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A NOTE ON FOURTH-ORDER NONLINEAR SCHRÖDINGER
EQUATION

TAREK SAANOUNI

Communicated by C. Cuevas

Abstract. We consider in four space dimensions, the initial value problem
for a fourth-order semi-linear Schrödinger equation with exponential type non-
linearity. In the defocusing sign, we obtain unconditional global well-posedness
in the energy space. In the focusing case, global well-posedness via existence
of ground state holds for small radial data.

1. Introduction and preliminaries

1.1. Introduction. Consider the initial value problem for a semilinear fourth-
order Schrödinger equation{

i∂tu+ ∆2u = −µg(u) =: −µuG′(|u|2),
u0 := u(0, .),

(1.1)

where u := u(t, x) is a complex-valued function of the variable (t, x) ∈ R × R4

and G ∈ C2(R+) is a positive real function vanishing on zero.

Fourth-order Schrödinger equation, which is a formal extension of the classical
Schrödinger equation, was introduced by Karpman[8] and Karpman and Sha-
galov [9] to take into account the role of small fourth-order dispersion terms in
the propagation of intense laser beams in a bulk medium with Kerr nonlinearity.
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Any Solution to (1.1) formally satisfies the conservation of mass and energy

M(t) = M(u(t)) :=
1

2
‖u(t)‖2

L2(R4),

E(t) = E(u(t)) :=
1

2
‖∆u(t)‖2

L2(R4) +
µ

2

∫
R4

G(|u(t)|2) dx.

If µ = 1, the energy is always positive and the problem (1.1) is said to be de-
focusing, otherwise it is focusing. In order to use the conserved quantities, we
consider the usual Sobolev space H2(R4) endowed with the complete norm

‖h‖2
H2(R4) := ‖h‖2

L2(R4) + ‖∆h‖2
L2(R4).

Before going further let recall some historic facts about this problem.
There was an increasing activity in recent years on models involving nonlinear
fourth-order partial differential equations. The book [20] by Peletier and Troy
presents several such models. Fourth-order equations was also subject to an in-
creasing activity in conformal geometry through the analysis of the Paneitz and
Branson-Paneitz operators.

The model case given by a pure power nonlinearity is of particular interest.
The question of well-posedness in the energy space H2 was widely investigated.
We denote for p > 1 the fourth-order Schrödinger problem

(NLS)p i∂tu+ ∆2u± u|u|p−1 = 0, u : R× Rn → C.

This equation satisfies a scaling invariance. In fact, if u is a solution to (NLS)p

with data u0, then uλ := λ
4

p−1u(λ4 . , λ . ) is a solution to (NLS)p with data

λ
4

p−1u0(λ . ). For sc := n
2
− 4

p−1
, the space Ḣsc whose norm is invariant under the

dilatation u 7→ uλ is relevant in this theory. When sc = 2, which is the energy
critical case, the critical power is pc := n+4

n−4
, n ≥ 5. Pausader [17] established

global well-posedness in the defocusing subcritical case, namely 1 < p < pc.
Moreover, he established global well-posedness and scattering for radial data in
the defocusing critical case, namely p = pc. The same result in the critical case
without radial condition was obtained by Miao, Xu and Zhao [14], for n ≥ 9.
The focusing case was treated by the last authors in [13]. They obtained results
similar to Kenig and Merle ones [10] in the classical Schrödinger case.

Naturally, the ideas and techniques which come from the study of classical
nonlinear Schrödinger equation were applied in order to study the fourth-order
nonlinear Schrödinger equation.

Recall that for the monomial Schrödinger equation, local well-posedness and
global well-posedness for small data were established by Cazenave and Weissler
[4]. There exist a lot of works devoted to obtain global well-posedness and scat-
tering for large data in the defocusing case [3, 6, 23, 31, 33]. However, the global
well-posedness and scattering for large data in focusing case remains not com-
pletely solved. The work of Kenig and Merle [10] gives an approach of this case.
When n = 2 every polynomial nonlinearity is subcritical for classical Schrödinger
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equation. So, motivated by this fact and the so called Moser-Trudinger type in-
equalities [1, 16, 32], it was natural to consider nonlinearities with exponential
growth.
Global well-posedness in the defocusing case was established by Nakamura and
Ozawa [15] for small data, then by Colliander, Ibrahim, Majdoub and Mas-
moudi [5], see also [24, 27, 26, 30, 28] (similar esults hold for the wave equation
[11, 12, 29]). Scattering was established in the subcritical case [7]. In the critical
case a decay result was proved by the author [25]. Scattering in the critical case
is obtained very recently [2].

When the space dimension is equal to four, every polynomial nonlinearity is
subcritical for (NLS)p. Motivated by this fact and the so called Moser-Trudinger
type inequalities [21], we consider nonlinearities with exponential growth.

It is the goal of this paper to obtain global well-posedness in the energy space
for the problem (1.1), when the nonlinearity satisfies an exponential growth. In
the defocusing case unconditional well-posedness is proved. In the focusing case,
global well-posedness for small radial data holds via existence of ground state.
It is worth pointing out that the present study uses the potential well method
based on the concepts of invariant sets suggested by Payne and Sattinger in [19].

The rest of the paper is organized as follows. The next subsection contains
some notations and technical tools needed in the sequel. The second section
groups the main results of this note. Section three is devoted to prove global
well-posedness of (1.1) in the defocusing case. The fourth section deals with ex-
istence of a ground state solution to (1.1). In the last section we prove global
well-posedness of (1.1) in the focusing case for small radial data.

We mention that C (respectively CT ) will denote a constant (respectively a
constant depending on T ) which may vary from line to line and if A and B are
nonnegative real numbers, A . B means that A ≤ CB. For 1 ≤ r ≤ ∞ and
(s, T ) ∈ [1,∞) × (0,∞), we denote the Lebesgue space Lr := Lr(R4) and the
usual norms

‖ . ‖r := ‖ . ‖Lr , ‖ . ‖ := ‖ . ‖2,

‖u‖Ls
T (Lr) :=

( ∫ T

0

‖u(t)‖s
r dt

) 1
s
,

‖u‖Ls(Lr) :=
( ∫ +∞

0

‖u(t)‖s
r dt

) 1
s
.

For simplicity, we denote the usual Sobolev Space W s,p := W s,p(R4) and Hs :=
W s,2. Note that we identify g with a function on R2 and dg denotes the R2

derivative of the identified function. Moreover, we denote the operator Df(x) :=
xf ′(x), where f is a real function. IfX is an abstract space CT (X) := C([0, T ], X)
stands for the set of continuous functions valued in X and Xrd is the set of radial
functions in X.
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1.2. Background Material. Here and hereafter, we denote for α, β ∈ R and
v ∈ H2, the quantities

S(v) = ‖∆v‖2 + ‖v‖2 −
∫

R4

G(|v|2) dx,

vλ
α,β := eαλv(e−βλ.), Lα,βS(v) :=

1

2
∂λ(S(vλ

α,β))|λ=0,

Kα,β(v) := Lα,βS(v) =

∫
R4

[
α|∆v|2 + (α+ 2β)|v|2 − α|v|g(|v|)− 2βG(|v|2)

]
dx,

KQ
α,β(v) :=

∫
R4

[
α|∆v|2 + (α+ 2β)|v|2

]
dx,

KN
α,β(v) := −

∫
R4

[
α|v|g(|v|) + 2βG(|v|2)

]
dx,

Hα,β(v) := (1− Lα,β

α+ 2β
)S(v) =

1

α+ 2β

[
2β‖∆v‖2 + α

∫
R4

(|v|g(|v|)−G(|v|2)) dx
]
,

mα,β := inf
0 6=v∈H2

rd

{S(v), s. t Kα,β(v) = 0}, (1.2)

A+
α,β := {v ∈ H2

rd s. t S(v) < mα,β and Kα,β(v) ≥ 0}.

Let fix the set of nonlinearity considered along this paper.

(1) Behavior on zero

G′(0) = G′′(0) = 0. (1.3)

(2) Existence condition, ∀ε > 0,∃Cε > 0 such that

|d2g(z1)− d2g(z2)| ≤ Cε|z1 − z2|
(
eε|z1|2 − 1 + eε|z2|2 − 1

)
, ∀z1, z2 ∈ C. (1.4)

(3) Ground state condition{
∀α > 0, ∃Cα > 0 / |g(s)| ≤ Cαe

αs2
, ∀s ∈ R,

∃ε > 0 s. t (D − 1− ε)G > 0 and (D − 1)2G > 0, on R∗
+.

(1.5)

Remark 1.1. The function G(r) := e(1+r)
1
2 − e

2
r − e is an explicit example.

Proof. For t :=
√
r + 1, we have G(r) = et− e

2
t2− e

2
. Thus, DG(r) = t2−1

2t
(et−et).

Then, for ε > 0,

φ(t) = 2(D − 1− ε)G(r) = et(t− 1

t
− 2− 2ε) + e(εt2 + 2 + ε), t ≥ 1

φ′(t) = et(t− 1

t
+

1

t2
− 1− 2ε) + 2eεt,

φ′′(t) = et(t− 1

t
+

2

t2
− 2

t3
− 2ε) + 2eε ≥ 0.
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Since φ(1) = φ′(1) = 0, we have φ ≥ 0. Moreover,

D(D − 1)G(r) =
1

4
et(t− 1

t
)(t− 1− 1

t
+

1

t2
),

(D − 1)2G(r) =
1

4
[et(t2 − 3t+ 2 +

4

t
+

1

t2
− 1

t3
)− 4e] :=

1

4
ψ(t),

ψ′(t) = et(t2 − t− 1 +
4

t
− 3

t2
− 3

t3
+

3

t4
) ≥ 0.

Since ψ(1) = 0, we have ψ ≥ 0. �

In what follows, we collect some estimates needed in the sequel.

Definition 1.2. A couple of real numbers (q, r) is said to be admissible if

2 ≤ q, r ≤ ∞, (q, r) 6= (2,∞) and
1

q
+

1

r
=

1

2
.

In order to estimate a possible solution of (1.1), we will use the following
Strichartz estimates (see for example [18]).

Proposition 1.3. Let two admissible pairs (q, r), (a, b) and T > 0. There exists
a positive real number C such that

‖u‖Lq
T (W 2,r) ≤ C

(
‖u0‖H2 + ‖i∂tu+ ∆2

xu‖La′
T (W 2,b′ )

)
. (1.6)

In particular, we have the following energy estimate

Proposition 1.4.

‖u‖L∞T (H2) + ‖u‖L6
T (W 2,3) ≤ C

(
‖u0‖H2 + ‖i∂tu+ ∆2

xu‖L1
T (H2)

)
. (1.7)

In order to control the nonlinear part of the energy in the space L1
t (H

2), we
will use the following Moser-Trudinger inequality [21, 22, 1, 16, 32].

Proposition 1.5. For any positive real number α ≤ 32π2, we have

K := sup
u∈H2, ‖u−∆u‖≤1

∫
R4

(
eα|u(x)|2 − 1

)
dx <∞. (1.8)

Moreover, this is false for α > 32π2.

Recall some Sobolev embeddings.

Proposition 1.6. The continuous injection

W s,p(Rd) ↪→ Lq(Rd)

holds whenever

1 < p < q <∞, s > 0 and
1

p
≤ 1

q
+
s

d
.

We end this section with the generalized Pohozaev identity.

Proposition 1.7. Let φ ∈ H2 a solution to (2.1). Then, Kα,β(φ) = 0 for any
α, β ∈ R.
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Proof. Take the action

S(v) := ‖∆v‖2 + ‖v‖2 −
∫

R4

G(|v|2) dx.

Then, S ′(v)u = 2<(〈∆2v + v − g(v), u〉L2), so if φ is a solution to (2.1) then
S ′(φ) = 0. Compute for α, β, λ ∈ R,

S(vλ
α,β) = e2αλ‖∆v‖2 + e2(α+2β)λ‖v‖2 − e4βλ

∫
R4

G(e2αλ|v|2) dx,

1

2
∂λS(vλ

α,β) = αe2αλ‖∆v‖2 + (α+ 2β)e2(α+2β)λ‖v‖2

−2βe4βλ

∫
R4

G(e2αλ|v|2)− αe2(2β+α)λ

∫
R4

|v|2G′(e2αλ|v|2) dx,

1

2
∂λS(vλ

α,β)|λ=0 = α‖∆v‖2 + (α+ 2β)‖v‖2 −
∫

R4

(
2βG(|v|2) + α|v|2G′(|v|2)

)
dx.

Since φ is solution to (2.1), we have S ′(φ) = 0. Then ∂λS(φλ
α,β)|λ=0 = 0, which

closes the proof. �

2. Main results

The results proved in this manuscript are listed in this section. Our first result
is about global well-posedness of the fourth-order Schrödinger problem (1.1) in
the energy space.

Theorem 2.1. Let u0 ∈ H2 and g satisfying (1.4). Then, the fourth-order
Schrödinger problem (1.1) has a unique maximal solution u in the energy space

C([0, T ∗), H2).

Moreover,

(1) u belongs to the Strichartz space L6((0, T ∗),W 2,3);
(2) in the defocusing case u is global (T ∗ = ∞);
(3) u satisfies conservation of the mass and the energy.

Next, we are interested on the focusing sign in (1.1), which is related to the
stationary problem

∆2φ+ φ = g(φ), 0 6= φ ∈ H2. (2.1)

In fact, if φ is solution to (2.1), then e−itφ is a global solution to (1.1) called
soliton or standing wave. We prove that (2.1) has a ground state in the meaning
that it has a nontrivial positive radial solution which minimizes the energy with
some restraint. The next result guarantees the existence of ground state.

Theorem 2.2. Let two real numbers (0, 0) 6= (α, β) ∈ R2
+. Assume that G

satisfies (1.5) and (1.3). Then,

(1) m := mα,β is nonzero and independent of (α, β).
(2) There is a minimizer of (1.2), which is some solution to (2.1).

The last result is about global existence of solution to the Schrödinger problem
(1.1) in the focusing case.
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Theorem 2.3. Assume that G satisfies (1.3)-(1.5). Let u0 ∈ H2
rd and u ∈

CT ∗(H2) the maximal solution to (1.1). If there exist (0, 0) 6= (α, β) ∈ R2
+ and

t0 ∈ [0, T ∗) such that u(t0) ∈ A+
α,β, then u is global.

3. Global well-posedness in the defocusing case

In this section, we prove that (1.1) has a unique local solution in the energy
space C([0, T ∗), H2), moreover the solution is global in the defocusing case. First,
we prove the local existence by a fixed point argument.

3.1. Local existence. Recall that, for T > 0, the space

ET := C([0, T ], H2) ∩ L6([0, T ],W 2,3)

is complete under the norm

‖h‖T := sup
t∈[0,T ]

‖h(t, .)‖H2 + ‖h‖L6
T (W 2,3).

We denote by ET (1) the unit ball of ET with center zero and w the solution of the
following free fourth-order Schrödinger problem

i∂tw + ∆2w = 0, w(0, .) = u0.

We consider the map φ on ET (1) given by φ(v) = ṽ, where ṽ solves

i∂tṽ + ∆2ṽ = g(v + w), ṽ(0, .) = 0.

We prove that the map φ leaves ET (1) stable and is a contraction for T sufficiently
small. Applying the energy and Strichartz estimates (1.6)-(1.7) to v1, v2 ∈ ET (1),
we get

‖ṽ1 − ṽ2‖T . ‖g(v1 + w)− g(v2 + w)‖L1
T (H2) := ‖g(u1)− g(u2)‖L1

T (H2).

Using Hölder inequality via (1.4), we deduce that for any ε > 0,

‖g(u1)− g(u2)‖2 . Cε

∥∥∥|u1 − u2|2
∑
i=1,2

(
eε|ui|2 − 1

)∥∥∥
1

. Cε

∑
i=1,2

∥∥∥|u1 − u2|2
(
eε|ui|2 − 1

)∥∥∥
1

. Cε‖u1 − u2‖2
4

∑
i=1,2

‖e2ε|ui|2 − 1‖
1
2
1 . (3.1)

On other hand, using the energy conservation, we get

‖ui −∆ui‖2 ≤
(
‖ui‖+ ‖∆ui‖

)2

≤ 2‖ui‖2
H2

≤ 2
(
1 + ‖u0‖H2

)2

.

Now, let

ε0 :=
π2(

1 + ‖u0‖H2(R4)

)2 . (3.2)
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Using Moser-Trudinger inequality (1.8) we have

‖e2ε0|ui|2 − 1‖1 =

∫
R4

(
e
2ε0‖ui−∆ui‖2(

|ui|
‖ui−∆ui‖

)2 − 1
)
dx

≤ K.

Thus, by (3.1),

‖g(u1)− g(u2)‖L1
T (L2) . T‖u1 − u2‖T .

It remains to estimate ‖∆(g(u1)− g(u2))‖.
We identify C with R2, g with a function on R2, g′ with dg and g′′ with d2g. We
have

‖∆(g(u1)− g(u2))‖ ≤ ‖∆(u1 − u2)g
′(u1)‖+ ‖∆u2(g

′(u1)− g′(u2))‖
+ ‖(|∇u1|2 − |∇u2|2)g′′(u1)‖+ ‖|∇u2|2(g′′(u1)− g′′(u2))‖
≤ (I) + (II) + (III) + (IV ).

Now, by Moser-Trudinger inequality (1.8), via (1.4),

‖(I)‖L1
T

≤ ‖∆(u1 − u2)(e
ε0
6
|u1|2 − 1)‖L1

T (L2)

≤ ‖∆(u1 − u2)‖L1
T (L3)‖e

ε0
6
|u1|2 − 1‖L∞T (L6)

. ‖u1 − u2‖TT
5
6 .

With the same way, via Hölder inequality

(II) = ‖∆u2(g
′(u1)− g′(u2))‖

≤ ‖∆u2‖3‖g′(u1)− g′(u2)‖6

≤ ‖∆u2‖3

∑
i

‖(u1 − u2)(e
ε0
12
|ui|2 − 1)‖6

≤ ‖∆u2‖3‖u1 − u2‖H2

∑
i

‖eε0|ui|2 − 1‖
1
12
1

. ‖∆u2‖3‖u1 − u2‖T .

Thus

‖(II)‖L1
T

. ‖u1 − u2‖T‖∆u2‖L6
T (L3)T

5
6

. (1 + ‖u0‖H2)‖u1 − u2‖TT
5
6 .

Arguing as previously,

(III) = ‖(|∇u1|2 − |∇u2|2)g′′(u1)‖
. ‖|∇(u1 − u2)|(|∇u1|+ |∇u2|)g′′(u1)‖
. ‖|∇(u1 − u2)|(|∇u1|+ |∇u2|)(e

ε0
6
|u1|2 − 1)‖.

Using the Sobolev embedding

W 1,3(R4) ↪→ Lq(R4), ∀1 < q ≤ 12,
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via the interpolation inequality ‖uvw‖ ≤ ‖u‖6‖v‖6‖w‖6, we have

‖(III)‖L1
T

. ‖∇(u1 − u2)‖L6
T (L6)‖∇u1‖L6

T (L6)‖eε|u1|2 − 1‖
1
6

L∞T (L1)T
2
3

. (1 + ‖u0‖H2)‖u1 − u2‖TT
2
3 .

By Moser-Trudinger inequality (1.8),

(IV ) = ‖|∇u2|2(g′′(u1)− g′′(u1))‖
. ‖(u1 − u2)|∇u2|2

∑
i

(e
ε0
6
|ui|2 − 1)‖

.
∑

i

‖u1 − u2‖6‖∇u2‖2
12‖e

ε0
6
|ui|2 − 1‖6

. ‖u1 − u2‖6‖∇u2‖2
12.

Thus, by the Sobolev embeddings

W 1,3(R4) ↪→ Lq(R4), ∀q ∈ (1, 12],

H2(R4) ↪→ Lq(R4), ∀q ∈ (2,∞),

we get

‖(IV )‖L1
T

. ‖u1 − u2‖L∞T (L6)‖∇u2‖2
L6

T (L12)T
2
3

. (1 + ‖u0‖H2)2‖u1 − u2‖TT
2
3 .

Thus, for T > 0 small enough, φ is a contraction satisfying

‖φ(v1)− φ(v2)‖T . (1 + ‖u0‖H2)2‖v1 − v2‖TT
2
3 .

Taking in the last inequality v2 = 0, yields

‖φ(v1)‖T . (1 + ‖u0‖H2)2T
2
3 + ‖g(w)‖L1

T H2 .

Let estimate the quantity

‖g(w)‖L1
T H2 := ‖g(w)‖L1

T (L2) + ‖∆(g(w))‖L1
T (L2).

Using Moser-Trudinger inequality (1.8) via (1.4) and (3.2), we deduce that

‖g(w)‖2 . C0

∫
R4

(
eε0|w|2 − 1

)
dx

. C0

∫
R4

(
eε0‖w−∆w‖2(

|w|
‖w−∆w‖ )2 − 1

)
dx

. C0K.

Where C0 depends only on ‖u0‖H2 . Moreover,

‖∆(g(w))‖ ≤ ‖∆wg′(w)‖+ ‖|∇w|2g′′(w)‖
≤ (I) + (II).
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Now, by Moser-Trudinger inequality (1.8) via (1.4),

‖(I)‖L1
T

≤ ‖∆w(e
ε0
6
|u1|2 − 1)‖L1

T (L2)

≤ ‖∆w‖L1
T (L3)‖e

ε0
6
|u1|2 − 1‖L∞T (L6)

. ‖w‖TT
5
6 . ‖u0‖H2T

5
6 .

With the same way, via Hölder inequality

(II) = ‖|∇w|2g′′(w)‖
. ‖∇w‖2

6‖g′′(w)‖6

. ‖∇w‖2
6‖e

ε0
6
|w|2 − 1‖6 . ‖∇w‖2

6.

Using the Sobolev injection

W 1,3(R4) ↪→ Lq(R4) for any q ∈ (1, 12),

yields

‖(II)‖L1
T

. ‖w‖2
L6

T W 2,3T
2
3 . ‖u0‖2

H2T
2
3 .

Finally, we have ‖g(w)‖L1
T H2 . ‖u0‖H2(1 + ‖u0‖H2)T

2
3 . Then, for T > 0 small

enough, φ maps the unit ball into itself, in fact

‖φ(v1)‖T . (1 + ‖u0‖H2)2T
2
3 + ‖g(w)‖L1

T H2 . (1 + ‖u0‖H2)2T
2
3 .

So, for small time φ is a contraction of the unit ball. Existence of solution to the
fourth-order Schrödinger problem (1.1) follows by a classical Theorem of Picard.

3.2. Uniqueness in the energy space. The uniqueness proof is a consequence
of the following Lemma and the proof of local existence of solution to (1.1).

Lemma 3.1. Let δ > 0, u0 ∈ H2 and u ∈ C([0, T ∗), H2) a solution to (1.1).
Then, there exists Tδ > 0 such that

‖u‖L6
T (W 2,3) ≤ δ, for all 0 ≤ T ≤ Tδ.

Proof. Let v := eit∆2
u0 to be the solution to the free associated problem and

w = u− v. By the Strichartz estimate (1.6), we have

‖w‖L6
T (W 2,3) . ‖g(u)‖

L
6
5
T (W 2, 32 )

.

We have

‖∆(g(u))‖
L

6
5
T (L

3
2 )

≤ ‖∆ug′(u)‖
L

6
5
T (L

3
2 )

+ ‖|∇u|2g′′(u)‖
L

6
5
T (L

3
2 )

≤ (I) + (II).

Using a continuity argument, there exists T > 0 such that ‖u‖L∞T (H2) ≤ 1+‖u0‖H2 .

For ε0 := π2

(1+‖u0‖H2 )2
, by Moser-Trudinger inequality (1.8),

(I) . ‖∆u‖L∞T (L2)‖eε0|u|2 − 1‖L∞T (L6)T
5
6

. ‖∆u‖L∞T (L2)‖e6ε0‖u−∆u‖2(
|u|

‖u−∆u‖ )2 − 1‖
1
6

L∞T (L1)T
5
6

. K
1
6‖u‖L∞T H2T

5
6 → 0 as T → 0.
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Let estimate (II) = ‖|∇u|2g′′(u)‖
L

6
5
T (L

3
2 )

. Using the Sobolev embedding

H1(R4) ↪→ Lq(R4) for all q ∈]1, 4],

with Hölder inequality, we have

(II) . ‖|∇u|2(e
ε0
6
|u|2 − 1)‖

L
6
5
T (L

3
2 )

. ‖∇u‖2
L∞T (L4)‖e

ε0
6
|u|2 − 1‖

L
6
5
T (L6)

. ‖u‖2
L∞T (H2)

(
‖eε0|u|2 − 1‖L∞T (L1)

) 1
6
T

5
6

. K
1
6‖u‖2

L∞T (H2)T
5
6 → 0, as T → 0.

Arguing as previously we have

‖g(u)‖
L

6
5
T (L

3
2 )

. ‖e
5
6
ε0|u|2 − 1‖

L
6
5
T (L

3
2 )

. ‖eε0|u|2 − 1‖
5
6

L∞T (L1)T
5
6

. K
5
6T

5
6 → 0 as T → 0.

Which implies that

‖w‖L6
T (W 2,3) ≤ CT → 0, as T → 0.

Thus, by the energy conservation of the free solution v,

‖u‖L6
T (W 2,3) ≤ CT‖u0‖H2 + CT → 0 as T → 0.

The proof is closed. �

3.3. Global existence in the defocusing case. This subsection is devoted to
prove that the solution given by Theorem 2.1 is global in the case µ = 1. We
recall an important fact that is the time of local existence depends only on the
quantity ‖u0‖H2(R4). Let u to be the unique maximal solution of (1.1) in the
space ET for any T < T ∗, where 0 < T ∗ ≤ +∞ is the lifespan of u. We shall
prove that u is global. By contradiction, suppose that T ∗ < +∞, we consider for
0 < s < T ∗, the following problem

(Ps)

{
i∂tv + ∆2v + vG′(|v|2) = 0

v(s, .) = u(s, .).

By the same arguments used in the local existence, and taking

0 < ε ≤ π2

(1 + 2E(u(0)))
,

instead of ε0, we can find a real τ > 0 and a solution v to (Ps) on [s, s + τ ].
According to the section of local existence, and using the conservation of energy,
τ does not depend on s. Thus, if we let s be close to T ∗ such that s + τ > T ∗,
we can extend v for times higher than T ∗. This fact contradicts the maximality
of T ∗. We obtain the result claimed in Theorem 2.1.
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4. The stationary problem

The goal of this section to prove that the elliptic problem associated to (1.1)
has a ground state in the meaning that it has a nontrivial positive radial solution
which minimizes of the action S when Kα,β vanishes.

Remark 4.1.

(1) The proof of Theorem 2.2 is based on several Lemmas.
(2) In this section, we write, for easy notation, φλ = φλ

α,β, K = Kα,β, K
Q =

KQ
α,β, K

N = KN
α,β,L = Lα,β, H = Hα,β and m = mα,β.

Lemma 4.2. Let (0, 0) 6= (α, β) ∈ R2
+. Then

(1) min(LH(φ), H(φ)) ≥ 0, for all φ ∈ H2.
(2) If α 6= 0 then min(LH(φ), H(φ)) > 0, for all 0 6= φ ∈ H2.
(3) λ 7→ H(φλ) is increasing.

Proof. With (1.5) yields H(φ) = 1
α+2β

[
2β‖∆φ‖2 + α

∫
R4(D − 1)G(|φ|2) dx

]
≥ 0.

Moreover, with a computation

LH(φ) = L(1− L
α+ 2β

)S(φ)

= − 1

α+ 2β
(L − α)(L − (α+ 2β))S(φ) + α(1− L

α+ 2β
)S(φ)

= − 1

α+ 2β
(L − α)(L − (α+ 2β))S(φ) + αH(φ).

Now, since (L − α)‖∆φ‖2 = (L − (α + 2β))‖φ‖2 = 0, we have (L − α)(L − (α +
2β))‖φ‖2

H2 = 0, and LG(|φ|2) = (αD + 2β)G(|φ|2). So

LH(φ) ≥ 1

α+ 2β
(L − α)(L − (α+ 2β))

∫
R4

G(|φ|2) dx

=
α

α+ 2β

∫
R4

(
α(D − 1)2 + 2β(D − 1)

)
G(|φ|2) dx

≥ 0.

The last inequality is by (1.5). The two first points of the Lemma follow. The
last point is a consequence of the equality ∂λH(φλ) = LH(φλ). �

The next intermediate result is the following

Lemma 4.3. Let α > 0, β ∈ R and (φn) a bounded sequence of H2 − {0} such
that lim

n
KQ(φn) = 0. Then, there exists n0 ∈ N such that K(φn) > 0 for all

n ≥ n0.

Proof. We have, for some p > 2, |rg(r)| + |G(r2)| . rp(er2 − 1). In fact, by the
first equation of (1.5), the ratio tends to zero on infinity and using (1.3), the ratio
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is bounded near zero. Thus, for any q ≥ 1,

KN(v) .
∫

R4

|v|p(e|v|2 − 1) dx

. ‖v‖p
qp‖e|v|

2 − 1‖q′

. ‖v‖p
qp‖eq′|v|2 − 1‖

1
q′
1 .

Now, if q′2‖v−∆v‖2 < 32π2, by Moser–Trudinger inequality KN(v) . ‖v‖p
qp. By

the interpolation inequality

‖v‖Lr(R4) . ‖v‖
2
r

L2(R4)‖∆v‖
1− 2

r

L2(R4), ∀r ∈ [2,∞), (4.1)

we have KN(v) . ‖v‖p
qp . ‖v‖

2
q ‖∆v‖p− 2

q . Since ‖∆φn‖2 . KQ(φn), the proof is

achieved via taking q such that p− 2
q
> 2. �

The last Lemma of this section reads

Lemma 4.4. Let α > 0 and β ≥ 0. Then

mα,β = inf
0 6=φ∈H2

rd

{Hα,β(φ), s. t Kα,β(φ) ≤ 0}. (4.2)

Proof. Letm1 the right hand side, then it is sufficient to prove thatm ≤ m1. Take
φ ∈ H2 such that Kα,β(φ) < 0 then by Lemma 4.3, the fact that lim

λ→−∞
KQ

α,β(φλ) =

0 and λ 7→ H(φλ
α,β) is increasing, there exists λ < 0 such that

Kα,β(φλ) = 0, Hα,β(φλ) ≤ H(φ). (4.3)

The proof is closed. �

Proof of Theorem 2.2
First case α 6= 0.
Let (φn) a minimizing sequence, namely

0 6= φn ∈ H2
rd, K(φn) = 0 and lim

n
H(φn) = lim

n
S(φn) = m. (4.4)

• First step: (φn) is bounded in H2.

We have α
[
‖φn‖2

H2 −
∫

R4 |φn|g(|φn|) dx
]

= 2β
[ ∫

R4 G(|φn|2) dx − ‖φn‖2
]

and(
‖φn‖2

H2 −
∫

R4 G(|φn|2) dx
)
→ m. Denoting λ := 2β

α
, yields

‖φn‖2
H2 −

∫
R4

|φn|g(|φn|) dx = λ
[
‖∆φn‖2 − ‖φn‖2

H2 +

∫
R4

G(|φn|2) dx
]
.

So, the following sequences are bounded(
− λ‖∆φn‖2 + ‖φn‖2

H2 −
∫

R4

|φn|g(|φn|) dx
)
,

(
‖φn‖2

H2 −
∫

R4

G(|φn|2) dx
)
.

Thus, for any real number a, the following sequence is also bounded

λ‖∆φn‖2 + (a− 1)‖φn‖2
H2 +

∫
R4

(D − a)G(|φn|2) dx.
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Now, taking a > 1 near to one and using the assumption (1.5), yields that (φn)
is bounded in H2.
• Second step: the limit of φn is nonzero and m > 0.
Taking account of the compact injection of the radial Sobolev space H2

rd(R4) on
the Lebesgue space Lp(R4) for any 2 < p <∞, we take

φn ⇀ φ in H2 and φn → φ in Lp, ∀p ∈ (2,∞). (4.5)

By (1.5), for some p > 2 and a > 0 small enough

max{
∫

R4

G(|φn|2) dx,
∫

R4

|φn|g(|φn|) dx} . ‖φp
n(ea|φn|2 − 1)‖1

. ‖φn‖p
2p‖e2a|φn|2 − 1‖

1
2
1

. ‖φn‖p
2p‖φn‖ → 0.

In the last lines, we used the fact that (φn) is bounded in H2 via Moser-Trudinger
inequality. If we assume that φ = 0, by Lemma 4.3, K(φn) > 0 for large n which
is absurd. So

φ 6= 0. (4.6)

By the Moser–Trudinger inequality via (1.3) with (1.5), the mean value theorem
and the convexity of the exponential, for any ε > 0,∫

R4

|G(|φ|2)−G(|φn|2)| dx .
∫

R4

|φ− φn|(|φn|+ |φ|)(eε|φn|2 − 1 + eε|φ|2 − 1) dx

. ‖φ− φn‖3(‖φn‖3 + ‖φ‖3)(‖φn‖
2
3 + ‖φ‖

2
3 ).

Thus ∫
R4

G(|φn|2) dx −→
∫

R4

G(|φ|2) dx.

Similarly, we have ∫
R4

|φn|g(|φn|) dx −→
∫

R4

|φ|g(|φ|) dx.

So, with lower semi continuity of H2 norm, we have

0 = lim inf
n

K(φn)

≥ α lim inf
n

‖∆φn‖2 + (α+ 2β) lim inf
n

‖φn‖2 −
∫

R4

(
αD + 2β

)
G(|φ|2) dx

≥ K(φ).

Similarly, we have H(φ) ≤ m. Using (4.3), we can assume that K(φ) = 0 and
S(φ) = H(φ) ≤ m. So that φ is a minimizer satisfying (4.4). Since H(φ) =

1
α+2β

[
2β‖∆φ‖2 + α

∫
R4(D − 1)G(|φ|2) dx

]
, via the assumption (1.5), we have

m > 0.
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• Third step: φ is a solution to (2.1).
Now, there is a Lagrange multiplier η ∈ R such that S ′(φ) = ηK ′(φ). Thus

0 = K(φ) = LS(φ) = 〈S ′(φ),L(φ)〉
= η〈K ′(φ),L(φ)〉
= ηLK(φ) = ηL2S(φ).

With a previous computation and taking account of the second equation of (1.5),

−L2S(φ)− α(α+ 2β)S(φ) = −(L − (α+ 2β))(L − α)S(φ)

= α

∫
R4

(
α(D − 1)2 + 2β(D − 1)

)
G(|φ|2) dx

≥ 0.

Thus η = 0 and S ′(φ) = 0. So, φ is a ground state and m is independent of α, β.
Second case α = 0.
Without loss of generality, we take β = 1. Let (φn) a minimizing sequence. Since
(4.4) is invariant by the scaling φn( .√

‖φn‖
) because ‖∆φn( .√

‖φn‖
)‖2 = ‖∆φn‖2

and K0,1(φn( .√
‖φn‖

)) = 0. Thus, we may assume that ‖φn‖ = 1. Moreover,

H(φn) = ‖∆φn‖2 → m, thus φn is bounded in H2. Using compact Sobolev
embedding as previously, we take φn ⇀ φ in H2 and φn → φ in Lp, ∀p ∈ (2,∞).
Now, by the fact that

0 = K(φn) = 1−
∫

R4

G(|φn|2) dx→ 1−
∫

R4

G(|φ|2) dx,

we have

φ 6= 0.

Using (1.3), for λ = 0+, |KN(λφ)| = o(KQ(λφ)) = λ2KQ(φ). Thus

K(φ) < 0 ⇒ ∃λ ∈ (0, 1), /K(λφ) = 0, H(λφ) ≤ H(φ) = ‖∆φ‖2.

So, we may assume that K(φ) = 0 and S(φ) = H(φ) ≤ m. Thus m = H(φ) =
‖∆φ‖2 > 0. Now, with a Lagrange multiplicator η, we have S ′(φ) = η

2
K ′(φ).

Then ∆2φ = (η − 1)(φ − g(φ)). Moreover, since 〈φ, φ − g(φ)〉L2 = 1
2
K0,1(φ) −∫

R4(D − 1)G(|φ|2) < 0, then (η − 1) < 0. Taking a positive real λ, we have

∆2(φ(e−λ.)) = e−4λ(η − 1)[φ(e−λ.)− g(φ(e−λ.))].

Finally, for λ such that e−4λ(η−1) = −1, we have a ground state, which concludes
the proof.

5. Global well-posedness in the focusing case

In this section, we prove Theorem 2.3 about global well-psedness of the focusing
case associated to (1.1). Let us start with an auxiliary result.

Lemma 5.1. The set A+
α,β is invariant under the flow of (1.1).
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Proof. Let u0 ∈ A+
α,β and u ∈ CT ∗(H2) the maximal solution to (1.1). Assume

that there exists some time t0 ∈ (0, T ∗) such that u(t0) /∈ A+
α,β. Since S(u)

is conserved, we have Kα,β(u(t0)) ≤ 0. So, with a continuity argument, there
exists a positive time t1 ∈ (0, t0) such that Kα,β(u(t1)) = 0. This contradicts the
definition of mα,β. The proof is finished. �

Lemma 5.2. Let (0, 0) 6= (α, β) ∈ R2
+. Then, the set A+

α,β is independent of
(α, β).

Proof. Let (α, β) and (α′, β′) in R2
+ − {(0, 0)}. We denote, for δ ≥ 0, the sets

A+δ
α,β := {v ∈ H2 s. t S(v) < m− δ and Kα,β(v) ≥ 0};

A−δ
α,β := {v ∈ H2 s. t S(v) < m− δ and Kα,β(v) < 0}.

By Theorem 2.2, the reunion A+δ
α,β∪A

−δ
α,β is independent of (α, β). So, it is sufficient

to prove that A+δ
α,β is independent of (α, β). If S(φ) < m and Kα,β(φ) = 0,

then φ = 0. So A+δ
α,β is open. The rescaling φλ := eαλφ(e−βλ.) implies that a

neighborhood of zero is in A+δ
α,β. Moreover, this rescaling with λ → −∞ gives

that A+δ
α,β is contracted to zero and so it is connected. Now, by the definition,

A−δ
α,β is open, and 0 ∈ A+δ

α,β ∩A
+δ
α′,β′ . Write A+δ

α,β = (A+δ
α,β ∩A

+δ
α′,β′)∪ (A+δ

α,β ∩A
−δ
α′,β′).

Using a connexity argument, we have A+δ
α,β = A+δ

α′,β′ . The proof is achieved. �

Now, we prove Theorem 2.3. With a translation argument, we assume that
u0 ∈ A+

α,β, for some positive real numbers (0, 0) 6= (α, β) ∈ R2
+. By Lemmas 5.1,

u(t) ∈ A+
α,β for any t ∈ [0, T ∗). Using Lemma 5.2, u(t) ∈ A+

1,1 for any t ∈ [0, T ∗).
Thus,

m ≥ (S −K1,1)(u)

= H1,1(u)

=
1

3

[
2‖∆u‖2 +

∫
R4

(D − 1)G(|u|2) dx
]

≥ 2

3
‖∆u‖2.

Moreover, since the L2 norm of u is conserved, we have

sup
0≤t≤T ∗

‖u(t)‖H2 <∞.

Thus T ∗ = ∞. This ends the proof.
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