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dist-FORMULAS AND TOEPLITZ OPERATORS

MEHMET GÜRDAL1 ∗, MÜBARIZ T. GARAYEV2, SUNA SALTAN1, ULAŞ YAMANCI1
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Abstract. The distance from the nonconstant function ϕ in L∞(T) to the
set Fconst of all constant functions is estimated in terms of Hankel operators
on the Hardy space H2(D) over the unit disk D = {z ∈ C : |z| < 1}. We give a
sufficient condition ensuring the equality dist(ϕ,Fconst) = ‖ϕ‖L∞ . Some other
dist-formulas are also discussed.

1. Introduction and preliminaries

Let L∞ = L∞ (T) denote the Lebesgue-Banach space of all essentially bounded
functions f on the unit circle T := {ξ ∈ C : |ξ| = 1} with the finite norm ‖f‖∞ :=
ess−supξ∈T |f (ξ)| < +∞. Recall also that the norm of a bounded linear operator

A on a Banach space X is defined as ‖A‖ := supx 6=0
‖A(x)‖
‖x‖ < ∞.

In the present article we estimate in terms of Hankel operators the distance
from any nonconstant essentially bounded function ϕ on the unit circle T to the
set Fconst of all constant functions (see Section 2). We also investigate the equality
dist(ϕ,Fconst) = ‖ϕ‖L∞ . Some other results related with Toeplitz operators are
also obtained.

Recall that a derivation on a Banach algebra B is a linear transformation
D : B → B which satisfies

D (ab) = aD (b) +D (a) b

for all a, b ∈ B. If for a fixed a, Da : b → ab − ba, then Da is called an inner
derivation. It is well known that every derivation on a von Neumann algebra
or on a simple C∗-algebra is inner (see Kadison [4], Sakai [8, 9]). Obviously,
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‖Da‖ ≤ 2 ‖a‖ . Stampfli proved that ([10], Theorem 4) if DT is an inner derivation
on B(H) (the Banach algebra of all bounded linear operators on a Hilbert space
H), then ‖DT‖ = 2dist(T, CI), where CI denotes the set of all scalar operators
λI (λ ∈ C) on H. Stampfli also proved in terms of so-called ”maximal numerical
range” of T that ‖DT‖ = 2 ‖T‖ if and only if 0 ∈ W0(T ) see ([10], Theorem 4);
here

W0(T ) := {λ : 〈Txn, xn〉 → λ where ‖xn‖ = 1 and ‖Txn‖ → ‖T‖}
is the maximal numerical range of operator T.

Before giving our results, let us introduce some necessary definitions and no-
tations. The Hardy space H2 = H2(D) is the Hilbert space consisting of the
analytic functions on the unit disk D = {z ∈ C : |z| < 1} satisfying

‖f‖2
2 := sup

0<r<1

1

2π

2π∫
0

∣∣f(reit)
∣∣2 dt < +∞.

The symbol H∞ = H∞(D) denotes the Banach algebra of functions bounded
and analytic on the unit disc D equipped with the norm ‖f‖∞ = sup

z∈D
|f(z)| . A

function θ ∈ H∞ such that |θ(ξ)| = 1 almost everywhere in the unit circle T is
called an inner function. It is convenient to establish a natural embedding of the
space H2 in the space L2 = L2(T) by associating to each function f ∈ H2 its
radial boundary values (bf)(ξ) := lim

r→1−
f(rξ), which (by the Fatou Theorem [3])

exist for m-almost all ξ ∈ T; where m is the normalized Lebesgue measure on T.
Then we have

H2 =
{

f ∈ L2 : f̂(n) = 0, n < 0
}

,

where f̂(n) :=
∫
T
ξ̄nf(ξ)dm(ξ) is the Fourier coefficient of the function f . We

denote

H2
− =

{
f ∈ L2 : f̂(n) = 0, n > 0

}
.

For ϕ ∈ L∞ = L∞(T), the Toeplitz operator Tϕ with symbol ϕ is the operator on
H2 defined by Tϕf = P+(ϕf); here P+ is the orthogonal projection from L2(T)
onto H2. The Hankel operator Hϕ is defined by Hϕf = P−(ϕf), f ∈ H2, where
P− := I − P+.

Clearly, when T = Tϕ, the Toeplitz operator defined on H2(D) (Hardy space)
by Tϕf = P+ϕf, Stampfli’s result mentioned above “

∥∥DTϕ

∥∥ = 2 ‖Tϕ‖ ⇔ 0 ∈
W0(Tϕ)” is equivalent to “dist(ϕ,Fconst) = ‖ϕ‖L∞ ⇔ 0 ∈ W0(Tϕ)” (because it is
easy to see that dist(Tϕ, CI) = dist (ϕ,Fconst)). In this article we give another
sufficient condition under which dist(ϕ,Fconst) = ‖ϕ‖L∞ ; namely, we prove that
if ϕ ∈ L∞ and

max

{
‖Hϕ‖ , sup

θ∈(Σ)

∥∥H∗
ϕHθ

∥∥}
= ‖ϕ‖L∞ ,

then dist (ϕ,Fconst) = ‖ϕ‖L∞ , where (Σ) denotes the set of all scalar inner func-
tions.
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2. Distance estimates from H∞-functions and operators

Our main result is the following.

Theorem 2.1. Let ϕ ∈ L∞ be any nonconstant function. Then we have:

max

{
sup
θ∈(Σ)

∥∥H∗
ϕHθ

∥∥ , ‖Hϕ‖

}
≤ dist (ϕ,Fconst) ≤ ‖ϕ‖L∞ .

Therefore, if the function ϕ satisfies max

{
sup
θ∈(Σ)

∥∥H∗
ϕHθ

∥∥ , ‖Hϕ‖

}
= ‖ϕ‖L∞ , then

dist (ϕ,Fconst) = ‖ϕ‖L∞ .

Proof. By the well known Nehari formula (see [7])

‖Hϕ‖ = dist (ϕ, H∞) . (2.1)

Then by using formula (2.1) we have:

‖Hϕ‖ = dist (ϕ, H∞) = inf
h∈H∞

‖ϕ− h‖

≤ inf
λ∈C

‖ϕ− λ‖L∞ = dist (ϕ,Fconst) ,

thus
‖Hϕ‖ ≤ dist (ϕ,Fconst) ≤ ‖ϕ‖L∞ . (2.2)

(Note that the first inequality in (2.2) can be also be proved without using of
formula (2.1) as follows: for any complex number λ, since Hλ = 0,

‖ϕ− λ‖L∞ ≥ ‖Hϕ−λ‖ = ‖Hϕ −Hλ‖ = ‖Hϕ‖ .

Taking infimum with respect to λ, we obtain the desired inequality.)
On the other hand, for any inner function θ, since ‖Hθ‖ ≤

∥∥θ
∥∥

L∞
= 1, by using

the first inequality in (2.2), we have∥∥H∗
ϕHθ

∥∥ ≤ ∥∥H∗
ϕ

∥∥ ‖Hθ‖ ≤ ‖Hϕ‖ ≤ dist (ϕ,Fconst) = dist (ϕ,Fconst)

and thus
sup
θ∈(Σ)

∥∥H∗
ϕHθ

∥∥ ≤ dist (ϕ,Fconst) . (2.3)

Now the desired result is immediate from (2.2) and (2.2).
Now it is clear from (2.2) and (2.2) that if ϕ is a function such that

max

{
sup
θ∈(Σ)

∥∥H∗
ϕHθ

∥∥ , ‖Hϕ‖

}
= ‖ϕ‖L∞ ,

then
dist (ϕ,Fconst) = ‖ϕ‖L∞ .

Thus, the theorem has been proved. �

For the proof of the following lemma we are indebted to Mustafaev.

Lemma 2.2. Let H be a Hilbert space, N the set of all nilpotent operators on

H, and {N}
′
be the commutant of the set N . Then {N}

′
= {λI : λ ∈ C} := CI,

i.e., the set {N}
′
consist from the scalar operators.
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Proof. Let x ∈ H, and y ∈ H be a nonzero vector which is orthogonal to x,
that is < x, y >= 0. Let us consider the one-dimensional operator x ◦ y on H
defined by (x ◦ y)(z) :=< z, y > x. Then x ◦ y is a nilpotent operator with

nilpotency degree 2. Let T ∈ {N}
′
be an arbitrary operator. Then, in particular,

T commutes with x◦y. Then we can write T (x◦y) = (x◦y)T which is equivalent
to Tx ◦ y = x ◦ T ∗y. This implies that < z, y > Tx =< z, T ∗y > x for all z
in H. By taking in this identity z = y, we see that < y, y > Tx =< Ty, y > x.
It follows that Tx = (<Ty,y>

<y,y>
) x, which means that T is a scalar operator. This

proves the lemma. �

Corollary 2.3. Let N be the set of all nilpotent operators on H2, and {N}
′
:=

{A ∈ B(H2) : AN = NA for all N ∈ N} be the commutant of the set N . Then

dist(Tϕ, {N}
′
) ≥ max

{
sup
θ∈(Σ)

∥∥H∗
ϕHθ

∥∥ , ‖Hϕ‖

}
.

The proof of this corollary is immediate from Theorem 2.1 and Lemma 2.2.
Now, we will separately consider the particular cases ϕ ∈ H∞ and Φ ∈

H∞ (E → E) , and will demonstrate the roles of another dist-formulas (belong-
ing to Davidson [1], Mustafaev [5] and Mustafaev and Shulman [6]) in estimating

dist (ϕ,Fconst) and dist(TΦ, {N}
′
) for some suitable algebra N of operators on

H2 (E) .
Let E and E∗ be separable Hilbert spaces, H2(E) the vector-valued Hardy space

with values in E, L∞(E → E∗) the class of bounded functions on the unit circle
T whose values are bounded operators from E to E∗, and let H∞(E → E∗) be
an operator Hardy class of bounded analytic functions whose values are bounded
operators F from E to E∗ with

‖F‖∞ := sup
z∈D

‖F (z)‖ = ess sup
ξ∈T

‖F (ξ)‖ < +∞.

The Toeplitz operator TΦ with symbol Φ ∈ L∞(E → E) is defined as

TΦf := P+(Φf),

where P+ is an orthogonal projection of L2(E) onto H2(E). The function Θ,
Θ ∈ H∞(E → E), is called inner operator-function (or two sided inner function
in sense of Sz.-Nagy and Foias [11]) if its angular limiting values Θ(eit) are unitary
operators in E for almost all t ∈ [0, 2π] .

The Hankel operator HΦ, HΦ : H2(E) → H2
−(E) is defined by

HΦf := P−(Φf),

where P− := I − P+.
Any inner operator-function Θ ∈ H∞(E → E) determines the following square-

zero operator on the vectorial Hardy space H2(E) :

NΘ := TΘPΘ,

where PΘ := I −TΘT ∗
Θ : H2(E) → H2(E)	ΘH2(E) is the orthogonal projection

of H2(E) onto KΘ := H2(E) 	 ΘH2(E). Clearly, ‖NΘ‖ = 1, because TΘ is an
isometry.
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Theorem 2.4. Let ϕ ∈ H∞ be any nonconstant function. Then

sup
θ∈(Σ)

∥∥H∗
ϕHθ

∥∥ ≤ dist (ϕ,Fconst) ≤ ‖ϕ‖L∞ . (2.4)

Proof. Since the zero function is in Fconst, the right inequality is obvious. Let us
prove the left inequality. For this purpose, for any inner function θ let us consider
the orthogonal projection PθH2 onto subspace θH2. By considering that the
analytic Toeplitz operator Tθ is isometry, TϕTθ = TθTϕ and Tϕθ − TϕTθ = H∗

ϕHθ

(see, for instance, Douglas [2] and Nikolski [7]), we have:

‖TϕPθH2 − PθH2Tϕ‖ = ‖TϕTθT
∗
θ − TθT

∗
θ Tϕ‖

= ‖Tθ(TϕTθ − TθTϕ)‖
=

∥∥TϕTθ − Tθϕ

∥∥
=

∥∥Tϕθ − TϕTθ

∥∥
=

∥∥H∗
ϕHθ

∥∥
From this, by using the formula (which is due to Mustafaev [5])

dist(Tϕ, CI) = sup
P∈P

‖TϕP − PTϕ‖ ,

where P denotes the set of all orthogonal projections of the space H2, we obtain
that

sup
θ∈(Σ)

∥∥H∗
ϕHθ

∥∥ = sup
θ∈(Σ)

‖TϕPθH2 − PθH2Tϕ‖

≤ sup
p∈P

‖TϕP − PTϕ‖

= dist(Tϕ, CI) = dist(ϕ,Fconst),

which proves the theorem. �

Our next result estimates the distance from any Toeplitz operator TΦ with
Φ ∈ H∞(E → E) to some algebra N of operators on the space H2(E), which
apparently is new even in the case dim E = 1. In what follows the symbol (Σinn)
will denote the set of all inner operator-functions.

Theorem 2.5. Let Φ ∈ H∞(E → E) be an operator function, and let N be an
algebra of operators on the space H2(E) such that TΦ /∈ N u

(where N u
denotes

the uniform closure of the operator algebra N ) and NΘ ∈ {N}
′
for some inner

operator function Θ. If ΦΘ = ΘΦ, then

dist(TΦ,N ) ≥1

2
‖H∗

Φ∗HΘ∗‖ .

Proof. We will use the following known estimate, which is due to Davidson ([1],
Lemma 3) and Mustafaev and Shulman [6]:

sup
B∈T ′ ,‖B‖≤1

‖AB −BA‖ ≤ 2dist(A, T ), (2.5)

where T is an algebra of operators, T ′
is its commutant and A ∈ B(H) is any

operator.
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Indeed, since NΘ ∈ {N}
′
for some Θ ∈ (Σinn), by considering inequality (2.5)

and the condition ΦΘ = ΘΦ, we obtain:

2dist(TΦ,N ) ≥ sup
N∈{N}′

‖TΦN −NTΦ‖

≥ ‖TΦNΘ −NΘTΦ‖
= ‖TΦTΘPΘ − TΘPΘTΦ‖
= ‖TΦTΘ(I − TΘT ∗

Θ)− TΘ(I − TΘT ∗
Θ)TΦ‖

=
∥∥TΦTΘ − TΘTΦ + T 2

Θ(T ∗
ΘTΦ − TΦT ∗

Θ

∥∥
=

∥∥TΦΘ − TΘΦ + T 2
Θ(T ∗

ΘTΦ − TΦT ∗
Θ

∥∥
=

∥∥TΦΘ−ΘΦ + T 2
Θ(T ∗

ΘTΦ − TΦT ∗
Θ

∥∥
= ‖TΘ∗Φ − TΦTΘ∗‖
= ‖H∗

Φ∗HΘ∗‖ .

Here we have used the known formula TΘ∗Φ − TΦTΘ∗ = H∗
Φ∗HΘ∗ .The theorem is

proved. �
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