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ON THE TRANSCENDENTAL RADIUS OF THE VOLTERRA
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ABSTRACT. The transcendental radius of the Volterra integration operator V
acting in the space L% (0;1) is calculated. The latter is compared with the
norm of the self-commutator of V.

1. INTRODUCTION AND PRELIMINARIES

Let A be a linear bounded operator, acting in a Hilbert space (H, (-, -)) . According
to [7] there exists a unique complex number ¢ belonging to the closure of the
numerical range W (A) such that

m(A)=inf |[A—=N| =||A—cI|.
AeC
Fujii and Prasanna [1] called m (A) transcendental radius of A. Prasanna proved

[6] that
m? (A) = sup {||Am||2 - |(Am,x)|2}. (1.1)

In [5] a more general problem is considered and is proved that

Tz, Az)|?
| Az
The number )\ is unique if the approximate point spectrum of A does not contain

0 and is characterized by the following conditions. There exists a sequence of unit
elements {z,} such that

(T — NA) zp, Azy) — 0, (T — XA) 2] — [|T — oAl (1.3)

mi (A) = |IT = A|* = wf ||IT = MA|* = sup {HTSL’H2 -

[lz]l=1
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In [3] is proved that
Tx,, A
No = lim (LEn AZn)

, (1.4)
n=oo || Azl

where {z,} is a sequence of unit vectors, approximating the supremum in (1.2).
It is easy to see that (1.4) implies both conditions in (1.3). Indeed, denoting

Ty, Azy,)
| Az, *

n

we have
(T — XMA) x,, Azyp) = (A — Ao) - ||A:13n||2 — 0.
For the second equality

1T — MoA|* = Tim {IT2nl® = [Aal® - | Az} -
On the other hand
(T = MoA) 2> = | Tan|® = 2[| Azal|” - Re AuXo + [Ao|” - [ Aza)*.

2. MAIN RESULTS

Consider the Volterra integration operator in L? (0; 1) defined by the formula

:]f(t)dt

Easy calculations show that

(VV*f) (z) = / tf ()dt + = / f(t)dt

(V*VF) ( /f dt—x/f dt—/tf()

Now we search
inf ||V — M| .
\eC

The equality Vf —¢f = Vf —cf implies ||V —¢l|| = ||V — cl| and finally,
¢ € R. Recall ([1], Problem 165) that W (V') is bounded by the curve
‘s 1—cost:|:it—smt’ 0<t<o2m
12 12
and [|V]| = 2, therefore 0 < ¢ < 5, m* (V) < 5.
The operator S = (V* — X)) (V — AI) is defined by the formula

(Sf)(x)=(1—A /f dt—x/f dt—/ ft)dt + N f (z). (2.1)
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As V*V — X (V* 4+ V) is a self-adjoint compact operator, its norm coincides with
the eigenvalue having the greatest absolute value. For the positive operator S =
V*V — A (V* + V) + AT one has ||S]| = max {eig (S)}, where {eig (S)} is the set
of eigenvalues of S.

Calculating the second derivative of (2.1), we get for the eigenfunctions of S
the second order differential equation

(1= X2) " (2) + f (x) = 0.

It is easy to see that the eigenfunction satisfies the condition f’(0) = 0, so

f(xr) =cos ———.
(z) —
Putting f (t) = cosat into (2.1), we get
1 1
(Sf) (x) = —=sina — — cosa + —; cos ax + A cos oz,
o o «

meaning that f is an eigenfunction corresponding to the eigenvalue
1 2
=3 + A%, (2.2)
if and only if « satisfies
cota + aX = 0. (2.3)

For each A > 0 equation (2.3) has one and only one solution « in each interval
(km+7/2; (k+1)7),k € Z", therefore from (2.2) the greatest eigenvalue of S
corresponds to the interval (7/2; 7). Then, we have

1 N cot? v 1
'LL = — g - .
o? o? a?sin? o

The smallest value of ||S|| corresponds to the greatest value of asinc«, which
occurs if « € (w/2; m) satisfies

tana + o = 0. (2.4)
From (2.3) and (2.4) we get A = 1/a?. So we arrive to the following result.

Proposition 2.1. The transcendental radius of the Volterra integration operator
is equal to \/1/a® 4+ 1/a*, where a € (1/2; 7) satisfies (2.4).

The approximate solution of the transcendental equation (2.4), given by Mat-
Lab is a0 = 2.028757838110434; A ~ 0.242962685095034 and

min [V — M| ~ 0.301993551443623.

Putting the function f (z) = 2 (MJFQﬁ)l/2 cos axr into (1.4) and (1.1), we get
the same values of A and of the minimal norm.
From the general theory of the Sturm—Liouville operator theory the following

result may be deduced.

Corollary 2.2. The sequence of function {cos agx},., , where {ax} are the pos-
itive Toots of the equation cot a+ aX = 0 form an orthogonal basis of L? (0; 1).
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Now we intend to show an application of the result above to a problem in
operator theory.

In [7] it is shown that the norm of inner derivation Dr (A) = AT — TA is
defined by the following formula

sup ||AT —TA| =2m(T).
All=1

In [2] is proved that for any operator A the self-commutator C' (A) = AA*—A*A
satisfies the following inequality

* * 2
[AA™ — AAl < || A]]” (2.5)
For some operators the inequality turns to be the equality.

Example 2.3. Let S be the operator of the simple unilateral shift. Then S*S —
SS5* is the operator of orthogonal projection on the first element of the basis,

shifted by S, so [|S*S — $5*|| = 1 and ||S|| = 1, hence ||S*S — $5*|| = |||
As C(A—XI)=C(A) for any A € C, inequality (2.5) may be sharpened
|AA* — A* Al < m? (A).

For the Volterra operator we have

(V*V = VV*) §) () —/f(t)dt—a:/f(t)dt—/tf (t)dt.

The self-commutator C' (V') is a two dimensional self-adjoint operator with unit
igenfuncti = V2 - —1 = —L -1
eligenfunctions e; + \/§ ((3 \/§) T ) , €9 \/W?? ((3 + \/§) T )

v3 —ﬁ} 50

6’ 6

3
c (V)| = % ~ 0.288675134 - - - |

corresponding to the eigenvalues {

Easily can be proved that the operator
1

(Bf) (z) = 21\/5<<3+\/§)$—1)/(<3—\/§)t—1)f(t)dt

0
has the same self-commutator - C' (V) = C' (B).
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