

Ann. Funct. Anal. 6 (2015), no. 2, 33–48 http://doi.org/10.15352/afa/06-2-4 ISSN: 2008-8752 (electronic) http://projecteuclid.org/afa

CYCLICITY FOR UNBOUNDED MULTIPLICATION OPERATORS IN L^p - AND C_0 -SPACES

SEBASTIAN ZAIGLER* AND DOMENICO P. L. CASTRIGIANO

Communicated by G. Androulakis

ABSTRACT. For every, possibly unbounded, multiplication operator in L^{p} -space, $p \in]0, \infty[$, on finite separable measure space we show that multicyclicity, multi-*-cyclicity, and multiplicity coincide. This result includes and generalizes Bram's much cited theorem from 1955 on bounded *-cyclic normal operators. It also includes as a core result cyclicity of the multiplication operator M_z by the complex variable z in $L^p(\mu)$ for every σ -finite Borel measure μ on \mathbb{C} . The concise proof is based in part on the result that the function $e^{-|z|^2}$ is a *-cyclic vector for M_z in $C_0(\mathbb{C})$ and further in $L^p(\mu)$. We characterize topologically those locally compact sets $X \subset \mathbb{C}$, for which M_z in $C_0(X)$ is cyclic.

1. INTRODUCTION

In 1955 Bram [4] proves his well-known and much cited theorem that a bounded *-cyclic normal operator is cyclic. It is also well-known that, as a consequence, a normal operator is cyclic if and only if it has multiplicity one or, equivalently, if it is simple. Only in 2009 Nagy [17] tackles the generalization of Bram's result to unbounded normal operators.

Due to the spectral theorem the question actually concerns multiplication operators in $L^2(\mu)$ for finite Borel measures on \mathbb{C} with possibly unbounded support. We extend the frame to general (unbounded) multiplication operators in L^p -spaces for $p \in]0, \infty[$ on finite separable measure spaces. We prove that multicyclicity, multi-*-cyclicity, and multiplicity coincide for those operators.

Date: Received: Jun 20, 2013; Revised: Feb. 19, 2014; Accepted: Apr. 21, 2014. * Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A16; Secondary 41A10, 47B15.

Key words and phrases. Bram's theorem, unbounded normal operator, multiplicity, cyclic vector, uniform approximation.

This result includes cyclicity of the multiplication operator M_z by z in $L^p(\mu)$ for any finite Borel measure μ on \mathbb{C} , which in turn is a main step in the proof of the above result.

Let us rapidly recall the case of bounded M_z in $L^2(\mu)$. Here $\operatorname{supp}(\mu)$ is compact. Then the set $\Pi(z, \overline{z})$ of polynomials in z and \overline{z} is dense in $L^2(\mu)$, since $\Pi(z, \overline{z})$ is dense in $C(\operatorname{supp}(\mu))$ by the theorem of Stone/Weierstraß. Therefore, if $\Pi(z, \overline{z})$ is contained in the closure of the polynomials $\Pi(z)$, the latter are dense in $L^2(\mu)$, i.e., $\overline{\Pi(z)} = L^2(\mu)$, which means that the constant $1_{\mathbb{C}}$ is a cyclic vector for M_z . Actually, still due to the boundedness of M_z , it suffices to show that the function \overline{z} is element of the closure of $\Pi(z)$. Bram [4] solves this approximation problem decomposing \mathbb{C} into the union of an increasing sequence of α -sets and a μ -null set. An α -set is a compact subset of \mathbb{C} such that every continuous function on it can be approximated uniformly by polynomials in z. By Lavrentev's theorem (see, e.g. [5, 11]) the α -sets are just the compact subsets of \mathbb{C} with empty interior and connected complement.

In the unbounded case this way has to be modified, mostly by two reasons. First, due to unboundedness, the support of μ is not compact and the polynomials in z and \bar{z} are not bounded on $\operatorname{supp}(\mu)$. Secondly, $\Pi(z, \bar{z})$ need not be dense in $L^2(\mu)$ (see e.g. Hamburger's example in Simon [23, example 1.3]). In [17] Nagy generalizes Bram's decomposition of \mathbb{C} for any (non-compact) $\operatorname{supp}(\mu)$. This is an important result. We have considerably simplified its proof. By this, [17] succeeds in showing that \bar{z} is in the closure of $\Pi(z)$ in $L^p(\sigma)$ for some finite Borel measure σ equivalent to μ . We proceed similarly to [17], but show at once by an induction argument that the whole of $\Pi(z, \bar{z})$ lies in the closure of $\Pi(z)$.

The ensuing tacit assumption by Nagy that $z \Pi(z) \subset L^p(\sigma)$ however, as we will explain below, definitely restricts the proof in [17] to the case of bounded M_z , thus missing the aim.

In the unbounded case, in the literature there seems even to exist no explicit proof for *-cyclicity of M_z in $L^2(\mu)$, and there are several futile attempts in the literature concerning the Hilbert space case. However, Agricola/Friedrich [2, sec. 3] show that the functions $p e^{-|x|^2}$, p polynomial on \mathbb{R}^d , are dense in $C_0(\mathbb{R}^d)$ with respect to uniform convergence. In particular this means that the function $e^{-|z|^2}$ is a *-cyclic vector for M_z in $C_0(\mathbb{C})$. As a ready consequence, $e^{-|z|^2}$ is *-cyclic for M_z in $L^p(\mu)$. We like to remark that we present in (4.3) a short classical proof of the density result of [2] (which is central in [2]) and that we apply successfully the same method for the proof of other results on cyclicity. Another proof for (4.3) can be found in [24]. Moreover, we add in (4) a direct proof of *-cyclicity of M_z in $L^2(\mu)$. It generalizes a proof in [1] for the self-adjoint case $\mu(\mathbb{C} \setminus \mathbb{R}) = 0$. We are indebted to the referee for having drawn our attention to [1].

Another important ingredient is the Rohlin decomposition of a measurable function which we apply to unbounded functions on finite separable measure spaces.

We get started on the multiplication operator M_z in $C_0(\mathbb{C})$ and extend also to M_z in $C_0(X)$ for locally compact $X \subset \mathbb{C}$. We find that M_z is *-cyclic and describe topologically those X, for which M_z is cyclic. Finally, it is worth mentioning that the results on (*)-cyclicity for the most part are obtained by polynomial approximation, thus contributing to this field. We shall give some examples.

2. Definitions and Notations

Two measurable spaces (Ω, \mathcal{A}) , (Ω', \mathcal{A}') are said to be *measurable space iso*morphic, if there is a bijection $\iota : \Omega \to \Omega'$ such that ι and ι^{-1} are measurable. A standard measurable space is a measurable space which is isomorphic with a Polish space provided with the Borel σ -algebra. A Borel measure is a measure on the σ -algebra of Borel sets of a topological space.

A measure space $(\Omega, \mathcal{A}, \mu)$ is said to be *separable* if there is countable subset $\mathcal{D} \subset \mathcal{A}$ such that for all $A \in \mathcal{A}, \epsilon > 0$ there is $\Delta \in \mathcal{D}$ with $\mu(A \triangle \Delta) < \epsilon$. For every measure space $(\Omega, \mathcal{A}, \mu)$ there is the equivalence relation $A \sim B \Leftrightarrow$ $\mu(A \bigtriangleup B) = 0$ on \mathcal{A} . Let the set of equivalence classes [A] be denoted by \mathcal{A}/\mathcal{N} with \mathcal{N} the ideal of null sets. The measure μ is constant on every equivalence class, and all set theoretical operations on \mathcal{A} as well set inclusion are carried over to \mathcal{A}/\mathcal{N} since they are compatible with the equivalence relation. So $(\mathcal{A}/\mathcal{N},\mu)$ together with this structure is called the associated *measure algebra*. Moreover, let $M(\mu)$ denote the function algebra of all classes $[\varphi]$ of measurable functions $\varphi: \Omega \to \mathbb{C}$ modulo μ -a.e. vanishing functions. — Given a further measure space $(\Omega', \mathcal{A}', \mu')$, a bijection $T : \mathcal{A}/\mathcal{N} \to \mathcal{A}'/\mathcal{N}'$ preserving the measure algebra structure is called a measure algebra isomorphism if $\mu' \circ T = \mu$. — Every such isomorphism T induces a function algebra isomorphism $\tau: M(\mu) \to M(\mu')$ determined by $\tau([1_{\Delta}]) = [1_{\Delta'}]$ with $\Delta' \in T([\Delta]) \forall \Delta \in \mathcal{A}$. It is multiplicative and preserves all p-metrics, $p \in [0, \infty]$. — A measure space isomorphism $\iota : (\Omega, \mathcal{A}, \mu) \to (\Omega', \mathcal{A}', \mu')$ is a measurable space isomorphism with $\mu' = \iota(\mu)$. It induces the measure algebra isomorphism $T([A]) := [\iota(A)]$ and the function algebra isomorphism $\tau([\varphi]) = [\varphi \circ \iota^{-1}]$. – In general we will omit the brackets $[\cdot]$.

Let $p \in]0, \infty[$ and let $(\Omega, \mathcal{A}, \mu)$ be a measure space. For a measurable function $\varphi : \Omega \to \mathbb{C}$ let M_{φ} denote the *multiplication operator* in $L^{p}(\mu)$ given by $M_{\varphi}f := \varphi f$ with domain $\mathcal{D}(M_{\varphi}) := \{f \in L^{p}(\mu) : \varphi f \in L^{p}(\mu)\}$. We will deal with separable L^{p} -spaces. Therefore it is no restriction to assume in the sequel that $(\Omega, \mathcal{A}, \mu)$ is finite and separable. It is well-known that M_{φ} is closed and, if p = 2, normal. Moreover, M_{φ} is bounded if and only if φ is μ -essentially bounded.

A set $Z \subset L^p(\mu)$ is called *cyclic* for M_{φ} if $p(\varphi)f \in L^p(\mu)$ for all polynomials $p \in \Pi(z), f \in Z$ and if

$$\Pi(M_{\varphi})Z := \{p(\varphi)f : p \in \Pi(z), f \in Z\}$$

is dense in $L^p(\mu)$. If there is no finite cyclic set the *multicyclicity* $\operatorname{mc}(M_{\varphi})$ is set ∞ . Otherwise it is defined as the smallest number of elements of a cyclic set. M_{φ} is called cyclic if $\operatorname{mc}(M_{\varphi}) = 1$. Similarly, a set $Z \subset L^p(\mu)$ is called *-cyclic for M_{φ} if $p(\varphi, \overline{\varphi})f \in L^p(\mu)$ for all polynomials $p \in \Pi(z, \overline{z}), f \in Z$ and if

$$\Pi(M_{\varphi}, M_{\overline{\varphi}})Z := \{ p(\varphi, \overline{\varphi})f : p \in \Pi(z, \overline{z}), f \in Z \}$$

is dense in $L^p(\mu)$. The multi-*-cyclicity $\operatorname{mc}^*(M_{\varphi})$ is defined analogously and M_{φ} is called *-cyclic if $\operatorname{mc}^*(M_{\varphi}) = 1$.

We define the multiplicity of M_{φ} on $L^{p}(\mu)$ by means of the *Rohlin decompo*sition (π, ν) of (φ, μ) . Let us briefly explain this decomposition. See also Seid [21, remark 3.4]. There is a measure algebra isomorphism T from $(\Omega, \mathcal{A}, \mu)$ onto $([0, 1] \times \mathbb{C}, \mathcal{B}, \nu)$ with \mathcal{B} the Borel sets and ν a finite measure. The latter satisfies

$$\nu = \lambda \otimes \mu_c + \sum_{n \in \mathbb{N}} \delta_{1/n} \otimes \mu_n,$$

where λ denotes the Lebesgue measure on [0, 1], $\delta_{1/n}$ is the point measure at 1/n, and μ_c , μ_n are Borel measures on \mathbb{C} with $\mu_{n+1} \ll \mu_n$ for $n \in \mathbb{N}$. Moreover, the function algebra isomorphism τ induced by T satisfies $\tau(\varphi) = \pi$, where $\pi(t, z) :=$ $z, (t, z) \in [0, 1] \times \mathbb{C}$. This implies that M_{φ} in $L^p(\mu)$ is isomorphic with M_{π} in $L^p(\nu)$ by $\tau M_{\varphi} \tau^{-1} f = M_{\pi} f \forall f \in L^p(\nu)$. By these properties the measures μ_n for $n \in \mathbb{N} \cup \{c\}$ are uniquely determined up to equivalence. Since the measures $\lambda \otimes \mu_c, \delta_1 \otimes \mu_1, \delta_{1/2} \otimes \mu_2, \ldots$ are mutually orthogonal, $L^p(\nu)$ and M_{π} are identified with the *p*-direct sums

$$L^p(\lambda \otimes \mu_c) \oplus \bigoplus_{n \in \mathbb{N}} L^p(\mu_n), \quad M_\pi \oplus \bigoplus_{n \in \mathbb{N}} M_z.$$

Then M_z in $L^p(\mu_n)$, $n \in \mathbb{N}$, is cyclic, whereas M_π on a subspace $\{1_S f : f \in L^p(\lambda \otimes \mu_c)\}$ with $S \in \mathcal{B}$ is cyclic only if $\lambda \otimes \mu_c(S) = 0$. Hence, in view of $\mu_{n+1} \ll \mu_n$ for $n \in \mathbb{N}$, the *multiplicity* of M_{φ} is defined as $mp(M_{\varphi}) := \sup\{n \in \mathbb{N} : \mu_n \neq 0\}$ if $\mu_c = 0$ and ∞ otherwise.

As it should, this definition of multiplicity is invariant under L^p -isomorphisms, which is due to the following known fact, see Seid [20]. Let $p \in]0, \infty[\backslash \{2\}, let$ $(\Omega, \mathcal{A}, \mu), (\Omega', \mathcal{A}', \mu')$ be two finite measure spaces, and suppose that $\iota : L^p(\mu) \to$ $L^p(\mu')$ is an isomorphism. Then ι equals the composition $\beta \circ \alpha$ of two isomorphisms $\alpha : L^p(\mu) \to L^p(|\iota(1_\Omega)|^p \mu')$ and $\beta : L^p(|\iota(1_\Omega)|^p \mu') \to L^p(\mu')$ of rather special types. Indeed, α comes from a measure algebra isomorphism. For β one simply has $\beta(g) = \iota(1_\Omega)g$.

As to the case p = 2 note that for $\mu_c \neq 0$ the normal operator M_{π} in $L^2(\lambda \otimes \mu_c)$ is Hilbert space isomorphic with the countably infinite orthogonal sum of copies of M_z in $L^2(\mu_c)$. Hence multiplicity $mp(M_{\varphi})$ coincides with the usual multiplicity for a normal operator. Finally note that if for the Rohlin decomposition $\mu_c = 0$ occurs, then the Rohlin decomposition is just the spectral decomposition of the normal operator M_{φ} in $L^2(\mu)$.

3. Main Results

Theorem 3.1. Let T be a multiplication operator in $L^p(\mu)$, $p \in]0, \infty[$, on a finite separable measure space. Then $mc(T) = mc^*(T) = mp(T)$ holds.

As already mentioned, using the spectral theorem, the classical theorem of Bram [4], by which any *-cyclic bounded normal operator is cyclic, is generalized by (3.1) to unbounded normal operators. By definition mp(T) = 1 holds if and only if T is isomorphic with M_z in $L^p(\mu)$ for some finite Borel measure on \mathbb{C} . Hence (3.1) includes also the result that M_z is cyclic. Recall that a normal operator T is said to be simple if its spectral measure is simple. So by (3.1), T is simple if and only if T is cyclic.

In case that (Ω, \mathcal{A}) is a standard measurable space, multiplicity $\operatorname{mp}(M_{\varphi})$ has the meaning one expects intuitively, i.e., it equals the maximal number in $\mathbb{N} \cup \{\infty\}$ of preimages of $z \in \mathbb{C}$ under some $\varphi' = \varphi \mu$ -a.e. See (5.4) for some details.

If for a cyclic set Z for M_{φ} the subspace $\Pi(M_{\varphi})Z$ is even a core of M_{φ} then Z is called *graph cyclic*. We have taken this expression from Szafraniec [26], which we consider appropriate in view of (4.8). In case that $1_{\mathbb{C}}$ is graph cyclic for M_z in $L^2(\mu)$ then the Borel measure μ on \mathbb{C} is called *ultradeterminate* by Fuglede [10]. One has

Proposition 3.2. Let $p \in]0, \infty[$. Let $(\Omega, \mathcal{A}, \mu)$ be a finite separable measure space and let $\varphi : \Omega \to \mathbb{C}$ be measurable. If Z is a cyclic set for M_{φ} in $L^{p}(\mu)$, then $Ze^{-|\varphi|}$ is graph cyclic for M_{φ} .

In particular (3.2) shows that every cyclic normal operator is even graph cyclic.

For the proof of (3.1) we had first to establish that M_z in $L^p(\mu)$ is cyclic for every finite Borel measure μ on \mathbb{C} . More precisely we have

Theorem 3.3. Let μ be a finite Borel measure on \mathbb{C} . Then there is a positive Borel measurable function ρ such that $\Pi(z)\rho$ is dense in $L^p(\mu')$ for all $p \in]0, \infty[$ if μ' is a finite Borel measure on \mathbb{C} equivalent to μ . Moreover h is cyclic for M_z in $L^p(\mu')$ if h is Borel measurable and satisfies $0 < |h| \leq C\rho$ for some constant C > 0.

An immediate consequence of (3.3) due to Nagy [17] concerns polynomial approximation. It generalizes the result in Conway [9, corollary V.14.22] for measures with compact support. Let μ be a σ -finite Borel measure on \mathbb{C} and let $f : \mathbb{C} \to \mathbb{C}$ be measurable. Then there is a sequence (p_n) of polynomials in z with $p_n \to f \mu$ -a.e. Indeed, without restriction μ is finite. Let $h := \inf\{\rho, \frac{1}{1+|f|}\}$. Then h is positive cyclic and fh is bounded. Therefore there is a sequence (p_n) satisfying $p_n h \to fh$ in $L^p(\mu)$, and the result follows for some subsequence of (p_n) .

Cyclicity of M_z in $L^2(\mu)$ has already been tackled by Béla Nagy in [17] adapting in parts the original proof of Joseph Bram [4] for bounded normal operators. See also Conway [9, theorem V.14.21] for a proof of Bram's theorem. The first step (i) and important result achieved in [17] is the decomposition of the complex plane into a null set and a countable union of increasing α -sets. Secondly (ii) \bar{z} is approximated by polynomials in $L^2(\sigma)$ for some finite Borel measure σ on \mathbb{C} equivalent to the original measure μ . The third step (iii) in [17] deals with the proof for the denseness in $L^2(\sigma)$ of the polynomials $\Pi(z)$. However the result obtained by Hilbert space methods is valid only for bounded M_z . Indeed, [17] starts the third step with the (unfounded) assumption that any function in the closure of $\Pi(z)$ is still square-integrable if multiplied by z. In other words, $\overline{\Pi(z)} \subset \mathcal{D}(M_z)$ is assumed. Proceeding on this assumption [17] shows $\overline{\Pi(z)} = L^2(\sigma)$ by a reducing subspace argument. Consequently $\mathcal{D}(M_z)$ is the whole of $L^2(\sigma)$ implying that M_z is bounded, whence Nagy [17] does not achieve its goal. In addition, in accomplishing the reducing space argument, [17] uses *-cyclicity of M_z relying on a reference, which proves to be erroneous.

Our first step (i) in proving cyclicity of M_z in $L^p(\mu)$ for $p \in]0, \infty[$ and every finite Borel measure μ on \mathbb{C} is the same as in [17]. We present a short proof (4.4) of the decomposition valid for a large class of Polish spaces including e.g. separable Banach spaces with real dimension ≥ 2 . In the second step (ii) we show by induction that even $\Pi(z, \bar{z})$ is contained in the closure of $\Pi(z)$, see (4.5). At this stage, in the third step (iii), we bring in *-cyclicity of M_z in $L^2(\mu)$ by (3.4) and thus avoid a reducing subspace argument, which anyway is not available in the case $p \neq 2$.

In the sequel we denote by $\Pi(f_1, \ldots, f_n)$ the set of complex polynomials in functions f_1, \ldots, f_n on some set with $f_i^0 := 1$. Let $d \in \mathbb{N}$ and $|x| := \sqrt{x_1^2 + \cdots + x_d^2}$ for $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$. Moreover, let x_i also denote the *i*-th coordinate function on \mathbb{R}^d . Let a > 0.

Proposition 3.4. Let $p \in]0, \infty[$ and let μ be a finite Borel measure on \mathbb{R}^d . Then $\Pi(x_1, \ldots, x_d) e^{-a|x|^2}$ is dense in $L^p(\mu)$. In particular, $\Pi(z, \overline{z}) e^{-a|z|^2}$ is dense in $L^p(\mu)$ for any finite Borel measure μ on \mathbb{C} .

Let h_n denote the *n*-th Hermite function in one real variable. Then (3.4) for $\mu := e^{-a|x|^2} \lambda^d$ with λ^d the Lebesgue measure on \mathbb{R}^d yields the completeness of the orthonormal system of Hermite functions $h_{n_1} \times \cdots \times h_{n_d}$, $n_1, \ldots, n_d \in \mathbb{N} \cup \{0\}$ in $L^2(\lambda^d)$.

As already mentioned, (3.4) is a corollary to the *-cyclicity of M_z in $C_0(\mathbb{C})$. The question we pose now is about (*)-cyclicity of M_z on $C_0(X)$ for $X \subset \mathbb{C}$.

Theorem 3.5. Let $X \subset \mathbb{C}$ be a locally compact subspace. Then M_z in $C_0(X)$ is *-cyclic by $e^{-a|z|^2}\eta$ with any positive $\eta \in C_0(X)$, and M_z is cyclic if and only if every compact K contained in X is an α -set.

In view of (3.5) we remark that a locally compact subspace of \mathbb{C} is σ -compact and locally closed. Hence, if $X \subset \mathbb{C}$ is locally compact and every compact $K \subset X$ has empty interior then X is nowhere dense. If $X \subset \mathbb{C}$ has empty interior and $\mathbb{C} \setminus K$ is connected for every compact $K \subset X$, then $\mathbb{C} \setminus X$ is dense and has no bounded components, and vice versa.

If X is compact then M_z in $C_0(X)$ is cyclic if and only if $1_{\mathbb{C}}$ is cyclic for M_z . This is due to $||ph - fh||_{\infty,X} \ge C||p - f||_{\infty,X}$ with $C := \inf_{z \in X} |h(z)| > 0$ for $f \in C(X), p \in \Pi(z)$, and h a cyclic vector for M_z . Hence in case of compact X one recovers Lavrentev's theorem on α -sets from (3.5).

As an example, (3.5) implies that M_z is cyclic by the function $e^{-a|z|^2}$ in $C_0(X)$, where X is the spiral $\{e^{(1+i)t} : t \in \mathbb{R}\}.$

In this context we mention the result by Lavrentev/Keldych [25] that for a closed subset X of \mathbb{C} every continuous function on X can be approximated uniformly by entire functions if and only if $\mathbb{C} \setminus X$ is dense, has no bounded components, and is locally connected at infinity.

4. Proofs

If necessary, in order to avoid ambiguities, we write \overline{M}^{μ} for the closure in $L^{p}(\mu)$ of the subset M. Similarly $||f||_{p\mu}$ denotes the norm of $f \in L^{p}(\mu)$. We start with two preliminary elementary results.

Lemma 4.1. Let $p \in [0, \infty[$. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Let $M \cup \{h\}$ be a set of measurable functions on Ω with $h \neq 0$ μ -a.e. Then Mh is dense in $L^p(\mu)$ if and only if M is dense in $L^p(|h|^p\mu)$.

Proof. Set $\nu := |h|^p \mu$. — Suppose $\overline{Mh}^{\mu} = L^p(\mu)$. Let $g \in L^p(\nu)$, $\epsilon > 0$. Then $gh \in L^p(\mu)$ and there is an $f \in M$ such that $\epsilon > ||fh - gh||_{p\mu} = ||f - g||_{p\nu}$. This proves $\overline{M}^{\nu} = L^p(\nu)$. — Now suppose $\overline{M}^{\nu} = L^p(\nu)$ and let $f \in L^p(\mu)$, $\epsilon > 0$. Then $f/h \in L^p(\nu)$ and there is $g \in M$ with $\epsilon > ||f/h - g||_{p\nu} = ||f - gh||_{p\mu}$. This proves $\overline{Mh}^{\mu} = L^p(\mu)$.

Lemma 4.2. Let $p \in [0, \infty[$. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Let $M \cup \{h\}$ be a set of measurable functions on Ω with h bounded and $h \neq 0$ μ -a.e. If M is dense in $L^p(\mu)$, then so is Mh.

Proof. Let C > 0 be a constant with |h| < C. Set $A_n := \{|\frac{1}{h}| \le n\}$. For $\Delta \in \mathcal{A}$ with $\mu(\Delta) < \infty$ and $\epsilon > 0$ there exists $f \in M$ satisfying $||1_{\Delta \cap A_n} \frac{1}{h} - f||_p < \epsilon/C$. Then $||1_{\Delta \cap A_n} - fh||_p < \epsilon$ holds, which implies $1_{\Delta \cap A_n} \in \overline{Mh}$ for all $n \in \mathbb{N}$. Therefore $1_{\Delta} \in \overline{Mh}$ for all $\Delta \in \mathcal{A}$ with $\mu(\Delta) < \infty$. The result follows.

As to the proof of (4.3) note that $\Pi(x_1, \ldots, x_d) e^{-a|x|^2}$ is not a subalgebra of $C_0(\mathbb{R}^d)$, whence the Stone-Weierstraß theorem cannot be applied directly. In [2] a combination of the theorems of Hahn/Banach, Riesz, and Bochner is used to overcome this problem.

Proposition 4.3. $\Pi(x_1, \ldots, x_d) e^{-a|x|^2}$ is dense in $C_0(\mathbb{R}^d)$. In particular, the set $\Pi(z, \bar{z}) e^{-a|z|^2}$ is dense in $C_0(\mathbb{C})$.

Proof. For convenience let a = 2. The subalgebra $\Pi(x_1, \ldots, x_d, e^{-|x|^2})e^{-2|x|^2}$ of $C_0(\mathbb{R}^d)$ satisfies the assumptions of the Stone/Weierstraß Theorem. Thus it is dense in $C_0(\mathbb{R}^d)$. Therefore it remains to show

$$\Pi(x_1,\ldots,x_d,\mathrm{e}^{-|x|^2})\mathrm{e}^{-2|x|^2}\subset\overline{\Pi(x_1,\ldots,x_d)\mathrm{exp}(-2|x|^2)},$$

which follows from

$$\Pi(x_1, \dots, x_d) e^{-n|x|^2} e^{-2|x|^2} \subset \overline{\Pi(x_1, \dots, x_d)} \exp(-2|x|^2)$$

for n = 0, 1, 2... by forming the linear span at the left hand side. Now this is shown by induction on n. For the step $n \to n+1$ let T_k denote the k-th Taylor polynomial of e^z and let $p \in \Pi(x_1, \ldots, x_d)$. Then

$$||p e^{-(n+1)|x|^2} e^{-2|x|^2} - pT_k(-|x|^2) e^{-n|x|^2} e^{-2|x|^2} ||_{\infty} \le C ||e^{-|x|^2} (e^{-|x|^2} - T_k(-|x|^2))||_{\infty}$$

with $C := ||p e^{-(n+1)|x|^2}||_{\infty} < \infty$. Estimating the remainder function according to Lagrange one gets $e^{-t}|e^{-t} - T_k(-t)| = e^{-t}|R_{k+1}(-t,0)| = e^{-t}\frac{e^{\tau}}{(k+1)!}t^{k+1} \leq \frac{e^{-t}}{(k+1)!}t^{k+1}$ with maximum at t = k+1, and Sterling's formula yields

$$\frac{\mathrm{e}^{-(k+1)}}{(k+1)!}(k+1)^{k+1} \le \frac{1}{\sqrt{2\pi(k+1)}} \to 0$$

for $k \to \infty$.

In other words, (4.3) means that $h_{n_1} \times \cdots \times h_{n_d}$, $n_1, \ldots, n_d \in \mathbb{N} \cup \{0\}$ is total in $C_0(\mathbb{R}^d)$. — In particular, for every continuous function f on \mathbb{C} vanishing at infinity there is a sequence (p_n) of polynomials in z and \overline{z} such that $p_n e^{-|z|^2} \to f$ uniformly on \mathbb{C} .

Proof of (3.4). Recall that $C_0(\mathbb{R}^d)$ is dense in $L^p(\mu)$ (see e.g. [8]) and note that $|| \cdot ||_p \leq \mu(\mathbb{R}^d)^{1/p} || \cdot ||_{\infty}$. Therefore the result follows from (4.3).

In some textbooks completeness of the orthonormal system (h_n) in $L^2(\lambda^1)$, λ^1 Lebesgue measure on \mathbb{R} , usually is shown using analytic function theory (e.g. [12, exercise 21.64]). Then the *d*-dimensional Hermite functions $(h_{n_1} \times \cdots \times h_{n_d})$ form a orthonormal basis in the *d*-fold Hilbert space tensor product $\bigotimes^d L^2(\lambda^1) \simeq L^2(\lambda^d)$. Taken this for granted one gets an alternative

Proof of (3.4) for p = 2 and d = 2. For convenience let a = 1. Let $f \in L^2(\mu)$ be orthogonal to $\Pi(x_1, x_2) e^{-|x|^2}$. One has to show f = 0.

For i = 1, 2 put $\chi_i(x, y) := 1_{]-\infty, x_i[}(y_i) = 1_{]y_i, \infty[}(x_i)$, where $x, y \in \mathbb{R}^2$. Then for every $p \in \Pi(x_i)$ the function $(x, y) \mapsto h(x, y) := \partial_i(p(x_i) e^{-|x|^2})\chi_i(x, y)f(y)$ on $\mathbb{R}^2 \times \mathbb{R}^2$ is integrable with respect to $\lambda^2 \otimes \mu$, since $|h(x, y)| \leq |q(x_i)| e^{-|x|^2} |f(y)|$ with some polynomial q and where $f \in L^1(\mu)$ as μ is finite. Hence Fubini's theorem applies to $\iint h d\lambda^2 \otimes \mu$ yielding

$$-\int p(y_i) e^{-y_i^2} f(y) d\mu(y) = \int \partial_i \left(p(x_i) e^{-x_i^2} \right) F_i(x_i) dx_i$$

for $F_i(x_i) := \int \chi_i(x, y) f(y) \, d\, \mu(y)$. By assumption the left hand side is zero. The right hand side becomes $\int q(t) e^{-\frac{1}{2}t^2} F_i(t) e^{-\frac{1}{2}t^2} \, dt$ with q(t) := p'(t) - 2tp(t). Note that $t \mapsto F_i(t) e^{-\frac{1}{2}t^2}$ is square-integrable as $|F_i(t)| \leq \sqrt{\mu(\mathbb{R}^2)} ||f||_2$. Moreover q is the Hermite polynomial H_{n+1} if $p = -H_n$, $n = 0, 1, \ldots$ This implies that the only L^2 -functions orthogonal to all $q e^{-\frac{1}{2}t^2}$ are the constant multiples of $e^{-\frac{1}{2}t^2}$. Consequently $F_i = 0, i = 1, 2$.

Next consider $\chi(x,y) := \prod_{i=1}^2 1_{]-\infty,x_i[}(y_i) = \prod_{i=1}^2 1_{]y_i,\infty[}(x_i)$ and, for every $p \in \Pi(x_1,x_2)$, the function $(x,y) \mapsto h(x,y) := \partial_1 \partial_2 (p(x) e^{-|x|^2}) \chi(x,y) f(y)$ on $\mathbb{R}^2 \times \mathbb{R}^2$. Reasoning analogously one finds for $F(x) := \int \chi(x,y) f(y) d\mu(y)$

$$\int p(y) e^{-|y|^2} f(y) d\mu(y) = \int \partial_1 \partial_2 \left(p(x) e^{-|x|^2} \right) F(x) d\lambda^2(x)$$

and further $F(x) = g_1(x_1) + g_2(x_2)$ with measurable $g_i : \mathbb{R} \to \mathbb{C}$. Now $0 = F_i(x_i) = \lim_{x_j \to \infty} F(x) = g_i(x_i) + \lim_{x_j \to \infty} g_j(x_j)$ with $i \neq j$. Therefore g_i are constant and consequently F = 0.

Finally by 2-dimensional Lebesgue–Stieltjes integration the result

$$\int |f(y)|^2 \,\mathrm{d}\,\mu(y) = \int \overline{f(y)} \,\mathrm{d}\,F(y) = 0$$

follows.

So the foregoing proof for p = 2 and d = 2 yields a direct proof of the fact that $e^{-a|z|^2}$, a > 0 is a *-cyclic vector for M_z in $L^2(\mu)$ for every finite Borel measure μ on \mathbb{C} . It generalizes the proof in [1, sec. 83] of the case d = 1 which concerns the self-adjoint case $\mu(\mathbb{C} \setminus \mathbb{R}) = 0$.

Lemma 4.4. Let X be a Polish space where every pair of distinct points are joined by infinitely many non-intersecting paths. Let μ be a σ -finite Borel measure on X. Then there is an increasing sequence of compact sets F_n with empty interior and connected complement such that $\mu(X \setminus \bigcup_n F_n) = 0$.

Proof. Without restriction let μ be finite. All subspaces of X are separable. Choose a countable dense set $\{a_1, a_2, \ldots\}$ in the complement of the set of mass points. Since the latter is countable, it does not contain an inner point by Baire's theorem, whence $\{a_1, a_2, \ldots\}$ is dense in X. Since μ is finite and since there are infinitely many non-intersecting paths joining a_n to a_{n+1} , for every $m \in \mathbb{N}$ there are connected measurable sets A_n with $a_n, a_{n+1} \in A_n$ such that $B_m := \bigcup_n A_n$ is dense connected with $\mu(B_m) < \frac{1}{2m}$. By Ulam's theorem (see, e.g., [7, theorem 2.67]) μ is tight and in particular outer regular. Therefore there is an open V_m with $B_m \subset V_m$ and $\mu(V_m) < \frac{1}{m}$ and there is an increasing sequence (C_n) of compact sets with $\mu(X \setminus \bigcup_n C_n) = 0$.

Now set $U_n := \bigcup_{m \ge n} V_{2^m}$ and $F_n := C_n \setminus U_n$. Clearly, (F_n) is increasing, $\mu(\complement F_n) \to 0$, and F_n is compact. Its interior is empty since $B_{2^n} \subset U_n \subset \complement F_n$ is dense. $\complement F_n$ is connected. Indeed, let U, V be open sets covering $\complement F_n$ with $U \neq \emptyset$ and $U \cap V \cap \complement F_n = \emptyset$. Since B_{2^n} is dense, $U \cap V = \emptyset$ follows, and since B_{2^n} is connected, $V = \emptyset$ follows. \Box

Note that separable Banach spaces with real dimension ≥ 2 satisfy the assumptions on X in (4.4). For $X = \mathbb{C}$ the proof can be further shortened taking in place of all B_m a single dense null set B consisting of countably many straight lines through one common point, and of course, Ulam's theorem is not needed. The first (more cumbrous) proof for $X = \mathbb{C}$ and any finite Borel measure μ is given in Nagy [17]. If $\operatorname{supp}(\mu)$ is compact there is the original proof by Bram [4], a similar one in Conway [9], and a simpler one in Shields [22].

Lemma 4.5. Let μ be a finite Borel measure on \mathbb{C} . Then there is a positive Borel measurable function ρ such that $\Pi(z) \subset L^p(\nu)$ and $\Pi(z, \overline{z}) \subset \overline{\Pi(z)}^{\nu}$ for all $p \in]0, \infty[$ and all $\nu := |h|^p \mu'$ with μ' a finite Borel measure on \mathbb{C} equivalent to μ and h Borel measurable satisfying $0 < |h| \le \rho$.

Proof. Set $k : \mathbb{C} \to \mathbb{C}$, $k(z) := \bar{z}$. Let (F_n) be an increasing sequence of α sets of \mathbb{C} satisfying $\mu(N) = 0$ for $N := \mathbb{C} \setminus \bigcup_n F_n$, see (4.4). For every $n \in \mathbb{N}$ there is $q_n \in \Pi(z)$ satisfying $||1_{F_n}(k - q_n)||_{\infty} < e^{-\delta_n}$ with $\delta_n := n||1_{F_n}k||_{\infty}$. Set $M_n := \max\{1, ||q_1e^{-|z|}||_{\infty}, \ldots, ||q_ne^{-|z|}||_{\infty}\}$ and let ρ be the positive function on

 \mathbb{C} given by $\rho|N := 1$ and $\rho|(F_n \setminus F_{n-1}) := e^{-2|z|}/M_n$ for $n \in \mathbb{N}$ with $F_0 := \emptyset$.

Since $q\rho$ for $q \in \Pi(z)$ is bounded, $\Pi(z) \subset L^p(\nu)$ holds. For the proof of $\Pi(z,\bar{z}) \subset \overline{\Pi(z)}^{\nu}$ obviously it suffices to show $\Pi(z)\bar{z}^m \subset \overline{\Pi(z)}^{\nu}$ for m = 0, 1, 2, ...This occurs by induction on $m \in \mathbb{N} \cup \{0\}$. Let $j \in \mathbb{N} \cup \{0\}$ and write $\bar{z}^{m+1} = \bar{z}^m k$. Then $||z^j \bar{z}^m k - z^j \bar{z}^m q_n||_{p\nu} \leq \nu(\mathbb{C})^{1/p} \delta_n^{(j+m)} e^{-\delta_n} + ||\mathbf{1}_{\mathbb{C}F_n}(z^j \bar{z}^m k - z^j \bar{z}^m q_n)||_{p\nu}$. The first summand vanishes for $n \to \infty$, the latter is less or equal to $||\mathbf{1}_{\mathbb{C}F_n} z^j \bar{z}^m k||_{p\nu} + ||\mathbf{1}_{\mathbb{C}F_n} z^j \bar{z}^m q_n \rho||_{p\mu'}$, up to the constant factor $\sqrt[p]{2}/2$ in the case p < 1. Now $|\mathbf{1}_{\mathbb{C}F_n} z^j \bar{z}^m k| \leq |z^{(j+m+1)}|$ and $||\mathbf{1}_{\mathbb{C}F_n} z^j \bar{z}^m q_n \rho| \leq |z^{(j+m)}|e^{-|z|}$, whence both summands vanish for $n \to \infty$ by dominated convergence. Since $z^j q_n \bar{z}^m \in \overline{\Pi(z)}^{\nu}$ by assumption, we infer $z^j \bar{z}^m k \in \overline{\Pi(z,\bar{z})}^{\nu}$ for every j, thus concluding the proof. \Box

Proof of (3.3). By (4.5) there exists a Borel measurable function ρ with $0 < \rho \leq e^{-|z|^2}$ such that $\Pi(z) \subset L^p(\nu)$ and $\Pi(z, \bar{z}) \subset \overline{\Pi(z)}^{\nu}$ for all $p \in]0, \infty[$ if $\nu := \rho^p \mu'$. By (3.4) and (4.2) we have $\overline{\Pi(z, \bar{z})}\rho^{\mu'} = L^p(\mu')$, whence $\overline{\Pi(z, \bar{z})}^{\nu} = L^p(\nu)$ by (4.1). Therefore $\overline{\Pi(z)}^{\nu} = L^p(\nu)$ and hence $\overline{\Pi(z)}\rho^{\mu'} = L^p(\mu')$ by (4.1). The last assertion follows from (4.2) for $M = \Pi(z)$.

The decomposition (π, ν) of (φ, μ) can be derived from Rohlin's disintegration theorem (see Rohlin [19]), and can be found in Seid [21, remark 3.4]. There φ is a bounded Borel function on the finite measure space $([0, 1], \mathcal{B}, \mu)$ with \mathcal{B} the Borel sets. By the following two lemmata we generalize this result in that φ is a measurable not necessarily bounded function on a finite separable measure space $(\Omega, \mathcal{A}, \mu)$ and the multiplication operator M_{φ} is isomorphic with M_{π} by means of a measure algebra isomorphism.

Lemma 4.6. Let $(\Omega, \mathcal{A}, \mu)$ be a finite separable measure space. Then there is a measurable function $a : \Omega \to [0, 1]$ such that $[B] \mapsto [a^{-1}(B)], B \in \mathcal{B}$ is a measure algebra isomorphism from $(\mathcal{B}, a(\mu))$ onto (\mathcal{A}, μ) and that for every measurable $\varphi : \Omega \to \mathbb{C}$ there is an $a(\mu)$ -almost unique measurable $\psi : [0, 1] \to \mathbb{C}$ with $\varphi = \psi \circ a \ \mu$ -a.e.

Proof. (i) Let (A_n) be a sequence in \mathcal{A} such that for all $\Delta \in \mathcal{A}$, $\epsilon > 0$ there is $n \in \mathbb{N}$ with $\mu(\Delta \Delta A_n) < \epsilon$. Let $\Delta \in \mathcal{A}$. Choose a subsequence (n_k) such that $\mu(\Delta \Delta A_{n_k}) < 2^{-2k}$. Set $\tilde{\Delta} := \bigcup_l \bigcap_{k \ge l} A_{n_k}$. Then $\mu(\Delta \Delta \tilde{\Delta}) = 0$ holds. Indeed, for $\Delta_l := \bigcap_{k \ge l} A_{n_k}$ one has $\Delta \Delta \Delta_l = \bigcup_{k \ge l} (\Delta \setminus A_{n_k}) \cup (\Delta_l \setminus \Delta) \subset \bigcup_{k \ge l} (\Delta \Delta A_{n_k})$, whence $\mu(\Delta \Delta \Delta_l) \le \sum_{k \ge l} 2^{-2k} < 2^{-l}$. Therefore $\mu(\Delta \setminus \Delta_l) < 2^{-l} \forall l$ and hence $\mu(\Delta \setminus \tilde{\Delta}) = 0$. Since $\tilde{\Delta} \setminus \Delta = \bigcup_{l \ge m} (\Delta_l \setminus \Delta) \forall m$ one has also $\mu(\tilde{\Delta} \setminus \Delta) < \sum_{l \ge m} 2^{-l} \forall m$ and hence $\mu(\tilde{\Delta} \setminus \Delta) = 0$.

The set $A_0 := \bigcup_l \bigcap_{n \ge l} A_n$ is a μ -null set. Indeed, obviously $\tilde{\Delta} \supset A_0$ for all $\Delta \in \mathcal{A}$. In particular $\tilde{\Delta} \supset A_0$ for $\Delta := \Omega \setminus A_0$, whence $0 = \mu(\Delta \bigtriangleup \tilde{\Delta}) \ge \mu(A_0)$. Since $\mu(A_0) = 0$ one may replace the original sequence (A_n) by $(A_n \setminus A_0)$ achieving $A_0 = \emptyset$.

The function $a: \Omega \to [0,1[, a] := \sum_{n=1}^{\infty} 2^{-n} \mathbf{1}_{A_n}$ is measurable. As $A_0 = \emptyset$ every $a(\omega) \in [0,1[$ is represented as a binary number without the period $\{1\}$. For $x \in [0,1[$ let $d_n(x) \in \{0,1\}$ denote the n'th figure of its dual representation. Then $d_n \circ a = \mathbf{1}_{A_n}$ holds. Moreover, d_n is measurable, since $d_n^{-1}(\{1\}) = \bigcup\{[x, x+2^{-n}[:$ $x = \eta_1 2^{-1} + \dots + \eta_{n-1} 2^{-n+1} + 2^{-n}$ with $\eta_i = 0, 1\} \in \mathcal{B}$.

For every subsequence (n_k) consider the sets $A := \bigcup_l \bigcap_{k \ge l} A_{n_k}$ and $B := \bigcup_l \bigcap_{k \ge l} d_{n_k}^{-1}(\{1\})$. Then $a^{-1}(B) = \bigcup_l \bigcap_{k \ge l} a^{-1}(d_{n_k}^{-1}(\{1\})) = \bigcup_l \bigcap_{k \ge l} A_{n_k} = A$. Therefore for every $\Delta \in \mathcal{A}$ there is $B \in \mathcal{B}$ such that $[\Delta] = [\tilde{\Delta}] = [a^{-1}(B)]$. This means that $T : \mathcal{B}/\mathcal{N}_{a(\mu)} \to \mathcal{A}/\mathcal{N}_{\mu}, T([B]) := [a^{-1}(B)]$ is surjective. But note first that, by $\mu(a^{-1}(B)) = a(\mu)(B), T$ is well-defined injective with $\mu \circ T = a(\mu)$. Obviously T preserves the measure algebra structure.

(ii) The linear map $L^{\infty}_{a(\mu)} \to L^{\infty}_{\mu}, \ \psi \mapsto \psi \circ a$ is isometric as $a(\mu)(\{|\psi| \geq c\}) = \mu(a^{-1}(\{|\psi| \geq c\})) = \mu(\{|\psi \circ a| \geq c\})$. Its range contains the total set $\{1_{\Delta} : \Delta \in \mathcal{A}\}$, since $1_{\Delta} = 1_{\tilde{\Delta}} = 1_{a^{-1}(B)} = 1_{B_{\Delta}} \circ a$. Hence it is surjective, too. This means that for every bounded measurable $\varphi : \Omega \to \mathbb{C}$ there is an $a(\mu)$ -almost unique measurable $\psi : [0, 1] \to \mathbb{C}$ with $\varphi = \psi \circ a \mu$ -a.e.

This result is easily generalized to unbounded measurable $\varphi : \Omega \to \mathbb{C}$. Let $\Delta_n := \{n-1 \leq |\varphi| < n\} \in \mathcal{A}$ and let $\psi_n : [0,1[\to \mathbb{C} \text{ satisfy } \varphi_{1_{\Delta_n}} = \psi_n \circ a \ \mu\text{-a.e.}$. Then $\varphi = \sum_n \varphi_{1_{\Delta_n}} = \sum_n (\psi_n \circ a) = (\sum_n \psi_n) \circ a$ holds on the complement of some μ -null set Γ . Let $M := \{x \in [0,1[:\sum_n \psi_n(x) \text{ not convergent}\}$. Then M is measurable and $a^{-1}(M) \subset \Gamma$. Therefore $\varphi = \psi \circ a \ \mu\text{-a.e.}$ with $\psi := \sum_n \psi_n \mathbf{1}_{[0,1[\setminus M]}$. Moreover, ψ is $a(\mu)$ -almost unique as every ψ_n is so.

Let (Ω, \mathcal{A}) be an uncountable standard measurable space. Then, by the wellknown Isomorphism Theorem [18, theorem I. 2.12], there is a measurable space isomorphism *a* onto ([0, 1], \mathcal{B}). Hence $a : (\Omega, \mathcal{A}, \mu) \to ([0, 1], \mathcal{B}, a(\mu))$ is even a measure space isomorphisms.

Lemma 4.7. Let $(\Omega, \mathcal{A}, \mu)$ be a finite separable measure space and let $\varphi : \Omega \to \mathbb{C}$ be measurable. Let $k : \mathbb{C} \to \mathbb{D}$, $k(z) := \frac{z}{1+|z|}$, and let κ denote its inverse. Let $\gamma : [0,1] \times \mathbb{D} \to [0,1] \times \mathbb{C}$, $\gamma(t,z) := (t, \kappa(z))$. Then $k \circ \varphi$ is bounded and, if (π, ν) is a Rohlin decomposition of $(k \circ \varphi, \mu)$, then $(\pi, \gamma(\nu))$ is a Rohlin decomposition of (φ, μ) .

Proof. Let $\tau : M(\mu) \to M(\nu)$ be the function algebra isomorphism accomplishing the decomposition (π, ν) of $(k \circ \varphi, \mu)$. Then $\tau(k \circ \varphi) = \pi$ and hence $\tau(\varphi) = \kappa \circ \pi$. Note that $\operatorname{supp}(\pi(\nu)) \subset \mathbb{D}$ as $\pi(\nu) = (k \circ \varphi)(\mu)$, whence $\nu([0, 1] \times \mathbb{CD}) = 0$.

Let $\nu' := \gamma(\nu) = \lambda \otimes \mu'_c + \sum_{n \neq c} \delta_{1/n} \otimes \mu'_n$ with $\mu'_n := \kappa(\mu_n) \forall n$. Then γ is a measure space isomorphism from $([0,1] \times \mathbb{C}, \mathcal{B}, \nu)$ onto $([0,1] \times \mathbb{C}, \mathcal{B}, \nu')$. Let $\tau_{\gamma} : M(\nu) \to M(\nu'), f \mapsto f \circ \gamma^{-1}$ be the induced function algebra isomorphism.

Then the function algebra isomorphism $\tau_{\gamma} \circ \tau : M(\mu) \to M(\nu')$ satisfies $(\tau_{\gamma} \circ \tau)(\varphi)(t,z) = \tau(\varphi)(\gamma^{-1}(t,z)) = \tau(\varphi)(t,k(z)) = (\kappa \circ \pi)(t,k(z)) = \kappa(k(z)) = z$. Therefore $(\tau_{\gamma} \circ \tau)(\varphi) = \pi$ thus accomplishing the proof.

Proof of (3.1). By definition of multicyclicity, multi-*-cyclicity, and multiplicity it suffices to show $mc(M_{\pi}) = mc^*(M_{\pi}) = mp(M_{\pi})$ for a Rohlin decomposition (π, ν) . Plainly $mc^*(T) \leq mc(T)$.

Consider first the case $\mu_c \neq 0$. Then $\operatorname{mp}(M_{\pi}) = \infty$ holds by definition. In order to show $\operatorname{mc}^*(M_{\pi}) = \infty$, it suffices to treat the case $\nu = \lambda \otimes \mu_c$, since in general $L^p(\nu)$ is the direct sum of the subspaces $L^p(\lambda \otimes \mu_c)$ and $\bigoplus_n L^p(\delta_{1/n} \otimes \mu_n)$, which are invariant under M_{π} and $M_{\overline{\pi}}$. Let us assume that there is a finite *-cyclic set $\{f_1, \ldots, f_d\}$ for M_{π} with $d \in \mathbb{N}$. We consider $\chi_n \mathbb{1}_{\mathbb{C}} \in L^p(\nu)$ with $\chi_n := \mathbb{1}_{]1/(n+1),1/n]}$. Then for $n \in \mathbb{N}$ and $\delta = 1, \ldots, d$ there is a sequence $(p_k^{n\delta})_k$ in $\Pi(z, \bar{z})$ such that $q_k^{n\delta}(z) := p_k^{n\delta}(z, \bar{z})$ satisfy $\sum_{\delta=1}^d q_k^{n\delta} f_{\delta} \to \chi_n \mathbb{1}_{\mathbb{C}}$ for $k \to \infty$ in $L^p(\nu)$. Set $f_{\delta z} := f_{\delta}(\cdot, z)$. By Tonelli's theorem there is a subsequence $(k_l)_l$, without restriction $(k)_k$ itself, with $\sum_{\delta=1}^d q_k^{n\delta}(z) f_{\delta z} \to \chi_n$ for $k \to \infty$ in $L^p(\lambda)$ for μ_c -almost all $z \in \mathbb{C}$. We consider this convergence for $n = 1, \ldots, d$. Since χ_1, \ldots, χ_d are linear independent, it follows that f_{1z}, \ldots, f_{dz} are so for μ_c -almost all $z \in \mathbb{C}$. Consequently $q_k^{n\delta}(z)$ for $k \to \infty$ converge to the coordinates $\alpha_{\delta n}(z)$ of χ_n with respect to $(f_{\delta z})_{\delta}$. Hence one gets $f_{\delta z} = \sum_{n=1}^d \beta_{n\delta}(z)\chi_n$, $\delta = 1, \ldots, d$ with coordinates $\beta_{n\delta}(z)$. — Repeating these considerations for $\chi_{d+1}, \ldots, \chi_{2d}$ in place of χ_1, \ldots, χ_d we obtain $f_{\delta z} = \sum_{n=1}^d \beta'_{n\delta}(z)\chi_{d+n}$, $\delta = 1, \ldots, d$. Since $\chi_1, \ldots, \chi_{2d}$ are linear independent, this implies for μ_c -almost all $z \in \mathbb{C}$ that $f_{\delta}(t, z) = 0$ for λ -almost all $t \in [0, 1]$. Hence $\int |f_{\delta}|^p d \lambda \otimes \mu_c = 0$ by Tonelli's theorem. This means $f_{\delta} = 0$ for $\delta = 1, \ldots, d$, which is not possible.

Now let $\mu_c = 0$ and set $\chi_n := 1_{\{1/n\}}, n \in \mathbb{N}$. We consider first the case $\operatorname{mp}(M_{\pi}) = \infty$. Then $\mu_n \neq 0 \ \forall \ n \in \mathbb{N}$. Assuming the existence of a *-cyclic set of d elements, as in the previous case $f_{\delta z} = \sum_{n=1}^d \beta_{n\delta}(z)\chi_n = \sum_{n=1}^d \beta'_{n\delta}(z)\chi_{d+n}, \delta = 1, \ldots, n$ follows. This implies for μ_c -almost all $z \in \mathbb{C}$ that $f_{\delta}(t, z) = 0$ for all $1/t \in \mathbb{N}$. This means $f_{\delta} = 0$ for all $\delta = 1, \ldots, d$, which is not possible. — We turn to the last case $N := \operatorname{mp}(M_{\pi}) \in \mathbb{N}$. Then $\mu_n \neq 0$ for $n = 1, \ldots, N$ und $\mu_n = 0$ else. Since M_{π} is cyclic in $L^p(\delta_{1/n} \otimes \mu_n)$ according to (3.3), $\operatorname{mc}(M_{\pi}) \leq N$ follows. Let us assume now that there is a *-cyclic set $\{f_1, \ldots, f_d\}$ for M_{π} with d < N. By considerations as in the case $\mu_c \neq 0$ we get $f_{\delta z} = \sum_{n=1}^d \beta_{n\delta}(z)\chi_n = \sum_{n=2}^d \beta'_{n\delta}(z)\chi_n + \beta'_{m\delta}\chi_m$ with $m \notin \{1, \ldots, d\}$. Since all χ 's are linear independent this implies $\beta_{1\delta}(z) = 0$ for μ_c -almost all $z \in \mathbb{C}$. Analogously $\beta_{n\delta}(z) = 0$ for μ_c -almost all $z \in \mathbb{C}$. This means $f_{\delta} = 0$ for every δ , which is not possible. \Box

The next lemma is not new but it puts together the equivalences for convenience.

Lemma 4.8. Let $p \in]0, \infty[$. Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space and let $Z \cup \{\varphi\}$ be a set of measurable functions. Then (a) – (e) are equivalent.

(a) Z is graph cyclic for M_{φ} in $L^{p}(\mu)$ (b) $\Pi(M_{\varphi})Z$ is a core for M_{φ} in $L^{p}(\mu)$ (c) $\{(f, M_{\varphi}f) : f \in \Pi(M_{\varphi})Z\}$ is dense in $\{(f, M_{\varphi}f) : f \in \mathcal{D}(M_{\varphi})\}$ (d) $\Pi(M_{\varphi})Z \sqrt[p]{1+|\varphi|^{p}}$ is dense in $L^{p}(\mu)$ (e) $\Pi(M_{\varphi})Z$ is dense in $L^{p}((1+|\varphi|^{p})\mu)$

Proof. The equivalences of (a) and (b) and (c) hold by definition, the equivalence of (d) and (e) holds by (4.1). — As to (c) \Rightarrow (d) let $g \in L^p(\mu)$. Then $g' := g/\sqrt[p]{1+|\varphi|^p} \in \mathcal{D}(M_{\varphi})$ and hence for $\epsilon > 0$ there is $f \in \Pi(M_{\varphi})Z$ satisfying $||(f, M_{\varphi}f) - (g', M_{\varphi}g')||_p < \epsilon$, which means $\epsilon^p > \int (|f - g'|^p + |\varphi f - \varphi g'|^p) d\mu = \int |\sqrt[p]{1+|\varphi|^p} f - g|^p d\mu$ proving (d). — Finally assume (d) and let $f \in \mathcal{D}(M_{\varphi})$. Then $f' := \sqrt[p]{1+|\varphi|^p} f \in L^p(\mu)$ and for $\epsilon > 0$ there is $g \in \Pi(M_{\varphi})Z$ satisfying

 $||f' - \sqrt[p]{1 + |\varphi|^p} g||_p < \epsilon, \text{ which means } ||(f, M_{\varphi} f) - (g, M_{\varphi} g)||_p < \epsilon, \text{ thus proving } (c).$

Proof of (3.2). Since $\Pi(M_{\varphi})Z$ is dense in $L^{p}(\mu)$, by (4.2), we conclude that $\Pi(M_{\varphi})Ze^{-|\varphi|}\sqrt[p]{1+|\varphi|^{p}}$ is dense in $L^{p}(\mu)$. The result follows from (4.8).

Proof of (3.5). Let a = 1 for convenience. — (i) Since X is locally compact there are compact sets $F_n \subset X$ with F_n contained in the interior of F_{n+1} , and functions $\eta_n \in C_c(X)$ satisfying $\eta_n | F_n = 1$, $\eta_n | (X \setminus F_{n+1}) = 0$, and $0 \le \eta_n \le 1_X$. Let $\alpha_n > 0$ with $\sum_n \alpha_n < \infty$. Then $\eta := \sum_n \alpha_n \eta_n \in C_0(X)$ and $\eta > 0$.

(ii) Let $f \in C_c(X)$. Extend f continuously, first onto the closure X by 0, and subsequently onto \mathbb{C} by the Tietze–Urysohn extension theorem. Finally, multiplying the resulting function by a $j \in C_c(\mathbb{C})$ with $j| \operatorname{supp}(f) = 1$ one achieves an extension of f with compact support. — Now let $g \in C_c(\mathbb{C})$ extend $f/\eta \in C_c(X)$ with a positive $\eta \in C_0(X)$, see (i). Let $\epsilon > 0$. By (4.3) there is $p \in \Pi(z, \bar{z})$ with $||g - p e^{-|z|^2}||_{\infty} < \epsilon/||\eta||_{\infty,X}$. This implies $||f - p e^{-|z|^2}\eta||_{\infty,X} < \epsilon$. Thus $e^{-|z|^2}\eta$ is a *-cyclic vector.

(iii) Let $h \in C_0(X)$ be a cyclic vector. Since $C_0(X)$ vanishes nowhere, so does h. Let $K \subset X$ be compact. Let $\varphi \in C(K)$. By the Tietze–Urysohn extension theorem exists a bounded continuous ϕ on X with $\phi|K = \varphi$. Then $\phi h \in C_0(X)$. Set $c := \sup_{z \in K} |\frac{1}{h(z)}|$ and let $\epsilon > 0$. Then there is $p \in \Pi(z)$ satisfying $||\phi h - ph||_{\infty} < \epsilon/c$. This implies $||\varphi - p||_{\infty,K} < \epsilon$. Thus K is an α -set by definition.

(iv) Now let every compact $K \subset X$ be an α -set. Set $k(z) := \bar{z}$. There are $q_n \in \Pi(z)$ satisfying $||1_{F_n}(k-q_n)||_{\infty} < \frac{1}{n}$. Then set $M_n := \max\{1, ||1_{F_{n+1}}k||_{\infty}, ||1_{F_{n+1}}q_1||_{\infty}, \ldots, ||1_{F_{n+1}}q_n||_{\infty}\}$ and $\alpha_n := 2^{-n}/M_n$ in (i). For $j \ge n$ one has $||\alpha_j\eta_j(k-q_n)||_{\infty,X} \le 2 \cdot 2^{-j}$, whence $||1_{\mathbb{C}F_n}\eta(k-q_n)||_{\infty,X} \to 0$. It follows $||\eta(k-q_n)||_{\infty,X} \to 0$. The set $M_n := e^{-|z|^2} \eta$ is a cyclic vector. By (ii), $A := \Pi(z, \bar{z})h$ is dense in $C_0(X)$. We conclude the proof showing $A \subset \overline{\Pi(z)h}$ by the method used in (4.3). Let $q \in \Pi(z)$. Induction occurs on $m = 0, 1, 2 \ldots$ Then $||q \bar{z}^{m+1}h - q q_n \bar{z}^m h||_{\infty,X} \le C ||\eta(k-q_n)||_{\infty,X}$ with $C := ||q \bar{z}^m e^{-|z|^2}||_{\infty}$ vanishes for $n \to \infty$.

5. Further results

Let $p \in]0, \infty[$. We know by (3.4), (3.3) that, for every finite Borel measure μ , M_z in $L^p(\mu)$ is *-cyclic by the continuous vector $e^{-a|z|^2}$ and that M_z is cyclic. The question is whether there are continuous cyclic vectors.

Example 5.1. Let $\mu := 1_{\mathbb{D}}\lambda$ with λ the Lebesgue measure on \mathbb{C} and \mathbb{D} the open unit disc. Let h be a cyclic vector for M_z in $L^2(\mu)$. Then $\{h = 0\}$ is a μ -null set containing all continuity points of h.

Proof. $\{h = 0\}$ is a μ -null set, since $L^2(\mu) = \overline{\Pi(z)h} \subset \{f \in L^2(\mu) : f = 1_{\{h \neq 0\}}f\}$. — Let h be continuous at $x \in \mathbb{D}$. Assume $h(x) \neq 0$. Then there are an open disc D with center x and $\delta > 0$ such that $\delta 1_D \leq |h|$. Hence, by (4.2), $\Pi(z)1_D$ is dense in $L^2(1_D\lambda)$. This contradicts e.g. 3.22. (c) in [6]. In particular, there is no cyclic vector for M_z in $L^2(1_{\mathbb{D}}\lambda)$ that is continuous on \mathbb{D} , thus answering a question about continuity of cyclic vectors posed by Shields [22]. If, however, $\overline{z} \in \overline{\Pi(z)}$ holds then we have

Proposition 5.2. Let $p \in]0, \infty[$. Let μ be a finite Borel measure on \mathbb{C} such that $\Pi(z) \subset L^p(\mu)$ and $\overline{z} \in \overline{\Pi(z)}$, then $e^{-a|z|^2}$ for a > 0 is a cyclic vector for M_z in $L^p(\mu)$.

Proof. Apply (5.3) below with $A := \Pi(z)$, $b := \overline{z}$, and $c := e^{-a|z|^2}$. The result follows from (3.4).

The following is a useful tool in establishing as in (5.2) that the closure of a coset of a given algebra contains the coset of some larger algebra.

Lemma 5.3. Let $p \in]0, \infty[$ and let μ be a finite Borel measure on \mathbb{C} . Let $A \subset L^p(\mu)$ be an algebra, let $b \in \overline{A}$, and let $c \in L^p(\mu)$. Suppose $Ab^n c \subset L^{\infty}(\mu)$ for $n = 0, 1, 2 \dots$ Then $\Pi(A, b)c \subset \overline{Ac}$.

Proof. It suffices to show $Ab^n c \subset \overline{Ac}$ by induction on n. Let (a_k) be a sequence in A converging to b. As to the step $n \to n+1$ note $||ab^{n+1}c - aa_kb^nc||_p \leq$ $||ab^nc||_{\infty}||b - a_k||_p \to 0$ for $k \to \infty$. Since by assumption $aa_kb^n c \in \overline{Ac}$ the result follows.

For $z \in \mathbb{C}$ and $\Delta \subset \Omega$ let $n_{\Delta}(z) := |\{\omega \in \Delta : \varphi(\omega) = z\}|$ denote the number in $\mathbb{N} \cup \{\infty\}$ of preimages in Δ of z under φ . For a Rohlin decomposition (π, ν) of $(\varphi, \mu), \varphi(\mu) = \mu_c + \sum_n \mu_n$ holds. Set $P_n := \{\frac{\mathrm{d}\mu_n}{\mathrm{d}\varphi(\mu)} > 0\}$ for $n \in \{c\} \cup \mathbb{N}$ and define the *local multiplicity* by

$$m_{\varphi}(z) := \infty 1_{P_c}(z) + \sup (\{0\} \cup \{n \in \mathbb{N} : z \in P_n\}).$$

We will keep in mind that P_n is unique up to a $\varphi(\mu)$ -null set.

Theorem 5.4. Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space with (Ω, \mathcal{A}) a standard measurable space. Let $\varphi : \Omega \to \mathbb{C}$ be measurable. Then there is a μ -null set N such that $n_{\Omega\setminus N}$ is measurable and such that

 $\mathbf{m}_{\varphi} = \mathbf{n}_{\Omega \setminus N} \leq \mathbf{n}_{\Omega \setminus N'} \quad \varphi(\mu) - a.e.$

for every μ -null set N'. Furthermore $\operatorname{mp}(M_{\varphi}) = \sup \operatorname{m}_{\varphi}$ holds for M_{φ} in $L^{p}(\mu)$, $p \in]0, \infty[$.

Proof. As (Ω, \mathcal{A}) is standard and μ is finite there is a Rohlin decomposition (π, ν) of (φ, μ) by a measure space isomorphism ϑ onto the complement of a ν -null set of $[0,1] \times \mathbb{C}$. Because of $\mu_{n+1} \ll \mu_n \forall n$, $(P_n)_n$ is $\varphi(\mu)$ -almost decreasing. Therefore $m_{\varphi} = \infty 1_{P_c} + \sum_n 1_{P_n} \varphi(\mu)$ -a.e. holds. $S := ([0,1] \times P_c) \cup \bigcup_n (\{\frac{1}{n}\} \times P_n)$ is the complement of a ν -null set since $\mu_n(\mathbb{C}P_n) = 0$ for $n = c, 1, 2, \ldots$, and $|S_z| = \infty 1_{P_c}(z) + \sum_n 1_{P_n}(z) \forall z \in \mathbb{C}$ for $S_z := \{t \in [0,1] : (t,z) \in S\}$ holds. — Now let R be the complement of any ν -null set. Then $B_c := \{z \in \mathbb{C} : \lambda(R_z) = 1\}$ and $B_n := \{z \in \mathbb{C} : \frac{1}{n} \in R_z\}$ satisfy $\mu_n(\mathbb{C} \setminus B_n) = 0$, whence $\varphi(\mu)(P_n \setminus B_n) = 0$ for $n = c, 1, 2, \ldots$ This implies $|R_z| \geq |S_z| \varphi(\mu)$ -a.e. Moreover, we may choose without restriction $P_n \subset B_n$, $n = c, 1, 2, \ldots$ for $R := \vartheta(\Omega)$. Then $|S_z| = |S_z \cap \vartheta(\Omega)|$. Since generally $n_{\Delta}(z) = \vartheta(\Delta)_z$ by $\varphi = \pi \circ \vartheta$, we obtain $n_{\Omega \setminus N}(z) = |S_z|$ for $N := \mathcal{C} \vartheta^{-1}(S)$, whence $n_{\Omega \setminus N}$ is measurable, and $n_{\Omega \setminus N}(z) = |S_z| \le |\vartheta(\Omega \setminus N')_z| = n_{\Omega \setminus N'}(z) \varphi(\mu)$ -a.e. — The last assertion is obvious.

Obviously, in (5.4), $n_{\Omega \setminus (N \cup N')} = n_{\Omega \setminus N}$, whence $m_{\varphi} = n_{\Omega \setminus M}$ holds $\varphi(\mu)$ -a.e., if the ν -null set M is large enough. Finally we mention that in the Hilbert space case m_{φ} is a complete invariant. This means that normal operators $T \simeq M_{\varphi}$ in $L^2(\mu)$ and $T' \simeq M_{\varphi'}$ in $L^2(\mu')$ with μ and μ' Borel measures on \mathbb{C} are isomorphic if and only if $\varphi(\mu) \sim \varphi'(\mu')$ and $m_{\varphi} = m_{\varphi'}$ a.e. In other words m_{φ} is the usual local multiplicity derived from the spectral theorem. Results relating local multiplicity to the number of preimages can be found in [3, 13, 14, 15, 16].

References

- 1. N.I. Achieser and I.M. Glasmann, *Theorie der linearen Operatoren im Hilbert-Raum*, Akademie-Verlag, Berlin 1968.
- I. Agricola and T. Friedrich, The Gaussian measure on algebraic varieties, Fund. Math. 159 (1999), no. 1, 91–98.
- E.A. Azoff and K.F. Clancey, Spectral multiplicity for direct integrals of normal operators, J. Operator Theory 3 (1980), no. 2, 213–235.
- 4. J. Bram, Subnormal operators, Duke Math. J. 22 (1955) 75–94.
- L. Carleson, Mergelyan's theorem on uniform polynomial approximation, Math. Scand. 15 (1964) 167–175.
- D.P.L. Castrigiano and F. Hofmaier, Bounded point evaluations for orthogonal polynomials, Adv. Appl. Math. Sci. 10 (2011), no. 4, 373–392.
- D.P.L. Castrigiano and W. Roelcke, *Topological Measures and Weighted Radon Measures*, Alpha Science, Oxford 2008.
- 8. K. Conrad, L_p -spaces for 0 , preprint.
- J.B. Conway, *The Theory of Subnormal Operators*, Mathematical Surveys and Monographs, 36. American Mathematical Society, Providence, RI, 1991.
- 10. B. Fuglede, The multidimensional moment Problem, Expo. Math. 1 (1983), no. 1, 47–65.
- F. Hartogs and A. Rosenthal, Über Folgen analytischer Funktionen, Math. Ann. 100 (1928), no. 1, 212–263.
- 12. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York 1969.
- J.S. Howland, A decomposition of a measure space with respect to a multiplication operator, Proc. Amer. Math. Soc. 78 (1980), no. 2, 231–234.
- K.G. Kalb, Über die spektralen Vielfachheitsfunktionen des Multiplikationsoperators, Studia Math. 66 (1979), no. 1, 1–12.
- T.L. Kriete, An elementary approach to the multiplicity theory of multiplication operators, Rocky Mountain J. Math. 16 (1986), no. 1, 23–32.
- M.G. Nadkarni, Hellinger-Hahn type decompositions of the domain of a Borel function, Studia Math. 47 (1973) 51–62.
- B. Nagy, Multicyclicity of unbounded normal operators and polynomial approximation in C, J. Funct. Anal. 257 (2009), no. 6, 1655–1665.
- K.R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York 1967.
- V.A. Rohlin, On the fundamental ideas of measure theory, Mat. Sborn. 25 (1949) 107–150, Amer. Math. Soc. Transl. (1952), no. 71, 55 pp.
- H.A. Seid, Cyclic multiplication operators on L_p-spaces, Pacific J. Math. 51 (1974), no. 2, 549–562
- H.A. Seid, The decomposition of multiplication operators on L_p-Spaces, Pacific J. Math. 62 (1976), no. 1, 265–274.
- A. Shields, Cyclic vectors for multiplication operators, Michigan Math. J. 35 (1988), no. 3, 451–454.

- B. Simon, The classical moment problem as a self-adjoint finite difference operator, Adv. Math. 137 (1998), no. 1, 82–203.
- 24. K. Stempak, J.L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal. 202 (2003), no. 2, 443–472.
- 25. E.L. Stout, Polynomial Convexity, Springer, New York 2007.
- F.H. Szafraniec, Normals, subnormals and an open question, Oper. Matrices 4 (2010), no. 4, 485–510.

TECHNISCHE UNIVERSITÄT MÜNCHEN, FAKULTÄT FÜR MATHEMATIK, MÜNCHEN, GER-MANY.

E-mail address: seb@zaigler.com *E-mail address*: castrig@ma.tum.de