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INEQUALITIES

MUHAMMAD ASLAM NOOR∗, KHALIDA INAYAT NOOR AND AWAIS GUL KHAN

Communicated by C. P. Niculescu

Abstract. In this paper, using the projection operator, we introduce two new
dynamical systems for extended general quasi variational inequalities. These
dynamical systems are called extended general implicit projected dynamical
system and extended general implicit Wiener-Hopf dynamical system. We
prove that these new dynamical systems converge globally exponentially to a
unique solution of the extended general quasi variational inequalities under
some suitable conditions. Some special cases are also discussed. The ideas and
technique of this paper may stimulate further research.

1. Introduction

Quasi variational inequalities were introduced and studied by Bensoussan and
Lions [4] in impulse control system. It is well known that the set involved in the
quasi variational inequalities depends upon the solution explicitly or implicitly.
We remark that if the involved set does not depend upon the solution then quasi
variational inequality reduces to the variational inequality, the origin of which can
be traced back to Stampacchia [27]. Variational inequalities and quasi variational
inequalities provide us a unifying and an efficient framework to study various
related and unrelated problems which arise in different branches of pure and
applied sciences; see [1, 2, 8, 11, 12, 16, 19, 20, 23, 24, 25, 28] and references
therein.

However quasi variational inequalities are more difficult and challenging as com-
pared with variational inequalities. It is still a difficult task to suggest an efficient
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method for solving quasi variational inequalities. The most common way for solv-
ing quasi variational inequalities is to show that the quasi variational inequalities
are equivalent to the fixed point problems. This alternative equivalent formula-
tion has been used to suggest some projection type methods for solving the quasi
variational inequalities; see [17] and references therein. Noor [19] used this fixed
point formulation to suggest and investigate the implicit dynamical system for
quasi variational inequalities. This dynamical system includes many previously
known dynamical systems suggested by Dupuis and Nagurney [7] and Friesz et al.
[10] as special cases. In these projected dynamical systems, discontinuity arises
and it is due to the discontinuity of the projection operator which appears on the
right hand side of the ordinary differential equation. It is well known [15] that
the stationary points of the projected dynamical system are solutions of the re-
lated variational inequality problem. This is the main reason for the importance
of projected dynamical systems. Therefore projected dynamical systems can be
used to study financial equilibrium problems, optimization problems, fixed point
problems, complementarity problems and all those problems which can be stud-
ied in the framework of variational inequalities. Cojocaru et. al. [5] proved that,
one can obtain the same results on any finite dimensional Hilbert space, for any
closed convex set and a Lipschitz continuous operator. They also observed that
if the nonlinear operator is also strictly monotone or strictly pseudomonotone,
then there exists a unique stationary point for the projected dynamical system.
Xia and Wang [29] have proved that the projected dynamical systems can be
used effectively in designing neural network for solving variational inequalities
and related optimization problems. Liu and Cao [13] and Liu and Yang [14]
have developed the recurrent neural network technique for solving the extended
general variational inequalities.

Related to the variational inequalities, one can consider problem of solving the
Wiener-Hopf equations. This is mainly due to Shi [26]. He established the equiv-
alence between the Wiener-Hopf equations and the variational inequalities. Noor
[18] and Noor [19] introduced and studied a Wiener-Hopf dynamical system for
the variational inequalities and implicit Wiener-Hopf dynamical system for quasi
variational inequalities respectively. He has shown that the globally asymptotic
stability of the Wiener-Hopf dynamical system requires only the pseudomono-
tonicity.

In recent years, variational inequalities have been generalized and extended
in several directions using the novel and innovative techniques. In particular,
Noor and Noor [22] and Noor et. al. [24] have introduced and studied some new
classes of variational inequalities. These classes are called the extended general
quasi variational inequalities. They have suggested some new iterative methods
for solving these new classes of quasi variational inequalities. They have also
discussed the convergence of these iterative methods and the sensitivity analysis
of extended general quasi variational inequalities.

In this paper, we use the fixed point formulation to suggest two types of dy-
namical systems related to the extended general quasi variational inequality. We
use these dynamical systems to study the existence of a solution of the extended
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general quasi variational inequality. We show that new dynamical systems con-
verge globally exponentially to a unique solution of the extended general quasi
variational inequality. Some particular cases are also considered. Results proved
in this paper continue to hold for these problems.

2. Formulation and Basic Results

LetH be a real Hilbert space, whose norm and inner product are denoted by ‖·‖
and 〈·, ·〉 respectively. Let Ω be any closed and convex set in H. Let Ω : x → Ω (x)
be a point-to-set mapping which associates a closed and convex-valued set Ω (x)
of H with any element x of H.

For given three nonlinear operators Υ, h1, h2 : H → H, consider a problem of
finding x ∈ H : h2 (x) ∈ Ω (x) and

〈ρΥx + h2 (x)− h1 (x) , h1 (y)− h2 (x)〉 ≥ 0, ∀y ∈ H : h1 (y) ∈ Ω (x) , (2.1)

where ρ > 0 is a constant. The inequality of type (2.1) is called the extended
general quasi variational inequality. This problem was introduced and studied by
Noor and Noor [22]. For the fixed point formulation, existence of a unique solu-
tion, equivalence with Wiener-Hopf equation, numerical methods and sensitivity
analysis of problem (2.1), see [22, 24].

We now discuss some special cases of problem (2.1).
I. If Ω (x) = Ω, then problem (2.1) is equivalent to finding x ∈ H : h2 (x) ∈ Ω
and

〈ρΥx + h2 (x)− h1 (x) , h1 (y)− h2 (x)〉 ≥ 0, ∀y ∈ H : h1 (y) ∈ Ω, (2.2)

which is called the extended general variational inequality. For the formulation,
numerical algorithms and recent applications, see [12, 13] and references therein.
II. If h2 = h1, then problem (2.1) is equivalent to finding x ∈ H : h1 (x) ∈ Ω (x)
and

〈Υx, h1 (y)− h1 (x)〉 ≥ 0, ∀y ∈ H : h1 (y) ∈ Ω (x) , (2.3)

which is known as the general quasi variational inequality, introduced and studied
by Noor [17].
III. If h2 = I, where I the identity operator, then problem (2.1) is equivalent
to finding x ∈ Ω (x) such that

〈ρΥx + x− h1 (x) , h1 (y)− x〉 ≥ 0, ∀y ∈ H : h1 (y) ∈ Ω (x) , (2.4)

is known as the general quasi variational inequality. This class is quite general
and unified one.
IV. If h1 = I, where I the identity operator, then problem (2.1) reduces to
finding x ∈ H : h2 (x) ∈ Ω (x) such that

〈ρΥx + h2 (x)− x, y − h2 (x)〉 ≥ 0, ∀y ∈ Ω (x) , (2.5)

is called the general quasi variational inequality.
V. If h1 = h2 = I, where I the identity operator, then problem (2.1) is equivalent
to finding x ∈ Ω (x) such that

〈Υx, y − x〉 ≥ 0, ∀y ∈ Ω (x) , (2.6)
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which is known as quasi variational inequality. This problem was introduced and
studied by Bensoussan and Lions [4] in the study of impulse control system.
VI. If Ω (x) = Ω and h2 = h1, then problem (2.1) is equivalent to problem of
finding x ∈ H : h1 (x) ∈ Ω such that

〈Υx, h1 (y)− h1 (x)〉 ≥ 0, ∀y ∈ H : h1 (y) ∈ Ω. (2.7)

This problem is known as general variational inequality. It turned out that odd
order and nonsymmetric obstacle, free, moving, unilateral and equilibrium prob-
lems arising in various branches of pure and applied sciences can be studied by
problem (2.7), see [12, 14] and the references therein.
VII. If Ω (x) = Ω and h2 = h1 = I, where I is the identity operator, then
problem (2.1) is equivalent to problem of finding x ∈ Ω such that

〈Υx, y − x〉 ≥ 0, ∀y ∈ Ω, (2.8)

which is the original variational inequality. It was introduced and studied by
Stampacchia [27]. For the recent applications, numerical algorithms, sensitivity
analysis, dynamical systems and formulations of variational inequalities, see [1-29]
and the references therein.

We also need the following well-known fundamental results and concepts.

Definition 2.1. A nonlinear operator Υ : H → H is said to be strongly monotone
if there exists a constant α > 0 such that

〈Υx−Υy, x− y〉 ≥ α ‖x− y‖2 , ∀x, y ∈ H.

Definition 2.2. A nonlinear operator Υ : H → H is said to be Lipschitz contin-
uous if there exists a constant β > 0 such that

‖Υx−Υy‖ ≤ β ‖x− y‖ , ∀x, y ∈ H.

From the definitions (2.1) and (2.2), it is clear that α ≤ β.

Remark 2.3. If the nonlinear operator Υ : H → H is strongly monotone with
constant α > 0 and Υ−1 exists, then∥∥Υ−1x−Υ−1y

∥∥ ≤ 1

α
‖x− y‖ , ∀x, y ∈ H. (2.9)

This shows that inverse operator Υ−1 is Lipschitz continuous with constant 1
α

> 0.

Lemma 2.4. [22]. Let Ω be a closed and convex set in H. Then for a given
z ∈ H, x ∈ Ω satisfies

〈x− z, y − x〉 ≥ 0, ∀y ∈ Ω,

if and only if

x = ΠΩ [z] ,

where ΠΩ is the projection of H onto the closed and convex set Ω in H.

It is well known that the projection operator ΠΩ is nonexpansive.
Using Lemma 2.4, one can show that problem (2.1) is equivalent to the fixed

point problem.
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Lemma 2.5. [22]. Let Ω (x) be a closed and convex valued set in H. The function
x ∈ H : h2 (x) ∈ Ω (x) is a solution of problem (2.1) if and only if x ∈ H : h2 (x) ∈
Ω (x) satisfies the relation

h2 (x) = ΠΩ(x) [h1 (x)− ρΥx] , (2.10)

where ΠΩ(x) is the implicit projection operator from H onto the closed and convex
valued set Ω (x) and ρ > 0 is a constant.

From Lemma 2.5, it follows that problem (2.1) is equivalent to a fixed point
problem (2.10). This equivalent formulation plays a crucial part in developing
several iterative methods, see [19, 22, 24].

We would like to mention that the implicit projection operator ΠΩ(x) is not
non-expansive. However, it satisfies the Lipschitz type continuity. We assume
that the implicit projection operator ΠΩ(x) satisfies the following condition.

Assumption 2.11.[22]. The implicit projection operator ΠΩ(x) satisfies the
condition

‖ΠΩ(x) [w]− ΠΩ(y) [w] ‖ ≤ ν‖x− y‖, for all x, y, w ∈ H, (2.11)

where ν > 0 is a constant.
Assumption 2.11 has been used to prove the existence of a solution of extended

general quasi-variational inequalities as well as analyzing convergence of the iter-
ative methods, see [22, 24].

We now define the residue vector

R (x) = h2 (x)− ΠΩ(x) [h1 (x)− ρΥx] . (2.12)

It is clear from Lemma 2.5 that problem (2.1) has a solution x ∈ H : h2 (x) ∈
Ω (x), if and only if x ∈ H : h2 (x) ∈ Ω (x) is a zero of the equation

R (x) = 0. (2.13)

3. Projected Dynamical System

We use the residue vector, defined in (2.12) , to consider the following dynamical
system

dx

dt
= −λR (x)

= λ
{
ΠΩ(x) [h1 (x)− ρΥx]− h2 (x)

}
, x (t0) = x0 ∈ H, (3.1)

associated with problem (2.1), where λ is a constant. The dynamical system (3.1)
is called the extended general implicit projected dynamical system. Since right
hand side is related to the projection operator, and thus, is discontinuous on the
boundary of H. It is clear from the definition that the solution of dynamical
system (3.1) belongs to the constraint set H. From this it is clear that the results
such as the existence, uniqueness and continuous dependence on the given data
can be studied.
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Definition 3.1. [18]. The dynamical system (3.1) is said to converge to the
solution set Ω∗ of problem (2.1) if, irrespective of the initial point, the trajectory
of the dynamical system satisfies

lim
t→∞

dist (x (t) , Ω∗) = 0,

where

dist (x, Ω∗) = inf
y∈Ω∗

‖x− y‖ .

Clearly, if the set Ω∗ has a unique point x∗, then we have

lim
t→∞

x (t) = x∗.

The stability of the dynamical system at x∗ in the Lyapunov sense, confirms
that the dynamical system is also globally asymptotically stable at x∗.

Definition 3.2. [18]. The dynamical system is said to be globally exponentially
stable with degree η1 at x∗ if, irrespective of the initial point, the trajectory of
the system x (t) satisfies

‖x (t)− x∗‖ ≤ µ1 ‖x (t0)− x∗‖ e−η1(t−t0), ∀t ≥ t0,

where µ1 > 0 and η1 > 0 are positive constants independent of the initial point.
It is clear that globally exponential stability is necessarily globally asymptotically
stable and the dynamical system converges arbitrarily fast.

Lemma 3.3. (Gronwall’s Lemma [18]). Let x and y be real valued non-negative
continuous functions with domain {t : t ≥ t0} and let α (t) = α0 |t− t0|, where α0

is a monotone increasing function. If, for t ≥ t0,

x (t) ≤ α (t) +

t∫
t0

x (s) y (s) ds,

then

x (t) ≤ α (t) · e
tR

t0

y(s)ds

.

Theorem 3.4. Let Υ, h1 and h2 be the Lipschitz continuous with constants β > 0,
δ > 0 and µ > 0 respectively. Let the Assumption 2.11 holds. Then for each
x0 ∈ H, there exists a unique continuous solution x (t) of the dynamical system
(3.1) with x (t0) = x0 over [t0,∞).

Proof. Let

G (x) = λ
{
ΠΩ(x) [h1 (x)− ρΥx]− h2 (x)

}
.
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To prove that G (x) is Lipschitz continuous for all x1 6= x2 ∈ H, we have to
consider

‖G (x1)− G (x2)‖ = λ‖
{
ΠΩ(x1) [h1 (x1)− ρΥx1]− h2 (x1)

}
−

{
ΠΩ(x2) [h1 (x2)− ρΥx2]− h2 (x2)

}
‖

≤ λ
∥∥ΠΩ(x1) [h1 (x1)− ρΥx1]− ΠΩ(x2) [h1 (x1)− ρΥx1]

∥∥
+λ

∥∥ΠΩ(x2) [h1 (x1)− ρΥx1]− ΠΩ(x2) [h1 (x2)− ρΥx2]
∥∥

+λ ‖h2 (x1)− h2 (x2)‖
≤ λν ‖x1 − x2‖+ λρ ‖Υx1 −Υx2‖+ λ ‖h1 (x1)− h1 (x2)‖

+λ ‖h2 (x1)− h2 (x2)‖
≤ λ (δ + µ + ν + ρβ) ‖x1 − x2‖ ,

where we have used Assumption 2.11 and the Lipschitz continuity of the operators
Υ, h1, h2 with constants β > 0, δ > 0, µ > 0 respectively.

This implies that the operator G (x) is a Lipschitz continuous in H. Hence
for each x0 ∈ H , there exists a unique and continuous solution x (t) of the
dynamical system (3.1), defined in an interval t0 ≤ t < Υ1 with the initial
condition x (t0) = x0. Let [t0, Υ1) be its maximal of existence. Now we have to
show that Υ1 = ∞.

Consider,∥∥∥∥dx

dt

∥∥∥∥ = ‖G (x)‖

= λ
∥∥ΠΩ(x) [h1 (x)− ρΥx]− h2 (x)

∥∥
= λ‖ΠΩ(x) [h1 (x)− ρΥx]− ΠΩ(x) [h1 (x)] + ΠΩ(x) [h1 (x)]

−ΠΩ(x∗) [h1 (x∗)] + ΠΩ(x∗) [h1 (x∗)]− h2 (x) ‖
≤ λ

∥∥ΠΩ(x) [h1 (x)− ρΥx]− ΠΩ(x) [h1 (x)]
∥∥

+λ
∥∥ΠΩ(x) [h1 (x)]− ΠΩ(x∗) [h1 (x)]

∥∥
+λ

∥∥ΠΩ(x∗) [h1 (x)]− ΠΩ(x∗) [h1 (x∗)]
∥∥

+λ
∥∥ΠΩ(x∗) [h1 (x∗)]

∥∥ + λ ‖h2 (x)‖
≤ λ ‖h1 (x)− ρΥx− h1 (x)‖+ λν ‖x− x∗‖+ λ ‖h1 (x)− h1 (x∗)‖

+λ
∥∥ΠΩ(x∗) [h1 (x∗)]

∥∥ + λ ‖h2 (x)‖
≤ λρ ‖Υx‖+ λ (ν + δ) ‖x− x∗‖+ λ

∥∥ΠΩ(x∗) [h1 (x∗)]
∥∥ + λ ‖h2 (x)‖

≤ λρβ ‖x‖+ λ (ν + δ) (‖x‖+ ‖x∗‖)
+λ

∥∥ΠΩ(x∗) [h1 (x∗)]
∥∥ + λµ ‖x‖

= λ (ρβ + ν + δ + µ) ‖x‖+

λ
{
(ν + δ) ‖x∗‖+

∥∥ΠΩ(x∗) [h1 (x∗)]
∥∥}

, (3.2)

where we have used Assumption 2.11, and Lipschitz continuity of operators Υ, h1

and h2 with constants β > 0, δ > 0 and µ > 0 respectively.
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Now, integrating (3.2) over the interval [t0, t], we have

‖x (t)‖ − ‖x (t0)‖ ≤ k1

t∫
t0

1ds + k2

t∫
t0

‖x (s)‖ ds

≤ k1 (t− t0) + k2

t∫
t0

‖x (s)‖ ds,

from, which by using Lemma 3.3, we have

‖x (t)‖ ≤ {‖x0‖+ k1 (t− t0)}+ k2

t∫
t0

‖x (s)‖ ds

≤ {‖x0‖+ k1 (t− t0)} ek2(t−t0), t ∈ [t0, Υ1) ,

where

k1 = λ
{
(ν + δ) ‖x∗‖+

∥∥ΠΩ(x∗) [h1 (x∗)]
∥∥}

k2 = λ {ρβ + ν + δ + µ} .

This shows that the solution is bounded on [t0,∞). �

We now show that the trajectory of the solution of the dynamical system (3.1)
converges globally exponentially to the unique solution of problem (2.1).

Theorem 3.5. Let the operators Υ, h1 and h2 : H → H be Lipschitz continuous
with constants β > 0, δ > 0 and µ > 0 respectively. Let Assumption 2.11 hold. If
the operator h2 : H → H is strongly antimonotone with constant η > 0, then the
dynamical system (3.1) converges globally exponentially to the unique solution of
problem (2.1).

Proof. Since the operators Υ, h1 and h2 are Lipschitz continuous, it follows from
the Theorem 3.4 that the dynamical system (3.1) has a unique solution x (t) over
[t0, Υ1) for any fixed x0 ∈ H.

Let x (t) = x (t, t0; x0) be a solution of problem (3.1). For a given x∗ ∈
H : h2 (x∗) ∈ Ω (x∗), satisfying problem (2.1), consider the following Lyapunov
function:

L (x) =
1

2
‖x (t)− x∗‖2 , x ∈ H. (3.3)
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Thus

dL
dt

=

〈
x (t)− x∗,

dx

dt

〉
= 〈x− x∗,−λR (x)〉
= −λ

〈
x− x∗, h2 (x)− ΠΩ(x) [h1 (x)− ρΥx]

〉
= −λ

〈
x− x∗, (h2 (x)− h2 (x∗)) +

(
h2 (x∗)− ΠΩ(x) [h1 (x)− ρΥx]

)〉
= −λ 〈h2 (x)− h2 (x∗) , x− x∗〉

+λ
〈
ΠΩ(x) [h1 (x)− ρΥx]− h2 (x∗) , x− x∗

〉
≤ −λη ‖x− x∗‖2 + λ

∥∥ΠΩ(x) [h1 (x)− ρΥx]− h2 (x∗)
∥∥ ‖x− x∗‖ , (3.4)

where we have used the strongly antimonotonicity of the operator h2 with con-
stant η > 0 and Cauchy Schwarz inequality.

Since x∗ ∈ H : h2 (x∗) ∈ Ω (x∗) is the solution of problem (2.1), therefore using
Lemma 2.5,we have

h2 (x∗) = ΠΩ(x∗) [h1 (x∗)− ρΥx∗] . (3.5)

Using (3.5), Assumption 2.11 and Lipschitz continuity of operators Υ and h1 with
constants β > 0 and δ > 0 respectively, we have∥∥ΠΩ(x) [h1 (x)− ρΥx]− h2 (x∗)

∥∥
=

∥∥ΠΩ(x) [h1 (x)− ρΥx]− ΠΩ(x∗) [h1 (x∗)− ρΥx∗]
∥∥

≤
∥∥ΠΩ(x) [h1 (x)− ρΥx]− ΠΩ(x∗) [h1 (x)− ρΥx]

∥∥
+

∥∥ΠΩ(x∗) [h1 (x)− ρΥx]− ΠΩ(x∗) [h1 (x∗)− ρΥx∗]
∥∥

≤ ν ‖x− x∗‖+ ‖h1 (x)− h1 (x∗)‖+ ρ ‖Υx−Υx∗‖
≤ (ν + δ + ρβ) ‖x− x∗‖ . (3.6)

Combining (3.4) and (3.6), we have

dL
dt

≤ −λη ‖x− x∗‖2 + λ (ν + δ + ρβ) ‖x− x∗‖2

= λ (ν + δ − η + ρβ) ‖x− x∗‖2

= k1 ‖x− x∗‖2 ,

where
k1 = λ (ν + δ − η + ρβ) > 0.

Thus for k1 = −k2, where k2 is a positive constant, we have

dL
dt

≤ −k2 ‖x− x∗‖2 ,

which implies that

‖x (t)− x∗‖ ≤ ‖x (t0)− x∗‖ e−k2(t−t0).

This shows that the trajectory of the solution of the dynamical system (3.1)
converges globally exponentially to the unique solution of problem (2.1). �

For suitable and appropriate choice of the operators and spaces one can obtain
the results of Noor [18, 19] and others as special cases from our results.
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4. Wiener-Hopf Equation Dynamical System

We now consider problem related to the extended general quasi variational
inequality which is called the Wiener-Hopf equation. To be more precise, let
QΩ(x) = I−h1h

−1
2 ΠΩ(x), where I is the identity operator and ΠΩ(x) is the projection

of H onto the closed and convex-valued set Ω (x) .
For given non-linear operators Υ, h1, h2 : H → H, consider problem of finding

z ∈ H such that
Υh−1

2 ΠΩ(x) [z] + ρ−1QΩ(x) [z] = 0, (4.1)

where ρ > 0 is a constant. The equation (4.1) is known as the extended general
implicit Wiener-Hopf equation.

We now discuss some special cases of problem (4.1).
I. If Ω (x) = Ω, then problem (4.1) is equivalent to finding z ∈ H such that

Υh−1
2 ΠΩ [z] + ρ−1QΩ [z] = 0. (4.2)

The problem (4.2) is known as extended general Wiener-Hopf equation, see [21].
II. If h2 = h1, then problem (4.1) is equivalent to finding z ∈ H such that

Υh−1
1 ΠΩ(x) [z] + ρ−1QΩ(x) [z] = 0. (4.3)

This problem is called general implicit Wiener–Hopf equation which is equivalent
to problem (2.3).
III. If Ω (x) = Ω and h2 = h1 = I, where I is the identity operator, then
problem (4.1) is equivalent to finding z ∈ H such that

ΥΠΩ [z] + ρ−1QΩ [z] = 0. (4.4)

Problem (4.4) is the original Wiener–Hopf equation, which was introduced by Shi
[26]. This problem is equivalent to problem (2.7).

For suitable and appropriate choice of operators and spaces, one can obtain
several known and new classes of the Wiener–Hopf equations.

It is known [24] that problem (2.1) and (4.1) are equivalent. For the sake of
completeness, we recall this result without proof.

Lemma 4.1. The problem (2.1) has a solution x ∈ H : h2 (x) ∈ Ω (x) , if and
only if, problem (4.1) has a solution z ∈ H, where

h2 (x) = ΠΩ(x) [z] , (4.5)

z = h1 (x)− ρΥx, (4.6)

where ρ > 0 is a constant.

Using Lemma 4.1, the implicit Wiener–Hopf equation (4.1) can be written as

h1 (x)−ρΥx−h1h
−1
2 ΠΩ(x) [h1 (x)− ρΥx]+ρΥh−1

2 ΠΩ(x) [h1 (x)− ρΥx] = 0, (4.7)

from, which we have

h1 (x) = ρΥx + h1h
−1
2 ΠΩ(x) [h1 (x)− ρΥx]− ρΥh−1

2 ΠΩ(x) [h1 (x)− ρΥx] . (4.8)

Thus it is clear from Lemma 4.1 that x ∈ H : h2 (x) ∈ Ω (x) is a solution of
problem (2.1) , if and only if, x ∈ H : h2 (x) ∈ Ω (x) satisfies the equation (4.7).
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Using (4.7) and for a constant λ, we suggest a new dynamical system:

dx

dt
= λ

{
h1h

−1
2 ΠΩ(x) [h1 (x)− ρΥx]− ρΥh−1

2 ΠΩ(x) [h1 (x)− ρΥx]

+ρΥx− h1 (x)} , x (t0) = x0 ∈ Ω (x) . (4.9)

This problem is called the extended general implicit Wiener–Hopf dynamical
system. Here the right-hand side is associated with the implicit projection and
hence is discontinuous on the boundary of a closed and convex-valued set Ω (x). It
is clear from the definition that the solution to the dynamical system (4.9) belongs
to the constraint set Ω (x). This implies that the results, such as existence,
uniqueness and continuous dependence on the data of the solution of (4.9) can
be studied.

We now study the main properties of the proposed Wiener–Hopf dynamical
system and analyze the global stability of the systems. First of all, we discuss
the existence and uniqueness of the dynamical system (4.9) and this is the main
motivation of our next result.

Theorem 4.2. Let the non-linear operators Υ, h1 and h−1
2 be the Lipschitz con-

tinuous with constants β > 0, δ > 0 and θ > 0 respectively. Let Assumption 2.11
hold. Then for each x0 ∈ H, there exists a unique continuous solution x (t) of the
dynamical system (4.9) with x (t0) = x0 over [t0,∞).

Proof. Let

G (x) =
dx

dt
= λ

{
h1h

−1
2 ΠΩ(x) [h1 (x)− ρΥx]

−ρΥh−1
2 ΠΩ(x) [h1 (x)− ρΥx] + ρΥx− h1 (x)

}
.

To prove that G (x) is Lipschitz continuous for all x 6= y ∈ H, we consider

‖G (x)− G (y)‖ = λ‖
{
h1h

−1
2 ΠΩ(x) [h1 (x)− ρΥx]

−ρΥh−1
2 ΠΩ(x) [h1 (x)− ρΥx] + ρΥx− h1 (x)

}
−

{
h1h

−1
2 ΠΩ(y) [h1 (y)− ρΥy]

−ρΥh−1
2 ΠΩ(y) [h1 (y)− ρΥy] + ρΥy − h1 (y)

}
‖

≤ λ‖h1h
−1
2 ΠΩ(x) [h1 (x)− ρΥx]− h1h

−1
2 ΠΩ(y) [h1 (y)− ρΥy] ‖

+λρ
∥∥Υh−1

2 ΠΩ(x) [h1 (x)− ρΥx]

−Υh−1
2 ΠΩ(y) [h1 (y)− ρΥy]

∥∥
+λρ ‖Υx−Υy‖+ λ ‖h1 (x)− h1 (y)‖

≤ λ (δ + ρβ)
{∥∥h−1

2 ΠΩ(x) [h1 (x)− ρΥx]

−h−1
2 ΠΩ(y) [h1 (y)− ρΥy]

∥∥ + ‖x− y‖
}

, (4.10)

where we have used the Lipschitz continuity of Υ, h1 with constants β > 0, δ > 0,
respectively. Now,
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2 ΠΩ(x) [h1 (x)− ρΥx]− h−1

2 ΠΩ(y) [h1 (y)− ρΥy]
∥∥

≤ θ
∥∥ΠΩ(x) [h1 (x)− ρΥx]− ΠΩ(y) [h1 (y)− ρΥy]

∥∥
≤ θ

∥∥ΠΩ(x) [h1 (x)− ρΥx]− ΠΩ(y) [h1 (x)− ρΥx]
∥∥

+θ
∥∥ΠΩ(y) [h1 (x)− ρΥx]− ΠΩ(y) [h1 (y)− ρΥy]

∥∥
≤ θν ‖x− y‖+ θ ‖h1 (x)− h1 (y)− ρ (Υx−Υy)‖
≤ θν ‖x− y‖+ θ ‖h1 (x)− h1 (y)‖+ θρ ‖Υx−Υy‖
≤ θ (ν + δ + ρβ) ‖x− y‖ , (4.11)

where we have used Assumption (2.11) and Lipschitz continuity of the operators
Υ,h1 and h−1

2 with constants β > 0,δ > 0 and θ > 0, respectively.
Combining (4.10) and (4.11), we have

‖G (x)− G (y)‖ ≤ λ (δ + ρβ) {θ (ν + δ + ρβ) ‖x− y‖+ ‖x− y‖}
= λ (δ + ρβ) {θ (ν + δ + ρβ) + 1} ‖x− y‖ .

This implies that the operator G (x) is Lipschitz continuous in H. So for each
x0 ∈ H , there exists a unique and continuous solution x (t) of the dynamical
system (4.9), defined in an interval t0 ≤ t < Υ1 with the initial condition x (t0) =
x0. Let [t0, Υ1) be its maximal of existence. Now we have to show that Υ1 = ∞.

Consider,

‖G (x)‖ =

∥∥∥∥dx

dt

∥∥∥∥
= λ

∥∥h1h
−1
2 ΠΩ(x) [h1 (x)− ρΥx]

−ρΥh−1
2 ΠΩ(x) [h1 (x)− ρΥx] + ρΥx− h1 (x)

∥∥
≤ λ

∥∥h1h
−1
2 ΠΩ(x) [h1 (x)− ρΥx]− h1 (x)

∥∥
+λρ

∥∥Υh−1
2 ΠΩ(x) [h1 (x)− ρΥx]−Υx

∥∥
≤ λ (δ + ρβ)

∥∥h−1
2 ΠΩ(x) [h1 (x)− ρΥx]− x

∥∥ , (4.12)

where we have used the Lipschitz continuity of Υ and h−1
1 with constants β > 0

and δ > 0, respectively. Now,∥∥h−1
2 ΠΩ(x) [h1 (x)− ρΥx]− x

∥∥
= ‖h−1

2 ΠΩ(x) [h1 (x)− ρΥx]− h−1
2 ΠΩ(x) [h1 (x)] + h−1

2 ΠΩ(x) [h1 (x)]

−h−1
2 ΠΩ(x∗) [h1 (x∗)] + h−1

2 ΠΩ(x∗) [h1 (x∗)]− x‖
≤

∥∥h−1
2 ΠΩ(x) [h1 (x)− ρΥx]− h−1

2 ΠΩ(x) [h1 (x)]
∥∥

+
∥∥h−1

2 ΠΩ(x) [h1 (x)]− h−1
2 ΠΩ(x∗) [h1 (x)]

∥∥
+

∥∥h−1
2 ΠΩ(x∗) [h1 (x)]− h−1

2 ΠΩ(x∗) [h1 (x∗)]
∥∥

+
∥∥h−1

2 ΠΩ(x∗) [h1 (x∗)]
∥∥ + ‖x‖
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≤ θ
∥∥ΠΩ(x) [h1 (x)− ρΥx]− ΠΩ(x) [h1 (x)]

∥∥
+θ

∥∥ΠΩ(x) [h1 (x)]− ΠΩ(x∗) [h1 (x)]
∥∥

+θ
∥∥ΠΩ(x∗) [h1 (x)]− ΠΩ(x∗) [h1 (x∗)]

∥∥
+θ

∥∥ΠΩ(x∗) [h1 (x∗)]
∥∥ + ‖x‖

≤ θ {‖h1 (x)− ρΥx− h1 (x)‖+ ν ‖x− x∗‖+ ‖h1 (x)− h1 (x∗)‖
+

∥∥ΠΩ(x∗) [h1 (x∗)]
∥∥}

+ ‖x‖
≤ θ{{ρβ ‖x‖+ ν ‖x− x∗‖+ δ ‖x− x∗‖

+
∥∥ΠΩ(x∗) [h1 (x∗)]

∥∥}
+ ‖x‖

≤ {θ (ρβ + ν + δ) + 1} ‖x‖
+θ

{
(ν + δ) ‖x∗‖+

∥∥ΠΩ(x∗) [h1 (x∗)]
∥∥}

, (4.13)

where we have used the Υ, h1 and h−1
2 be the Lipschitz continuous with constants

β > 0, δ > 0 and θ > 0 respectively and Assumption 2.11.
Combining (4.12) and (4.13), we have

‖G (x)‖ =

∥∥∥∥dx

dt

∥∥∥∥ ≤ λ (δ + ρβ) {θ (ρβ + ν + δ) + 1} ‖x‖

+θλ (δ + ρβ)
{
(ν + δ) ‖x∗‖+

∥∥ΠΩ(x∗) [h1 (x∗)]
∥∥}

. (4.14)

Integrating (4.14) over the interval [t0, t], we have

‖x (t)‖ − ‖x (t0)‖ ≤ k1

t∫
t0

ds + k2

t∫
t0

‖x (s)‖ ds

= k1 (t− t0) + k2

t∫
t0

‖x (s)‖ ds,

from which by using the Lemma 3.3, we have

‖x (t)‖ ≤ {‖x (t0)‖+ k1 (t− t0)}+ k2

t∫
t0

‖x (s)‖ ds

≤ {‖x (t0)‖+ k1 (t− t0)} ek2(t−t0), t ∈ [t0, Υ1) ,

where

k1 = θλ (δ + ρβ)
{
(ν + δ) ‖x∗‖+

∥∥ΠΩ(x∗) [h1 (x∗)]
∥∥}

,

k2 = λ (δ + ρβ) {θ(ρβ + ν + δ) + 1} .

This shows that the solution is bounded on [t0,∞). �

We now show that the trajectory of the solution of the dynamical system (4.9)
converges globally exponentially to the unique solution of problem (2.1).

Theorem 4.3. Let the operators Υ, h1 and h−1
2 be Lipschitz continuous with

constants β > 0, δ > 0 and θ > 0 respectively. Let the operator h1 be strongly
monotone with constants σ > 0. Let Assumption 2.11 hold. Then the dynamical
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system (4.9) converges globally exponentially to the unique solution of problem
(2.1).

Proof. Since the operators Υ, h1 and h−1
2 satisfies all the conditions of Theorem

4.2, therefore it follows from Theorem 4.2 that the dynamical system (4.9) has a
unique solution x (t) over [t0, Υ1) for any fixed point x0 ∈ H.

Let x (t) = x (t, t0; x0) be a solution of (4.9). For a given x∗ ∈ H : h2 (x∗) ∈
Ω (x), satisfying problem (2.1), consider the following Lyapunov function:

L (x) =
1

2
‖x (t)− x∗‖2 , x ∈ H.

Thus by using (4.9), we have

dL
dt

=

〈
x (t)− x∗,

dx

dt

〉
= λ〈x− x∗, h1h

−1
2 ΠΩ(x) [h1 (x)− ρΥx]

−ρΥh−1
2 ΠΩ(x) [h1 (x)− ρΥx] + ρΥx− h1 (x)〉

= −λ〈x− x∗, h1 (x)− h1h
−1
2 ΠΩ(x) [h1 (x)− ρΥx]

+ρΥh−1
2 ΠΩ(x) [h1 (x)− ρΥx]− ρΥx〉

= −λ〈x− x∗, h1 (x)− h1 (x∗) + h1 (x∗)− h1h
−1
2 ΠΩ(x) [h1 (x)− ρΥx]

+ρΥh−1
2 ΠΩ(x) [h1 (x)− ρΥx]− ρΥx〉

= −λ 〈x− x∗, h1 (x)− h1 (x∗)〉+ λ〈h1h
−1
2 ΠΩ(x) [h1 (x)− ρΥx]

−ρΥh−1
2 ΠΩ(x) [h1 (x)− ρΥx] + ρΥx− h1 (x∗) , x− x∗〉

≤ −λσ ‖x− x∗‖2 + λ ‖x− x∗‖ ‖h1h
−1
2 ΠΩ(x) [h1 (x)− ρΥx]

−ρΥh−1
2 ΠΩ(x) [h1 (x)− ρΥx] + ρΥx− h1 (x∗) ‖, (4.15)

where we have used the strongly monotonicity of the operator h1 with constant
σ > 0.

Since x∗ ∈ H : h2 (x∗) ∈ Ω (x) is the solution of problem (2.1), therefore using
(4.8), we have
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h1h

−1
2 ΠΩ(x) [h1 (x)− ρΥx]− ρΥh−1

2 ΠΩ(x) [h1 (x)− ρΥx] + ρΥx
}
− h1 (x∗)

∥∥
= ‖

{
h1h

−1
2 ΠΩ(x) [h1 (x)− ρΥx]

−ρΥh−1
2 ΠΩ(x) [h1 (x)− ρΥx] + ρΥx

}
−

{
h1h

−1
2 ΠΩ(x∗) [h1 (x∗)− ρΥx∗]

−ρΥh−1
2 ΠΩ(x∗) [h1 (x∗)− ρΥx∗] + ρΥx∗

}
‖

≤
∥∥h1h

−1
2 ΠΩ(x) [h1 (x)− ρΥx]− h1h

−1
2 ΠΩ(x∗) [h1 (x∗)− ρΥx∗]

∥∥
+ρ

∥∥Υh−1
2 ΠΩ(x) [h1 (x)− ρΥx]−Υh−1

2 ΠΩ(x∗) [h1 (x∗)− ρΥx∗]
∥∥

+ρ ‖Υx−Υx∗‖
≤ θ (δ + ρβ)

∥∥ΠΩ(x) [h1 (x)− ρΥx]− ΠΩ(x∗) [h1 (x∗)− ρΥx∗]
∥∥ + ρβ ‖x− x∗‖

≤ θ (δ + ρβ) {
∥∥ΠΩ(x) [h1 (x)− ρΥx]− ΠΩ(x∗) [h1 (x)− ρΥx]

∥∥
+

∥∥ΠΩ(x∗) [h1 (x)− ρΥx]− ΠΩ(x∗) [h1 (x∗)− ρΥx∗]
∥∥}+ ρβ ‖x− x∗‖

≤ θ (δ + ρβ) {ν ‖x− x∗‖
+ ‖(h1 (x)− h1 (x∗))− ρ (Υx−Υx∗)‖}+ ρβ ‖x− x∗‖

≤ θ (δ + ρβ) {ν ‖x− x∗‖+ ‖h1 (x)− h1 (x∗)‖
+ρ ‖Υx−Υx∗‖}+ ρβ ‖x− x∗‖

≤ θ (δ + ρβ) (ν + δ + ρβ) ‖x− x∗‖+ ρβ ‖x− x∗‖
= {θ (δ + ρβ) (ν + δ + ρβ) + ρβ} ‖x− x∗‖ , (4.16)

where we have used Assumption 2.11 and the Lipschitz continuity of the operators
Υ, h1 and h−1

2 with constants β > 0, δ > 0 and θ > 0 respectively.
Combining (4.15) and (4.16), we have

dL
dt

≤ −λσ ‖x− x∗‖2 + λ {ρβ + θ (δ + ρβ) (ν + δ + ρβ)} ‖x− x∗‖2

= λ {−σ + ρβ + θ (δ + ρβ) (ν + δ + ρβ)} ‖x− x∗‖2

= λk1 ‖x− x∗‖2 ,

where
k1 = −σ + ρβ + θ (δ + ρβ) (ν + δ + ρβ)

Let k1 = −k2, where k2 > 0, then

dL
dt

≤ −λk2 ‖x− x∗‖2 ,

which implies that

‖x (t)− x∗‖ ≤ ‖x (t0)− x∗‖ e−λk2(t−t0),

This shows that the trajectory of the solution of the dynamical system (4.9)
converges globally exponentially to the unique solution of problem (2.1). �

5. Conclusion

In this paper, we have introduced two new dynamical systems associated with
the extended general quasi variational inequalities. These dynamical systems
have been used to investigate the unique existence of the solutions of the quasi
variational inequalities. Several special cases are discussed. Results obtained in
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this paper can be extended for quasi split feasibility problems, see [23], which is
another direction for future research. The ideas and the technique of this paper
may inspire the interested readers to discover novel and innovative applications
of quasi variational inequalities in pure and applied sciences. This research is
supported by HEC NRPU project No: 20-1966/R&D 11-2553.
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