} \le \frac{\varphi(\frac{1}{2})}{\psi(\frac{1}{2})}$$

for all $u \in [0,1]$. Thus it follows that

$$\Gamma(\varphi,\psi) = \left\{ \gamma \in [0,1] : \frac{\varphi(\frac{1-\gamma u}{2})}{\psi(\frac{1-u}{2})} \le \frac{\varphi(\frac{1}{2})}{\psi(\frac{1}{2})} \text{ for all } u \in [0,1] \right\}.$$

for all $\varphi, \psi \in \Psi_2^S$. Moreover, since the function

$$[0,1] \ni \gamma \to \frac{\varphi(\frac{1-\gamma u}{2})}{\psi(\frac{1-u}{2})}$$

is continuous and convex for each fixed $u \in [0,1]$, the set $\Gamma(\varphi,\psi)$ is closed and convex. This means that $\Gamma(\varphi,\psi)$ is a subinterval of [0,1]. Let $\gamma_{\varphi,\psi} = \max \Gamma(\varphi,\psi)$. We note that $\gamma_{\varphi,\psi}$ is the best constant for the inequality.

In what follows, we study the condition for $\gamma_{\varphi,\psi} > 0$. The following is the simplest result in this direction.

Proposition 2.3. Let $\varphi, \psi \in \Psi_2^S$. Suppose that $\varphi(t) = \varphi(1/2)$ on $[\delta, 1 - \delta]$ for some $0 \le \delta < 1/2$. Then $\gamma_{\varphi,\psi} > 0$.

Proof. Let $\gamma = 1 - 2\delta > 0$. Then we have

$$\frac{1}{2} \geq \frac{1-\gamma u}{2} \geq \frac{1-\gamma}{2} = \delta$$

for all $u \in [0, 1]$, which implies that

$$\frac{\varphi(\frac{1-\gamma u}{2})}{\psi(\frac{1-u}{2})} = \frac{\varphi(\frac{1}{2})}{\psi(\frac{1-u}{2})} \le \frac{\varphi(\frac{1}{2})}{\psi(\frac{1}{2})}.$$

Thus $\gamma \in \Gamma(\varphi, \psi)$, and so $\gamma_{\varphi,\psi} \geq \gamma > 0$.

For each $\psi \in \Psi_2^S$, remark that $\psi_L'(1/2) \leq 0$, and that $\psi_L'(1/2) = 0$ if and only if ψ is differentiable at 1/2, where ψ_L' denotes the left derivative of ψ . Let $\varphi, \psi \in \Psi_2^S$. We consider the following four cases:

- (I) $\varphi'_L(1/2) = 0$ and $\psi'_L(1/2) = 0$.
- (II) $\varphi'_L(1/2) = 0$ and $\psi'_L(1/2) < 0$.
- (III) $\varphi'_L(1/2) < 0$ and $\psi'_L(1/2) = 0$.

(IV) $\varphi'_L(1/2) < 0$ and $\psi'_L(1/2) < 0$.

We first present the following theorem concerning cases (II), (III) and (IV).

Theorem 2.4. Let $\varphi, \psi \in \Psi_2^S$. Then the following hold:

- (i) If $\varphi'_L(1/2) = 0$ and $\psi'_L(1/2) < 0$, then $\gamma_{\varphi,\psi} > 0$.
- (ii) If $\varphi'_L(1/2) < 0$ and $\psi'_L(1/2) = 0$, then $\gamma_{\varphi,\psi} = 0$.
- (iii) If $\varphi_L^{\tilde{\nu}}(1/2) < 0$ and $\psi_L^{\tilde{\nu}}(1/2) < 0$, then $\gamma_{\varphi,\psi} > 0$.

In particular, if $\varphi'_L(1/2) < 0$ then

$$\gamma_{\varphi,\psi} \le \frac{\varphi(\frac{1}{2})\psi_L'(\frac{1}{2})}{\psi(\frac{1}{2})\varphi_L'(\frac{1}{2})}.$$

Proof. (i) We first remark that

$$\psi(t) \ge \psi\left(\frac{1}{2}\right) - \psi_L'\left(\frac{1}{2}\right)\left(\frac{1}{2} - t\right)$$

for all $t \in [0, 1/2]$. Since $\varphi'(1/2) = 0$, there exists $t_0 \in [0, 1/2)$ such that

$$\frac{\varphi(\frac{1}{2}) - \varphi(t)}{\frac{1}{2} - t} \ge \frac{\psi_L'(\frac{1}{2})}{2}$$

for all $t \in [t_0, 1/2)$, that is,

$$\varphi(t) \le \varphi\left(\frac{1}{2}\right) - \frac{\psi_L'(\frac{1}{2})}{2}\left(\frac{1}{2} - t\right)$$

for all $t \in [t_0, 1/2]$. Putting $\gamma = 1 - 2t_0 > 0$, we have

$$\frac{1}{2} \ge \frac{1 - \gamma u}{2} \ge \frac{1 - \gamma}{2} = t_0$$

for $u \in [0, 1]$, and hence, by an easy calculation, it follows that

$$\frac{\varphi(\frac{1-\gamma u}{2})}{\psi(\frac{1-u}{2})} \leq \frac{\varphi(\frac{1}{2}) - \psi_L'(\frac{1}{2})\frac{\gamma u}{4}}{\psi(\frac{1}{2}) - \psi_L'(\frac{1}{2})\frac{u}{2}} \leq \frac{\varphi(\frac{1}{2}) - \psi_L'(\frac{1}{2})\frac{u}{4}}{\psi(\frac{1}{2}) - \psi_L'(\frac{1}{2})\frac{u}{2}} \leq \frac{\varphi(\frac{1}{2})}{\psi(\frac{1}{2})}.$$

This means that $\gamma \in \Gamma(\varphi, \psi)$. Thus we obtain $\gamma_{\varphi_{\psi}} \geq \gamma > 0$.

(ii) and (iii): Assume that $\varphi'_L(1/2) < 0$. Put

$$k_0 = \frac{\varphi(\frac{1}{2})\psi_L'(\frac{1}{2})}{\psi(\frac{1}{2})\varphi_L'(\frac{1}{2})}.$$

We first show the inequality $\gamma_{\varphi,\psi} \leq k_0$. Suppose that $k_0 < 1$, and that $k_0 < \gamma \leq 1$. Since

$$\frac{\gamma\psi(\frac{1}{2})\varphi_L'(\frac{1}{2})}{\varphi(\frac{1}{2})} < \psi_L'\left(\frac{1}{2}\right),$$

there exists $t_0 \in [0, 1/2)$ such that $t \in [t_0, 1/2)$ implies

$$\frac{\psi(\frac{1}{2}) - \psi(t)}{\frac{1}{2} - t} > \frac{\gamma \psi(\frac{1}{2}) \varphi_L'(\frac{1}{2})}{\varphi(\frac{1}{2})},$$

that is,

$$\psi(t) < \psi\left(\frac{1}{2}\right) - \frac{\gamma\psi(\frac{1}{2})\varphi_L'(\frac{1}{2})}{\varphi(\frac{1}{2})}\left(\frac{1}{2} - t\right)$$

for all $t \in [t_0, 1/2)$. On the other hand, since

$$\varphi(t) \ge \varphi\left(\frac{1}{2}\right) - \varphi_L'\left(\frac{1}{2}\right)\left(\frac{1}{2} - t\right)$$

for all $t \in [0, 1/2]$, putting $u_0 = 1 - 2t_0$, we have

$$\psi\left(\frac{1-u_0}{2}\right) = \psi(t_0) < \frac{\psi(\frac{1}{2})}{\varphi(\frac{1}{2})} \left(\varphi\left(\frac{1}{2}\right) - \gamma\varphi_L'\left(\frac{1}{2}\right)\left(\frac{1}{2} - t_0\right)\right)$$
$$= \frac{\psi(\frac{1}{2})}{\varphi(\frac{1}{2})} \left(\varphi\left(\frac{1}{2}\right) - \frac{\gamma u_0}{2}\varphi_L'\left(\frac{1}{2}\right)\right),$$

and

$$\varphi\left(\frac{1-\gamma u_0}{2}\right) \ge \varphi\left(\frac{1}{2}\right) - \frac{\gamma u_0}{2}\varphi_L'\left(\frac{1}{2}\right).$$

These imply that

$$\frac{\varphi(\frac{1-\gamma u_0}{2})}{\psi(\frac{1-u_0}{2})} > \frac{\varphi(\frac{1}{2})}{\psi(\frac{1}{2})},$$

which shows $\gamma \notin \Gamma(\varphi, \psi)$. Thus we obtain $\gamma_{\varphi,\psi} \leq k_0$, which also proves (ii).

In the case of (iii), we have $k_0 > 0$. Take an arbitrary γ satisfying $0 < \gamma < \min\{k_0, 1\}$. Since

$$\varphi_L'\left(\frac{1}{2}\right) > \frac{\varphi(\frac{1}{2})\psi_L'(\frac{1}{2})}{\gamma\psi(\frac{1}{2})},$$

there exists $t_0 \in [0, 1/2)$ such that $t \in [t_0, 1/2)$ implies

$$\frac{\varphi(\frac{1}{2}) - \varphi(t)}{\frac{1}{2} - t} \ge \frac{\varphi(\frac{1}{2})\psi_L'(\frac{1}{2})}{\gamma\psi(\frac{1}{2})},$$

that is,

$$\varphi(t) \le \varphi\left(\frac{1}{2}\right) - \frac{\varphi(\frac{1}{2})\psi_L'(\frac{1}{2})}{\gamma\psi(\frac{1}{2})}\left(\frac{1}{2} - t\right)$$

for all $t \in [t_0, 1/2)$. Moreover, we note that

$$\psi(t) \ge \psi\left(\frac{1}{2}\right) - \psi_L'\left(\frac{1}{2}\right)\left(\frac{1}{2} - t\right)$$

for all $t \in [0, 1/2]$. Now, putting $\gamma_0 = \min\{1 - 2t_0, \gamma\} > 0$, we have

$$\frac{1}{2} \ge \frac{1-\gamma_0 u}{2} \ge \frac{1-\gamma_0}{2} \ge t_0$$

for all $u \in [0, 1]$, which implies that

$$\varphi\left(\frac{1-\gamma_0 u}{2}\right) \leq \varphi\left(\frac{1}{2}\right) - \frac{\gamma_0 u \varphi(\frac{1}{2}) \psi_L'(\frac{1}{2})}{2\gamma \psi(\frac{1}{2})}$$

$$= \frac{\varphi(\frac{1}{2})}{\psi(\frac{1}{2})} \left(\psi\left(\frac{1}{2}\right) - \frac{\gamma_0 u}{2\gamma} \psi_L'\left(\frac{1}{2}\right)\right)$$

$$\leq \frac{\varphi(\frac{1}{2})}{\psi(\frac{1}{2})} \left(\psi\left(\frac{1}{2}\right) - \frac{u}{2} \psi_L'\left(\frac{1}{2}\right)\right).$$

Then, it follows from

$$\psi\left(\frac{1-u}{2}\right) \ge \psi\left(\frac{1}{2}\right) - \frac{u}{2}\psi_L'\left(\frac{1}{2}\right)$$

that

$$\frac{\varphi(\frac{1-\gamma_0 u}{2})}{\psi(\frac{1-u}{2})} \le \frac{\varphi(\frac{1}{2})}{\psi(\frac{1}{2})}.$$

for all $u \in [0,1]$. This shows $\gamma_0 \in \Gamma(\varphi, \psi)$, and so we have $\gamma_{\varphi,\psi} \geq \gamma_0 > 0$.

The following is an application of Theorem 2.4.

Example 2.5. For each $\alpha \in (1/2,1)$, let ψ_{α} be an element of Ψ_2^S defined by

$$\psi_{\alpha}(t) = \begin{cases} 1 + 2(\alpha - 1)t & \text{if } t \in [0, 1/2], \\ 2\alpha - 1 + 2(1 - \alpha)t & \text{if } t \in [1/2, 1]. \end{cases}$$

Suppose that $\alpha, \beta \in (1/2, 1)$, and that $\alpha \leq \beta$. Then

$$k_0 = \frac{\psi_{\alpha}(\frac{1}{2})(\psi_{\beta})'_L(\frac{1}{2})}{\psi_{\beta}(\frac{1}{2})(\psi_{\alpha})'_L(\frac{1}{2})} = \frac{\alpha(1-\beta)}{\beta(1-\alpha)} \le 1.$$

On the other hand, for each $u \in [0, 1]$, we have

$$\psi_{\alpha} \left(\frac{1 - k_0 u}{2} \right) = 1 + (\alpha - 1)(1 - k_0 u)$$

$$= \alpha - (\alpha - 1)k_0 u$$

$$= \alpha - \frac{\alpha(1 - \beta)}{\beta} u$$

$$= \frac{\alpha}{\beta} (\beta - (1 - \beta)u)$$

$$= \frac{\alpha}{\beta} (1 + (\beta - 1)(1 - u))$$

$$= \frac{\alpha}{\beta} \psi_{\beta} \left(\frac{1 - u}{2} \right).$$

Thus $k_0 \in \Gamma(\psi_\alpha, \psi_\beta)$, which and Theorem 2.4 imply that

$$\gamma_{\psi_{\alpha},\psi_{\beta}} = k_0 = \frac{\alpha(1-\beta)}{\beta(1-\alpha)}.$$

Theorem 2.4 clarifies the relationship between $\gamma_{\varphi,\psi}$ and cases (II), (III) or (IV). However, we have no information about (I). So we next consider several special subcases of (I).

Let $\varphi, \psi \in \Psi_2^S$. Suppose that the second derivatives φ'' and ψ'' are continuous on $(\delta, 1 - \delta)$ for some $0 \le \delta < 1/2$. Then we remark that $\varphi''(1/2) \ge 0$ and $\psi''(1/2) \ge 0$ by convexity. This allows us to consider the following four subcases of (I):

- (I-a) $\varphi''(1/2) = 0$ and $\psi''(1/2) = 0$.
- (I-b) $\varphi''(1/2) = 0$ and $\psi''(1/2) > 0$.
- (I-c) $\varphi''(1/2) > 0$ and $\psi''(1/2) = 0$.
- (I-d) $\varphi''(1/2) > 0$ and $\psi''(1/2) > 0$.

Here we do not consider the case (I-a) because of its complexity. For cases (I-b), (I-c) and (I-d), we have the following result.

Theorem 2.6. Let $\varphi, \psi \in \Psi_2^S$. Suppose that the second derivatives φ'' and ψ'' are continuous on $(\delta, 1 - \delta)$ for some $0 \le \delta < 1/2$. Then the following hold:

- (i) If $\varphi''(1/2) = 0$ and $\psi''(1/2) > 0$, then $\gamma_{\varphi,\psi} > 0$.
- (ii) If $\varphi''(1/2) > 0$ and $\psi''(1/2) = 0$, then $\gamma_{\varphi,\psi} = 0$.
- (iii) If $\varphi''(1/2) > 0$ and $\psi''(1/2) > 0$, then $\gamma_{\varphi,\psi} > 0$.

In particular, if $\varphi''(1/2) > 0$ then

$$\gamma_{\varphi,\psi} \le \sqrt{\frac{\varphi(\frac{1}{2})\psi''(\frac{1}{2})}{\psi(\frac{1}{2})\varphi''(\frac{1}{2})}}.$$

Proof. (i) For each $\gamma \in (0,1]$, define the function $f_{\gamma}:[0,1-2\delta) \to \mathbb{R}$ by the formula

$$f_{\gamma}(u) = \frac{\psi(\frac{1-u}{2})}{\psi(\frac{1}{2})} - \frac{\varphi(\frac{1-\gamma u}{2})}{\varphi(\frac{1}{2})}.$$

Then, the first and second derivative of f_{γ} are as follows:

$$f_{\gamma}'(u) = \frac{1}{2} \left(\gamma \frac{\varphi'(\frac{1-\gamma u}{2})}{\varphi(\frac{1}{2})} - \frac{\psi'(\frac{1-u}{2})}{\psi(\frac{1}{2})} \right),$$
$$f_{\gamma}''(u) = \frac{1}{4} \left(\frac{\psi''(\frac{1-u}{2})}{\psi(\frac{1}{2})} - \gamma^2 \frac{\varphi''(\frac{1-\gamma u}{2})}{\varphi(\frac{1}{2})} \right).$$

So we have $f'_{\gamma}(0) = 0$ and

$$f_{\gamma}''(0) = \frac{1}{4} \left(\frac{\psi''(\frac{1}{2})}{\psi(\frac{1}{2})} - \gamma^2 \frac{\varphi''(\frac{1}{2})}{\varphi(\frac{1}{2})} \right) = \frac{\psi''(\frac{1}{2})}{4\psi(\frac{1}{2})} > 0.$$

From these facts, the function f_{γ} is positive on the interval $[0, u_0]$ for some $u_0 \in (0, 1]$. Let $\gamma_0 = \gamma u_0 > 0$. Take an arbitrary $u \in [0, 1]$ and put $v = u_0 u$. Then

$$0 \le v \le \min\{u_0, u\},\$$

and so

$$\frac{1-u}{2} \leq \frac{1-v}{2} \leq \frac{1}{2},$$

which implies that

$$\psi\left(\frac{1-u}{2}\right) \ge \psi\left(\frac{1-v}{2}\right).$$

Hence we have

$$f_{\gamma_0}(u) = \frac{\psi(\frac{1-u}{2})}{\psi(\frac{1}{2})} - \frac{\varphi(\frac{1-\gamma_0 u}{2})}{\varphi(\frac{1}{2})}$$
$$\geq \frac{\psi(\frac{1-v}{2})}{\psi(\frac{1}{2})} - \frac{\varphi(\frac{1-\gamma v}{2})}{\varphi(\frac{1}{2})}$$
$$= f_{\gamma}(v) > 0.$$

This shows that $\gamma_0 \in \Gamma(\varphi, \psi)$. Thus $\gamma_{\varphi,\psi} \geq \gamma_0 > 0$. We next suppose that $\varphi''(1/2) > 0$. Put

$$k_0 = \sqrt{\frac{\varphi(\frac{1}{2})\psi''(\frac{1}{2})}{\psi(\frac{1}{2})\varphi''(\frac{1}{2})}}.$$

- (ii) As in the proof of (i), $f''_{\gamma}(0) < 0$ if $\gamma > k_0$. Then it follows that $f_{\gamma}(u_0) < 0$ for some $u_0 \in (0, 1 2\delta)$. This means that $\gamma \notin \Gamma(\varphi, \psi)$, which shows that $\gamma_{\varphi,\psi} \leq k_0$. This proves (ii).
- (iii) In this case, we obtain $k_0 > 0$. Moreover, for each γ with $0 < \gamma < \min\{1, k_0\}$, we have $f''_{\gamma}(0) > 0$. Hence the function f_{γ} is positive on some non-trivial interval $[0, u_0]$. Finally, we obtain $\gamma_{\varphi,\psi} > 0$ by an argument similar to that in the first paragraph.

Remark 2.7. We remark that

$$\sqrt{\frac{\psi_q(\frac{1}{2})\psi_p''(\frac{1}{2})}{\psi_p(\frac{1}{2})\psi_q''(\frac{1}{2})}} = \sqrt{\frac{p-1}{q-1}} = \gamma_{p,q},$$

where $\gamma_{p,q}$ is the best constant for Beckner's inequality. This gives another aspect of the value $\gamma_{p,q}$.

We next consider the duality of the Beckner type inequality. Then we need the following lemma.

Lemma 2.8. Suppose that $\varphi, \psi \in \Psi_2^S$. For each $\gamma \in [0, 1]$, let

$$A_{\gamma} = \left(\begin{array}{cc} 1 + \gamma & 1 - \gamma \\ 1 - \gamma & 1 + \gamma \end{array} \right).$$

Then $\gamma \in \Gamma(\varphi, \psi)$ if and only if

$$\left\| A_{\gamma} : (\mathbb{R}^2, \| \cdot \|_{\psi}) \to (\mathbb{R}^2, \| \cdot \|_{\varphi}) \right\| \le \frac{2\varphi(\frac{1}{2})}{\psi(\frac{1}{2})}.$$

Proof. Let $\gamma \in \Gamma(\varphi, \psi)$. Then, by Lemma 2.2,

$$\frac{\|(u+\gamma v, u-\gamma v)\|_{\varphi}}{2\varphi(\frac{1}{2})} \le \frac{\|(u+v, u-v)\|_{\psi}}{2\psi(\frac{1}{2})}$$

for all $u, v \in \mathbb{R}$. Take arbitrary $u, v \in \mathbb{R}$, and put

$$u_1 = u + v$$
 and $v_1 = u - v$,

respectively. Applying the inequality for u_1 and v_1 , we obtain

$$\frac{\|((1+\gamma)u + (1-\gamma)v, (1-\gamma)u + (1+\gamma)v)\|_{\varphi}}{2\varphi(\frac{1}{2})} \le \frac{\|(2u, 2v)\|_{\psi}}{2\psi(\frac{1}{2})},$$

that is,

$$||A_{\gamma}(u,v)||_{\varphi} \le \frac{2\varphi(\frac{1}{2})}{\psi(\frac{1}{2})}||(u,v)||_{\psi}.$$

Thus we have

$$||A: (\mathbb{R}^2, ||\cdot||_{\psi}) \to (\mathbb{R}^2, ||\cdot||_{\varphi})|| \le \frac{2\varphi(\frac{1}{2})}{\psi(\frac{1}{2})}.$$

Conversely, suppose that

$$||A_{\gamma}: (\mathbb{R}^2, ||\cdot||_{\psi}) \to (\mathbb{R}^2, ||\cdot||_{\varphi})|| \le \frac{2\varphi(\frac{1}{2})}{\psi(\frac{1}{2})}.$$

Let $u, v \in \mathbb{R}$. Putting

$$u_1 = \frac{u+v}{2}$$
 and $v_1 = \frac{u-v}{2}$,

we have

$$\|(u+\gamma v, u-\gamma v)\|_{\varphi} = \|((1+\gamma)u_1 + (1-\gamma)v_1, (1-\gamma)u_1 + (1+\gamma)v_1)\|_{\varphi}$$

$$= \|A_{\gamma}(u_1, v_1)\|_{\varphi}$$

$$\leq \frac{2\varphi(\frac{1}{2})}{\psi(\frac{1}{2})} \|(u_1, v_1)\|_{\psi}$$

$$= \frac{\varphi(\frac{1}{2})}{\psi(\frac{1}{2})} \|(u+v, u-v)\|_{\psi}.$$

Then it follows that $\gamma \in \Gamma(\varphi, \psi)$.

Let $\psi \in \Psi_2$, and let $\|\cdot\|_{\psi}^*$ be the dual norm of $\|\cdot\|_{\psi}$. Then, as in [4], one has $\|\cdot\|_{\psi}^* \in AN_2$, and the function $\psi^* \in \Psi_2$ corresponding to $\|\cdot\|_{\psi}^*$ is given by

$$\psi^*(s) = \sup_{0 < t < 1} \frac{(1 - s)(1 - t) + st}{\psi(t)}$$

for all $s \in [0, 1]$. We remark that $\psi \in \Psi_2^S$ implies $\psi^* \in \Psi_2^S$. The following is our purpose.

Theorem 2.9. Let $\varphi, \psi \in \Psi_2^S$. Then $\gamma_{\varphi,\psi} = \gamma_{\psi^*,\varphi^*}$.

Proof. Since $\min_{0 \le t \le 1} \varphi(t) = \varphi(1/2)$, it follows that

$$\varphi^*\left(\frac{1}{2}\right) = \sup_{0 \le t \le 1} \frac{(1-t)/2 + t/2}{\varphi(t)} = \frac{1}{2\varphi(\frac{1}{2})}.$$

We similarly have $\psi^*(1/2) = 1/2\psi(1/2)$, which implies that

$$\frac{\psi^*(\frac{1}{2})}{\varphi^*(\frac{1}{2})} = \frac{\varphi(\frac{1}{2})}{\psi(\frac{1}{2})}.$$

Now, take an arbitrary $\gamma \in [0,1]$ and define a matrix A_{γ} as in Lemma 2.8. We remark that $A_{\gamma}^* = A_{\gamma}$, where A_{γ}^* is the adjoint operator of A_{γ} . Hence Lemma 2.8 assures that $\gamma \in \Gamma(\varphi, \psi)$ if and only if

$$\left\| A_{\gamma} : (\mathbb{R}^2, \| \cdot \|_{\psi}) \to (\mathbb{R}^2, \| \cdot \|_{\varphi}) \right\| \le \frac{2\varphi(\frac{1}{2})}{\psi(\frac{1}{2})}$$

if and only if

$$||A_{\gamma}: (\mathbb{R}^2, ||\cdot||_{\varphi^*}) \to (\mathbb{R}^2, ||\cdot||_{\psi^*})|| \le \frac{2\psi^*(\frac{1}{2})}{\varphi^*(\frac{1}{2})}$$

if and only if $\gamma \in \Gamma(\psi^*, \varphi^*)$. Thus we have $\Gamma(\varphi, \psi) = \Gamma(\psi^*, \varphi^*)$. The proof is complete.

Finally, we extend generalized Beckner's inequality to normed spaces.

Theorem 2.10. Let X be a normed space. Suppose that $\varphi, \psi \in \Psi_2^S$, and that $\gamma \in \Gamma(\varphi, \psi)$. Then the inequality

$$\frac{\|(x+\gamma y,x-\gamma y)\|_{\varphi}}{2\varphi(\frac{1}{2})} \leq \frac{\|(x+y,x-y)\|_{\psi}}{2\psi(\frac{1}{2})}$$

holds for all $x, y \in X$.

Proof. Take arbitrary $x, y \in X$, and put

$$z = x + y$$
 and $w = x - y$,

respectively. We also put

$$u = \frac{\|z\| + \|w\|}{2}$$
 and $v = \frac{\|z\| - \|w\|}{2}$.

Then we have

$$\frac{\|(x+\gamma y, x-\gamma y)\|_{\varphi}}{2\varphi(\frac{1}{2})} = \frac{\|(\frac{1+\gamma}{2}z + \frac{1-\gamma}{2}w, \frac{1-\gamma}{2}z + \frac{1+\gamma}{2}w)\|_{\varphi}}{2\varphi(\frac{1}{2})}$$

$$\leq \frac{\|(\frac{1+\gamma}{2}\|z\| + \frac{1-\gamma}{2}\|w\|, \frac{1-\gamma}{2}\|z\| + \frac{1+\gamma}{2}\|w\|)\|_{\varphi}}{2\varphi(\frac{1}{2})}$$

$$= \frac{\|(u+\gamma v, u-\gamma v)\|_{\varphi}}{2\varphi(\frac{1}{2})}$$

$$\leq \frac{\|(u+v, u-v)\|_{\varphi}}{2\psi(\frac{1}{2})}$$

$$= \frac{\|(x+y, x-y)\|_{\psi}}{2\psi(\frac{1}{2})}.$$

This completes the proof.

References

- 1. W. Beckner, Inequalities in Fourier analysis, Ann. of Math. 102 (1975), 159–182.
- 2. R. Bhatia, Matrix analysis, Springer-Verlag, New York, 1997.
- F.F. Bonsall and J. Duncan, Numerical ranges II, Cambridge University Press, Cambridge, 1973.
- 4. K.-I. Mitani, S. Oshiro and K.-S. Saito, Smoothness of ψ -direct sums of Banach spaces, Math. Inequal. Appl. 8 (2005), 147–157.
- 5. K.-I. Mitani, K.-S. Saito and T. Suzuki, Smoothness of absolute norms on \mathbb{C}^n , J. Convex Anal. 10 (2003), 89–107.
- 6. K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on C², J. Math. Anal. Appl. **244** (2000), 515−532.
- 7. K.-S. Saito, M. Kato and Y. Takahashi, Absolute norms on \mathbb{C}^n , J. Math. Anal. Appl. **252** (2000), 879–905.
- 8. Y. Takahashi, M. Kato and K.-S. Saito, Strict convexity of absolute norms on \mathbb{C}^2 and direct sums of Banach spaces, J. Inequal. Appl. 7 (2002), 179–186.
- 9. R. Tanaka, K.-S. Saito and N. Komuro, Another approach to Beckner's inequality, J. Math. Inequal. 7 (2013), 543–549.
- $^{\rm 1}$ Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan.

E-mail address: saito@math.sc.niigata-u.ac.jp

² Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.

E-mail address: ryotarotanaka@m.sc.niigata-u.ac.jp