Ann. Funct. Anal. 6 (2015), no. 2, 33-48
http://doi.org/10.15352/afa/06-2-4
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

CYCLICITY FOR UNBOUNDED MULTIPLICATION OPERATORS IN L^{p} - AND C_{0}-SPACES

SEBASTIAN ZAIGLER* AND DOMENICO P. L. CASTRIGIANO
Communicated by G. Androulakis

Abstract

For every, possibly unbounded, multiplication operator in $L^{p_{-}}$ space, $p \in] 0, \infty[$, on finite separable measure space we show that multicyclicity, multi- $*$-cyclicity, and multiplicity coincide. This result includes and generalizes Bram's much cited theorem from 1955 on bounded $*$-cyclic normal operators. It also includes as a core result cyclicity of the multiplication operator M_{z} by the complex variable z in $L^{p}(\mu)$ for every σ-finite Borel measure μ on \mathbb{C}. The concise proof is based in part on the result that the function $e^{-|z|^{2}}$ is a $*$-cyclic vector for M_{z} in $C_{0}(\mathbb{C})$ and further in $L^{p}(\mu)$. We characterize topologically those locally compact sets $X \subset \mathbb{C}$, for which M_{z} in $C_{0}(X)$ is cyclic.

1. Introduction

In 1955 Bram [4] proves his well-known and much cited theorem that a bounded *-cyclic normal operator is cyclic. It is also well-known that, as a consequence, a normal operator is cyclic if and only if it has multiplicity one or, equivalently, if it is simple. Only in 2009 Nagy [17] tackles the generalization of Bram's result to unbounded normal operators.

Due to the spectral theorem the question actually concerns multiplication operators in $L^{2}(\mu)$ for finite Borel measures on \mathbb{C} with possibly unbounded support. We extend the frame to general (unbounded) multiplication operators in L^{p}-spaces for $\left.p \in\right] 0, \infty[$ on finite separable measure spaces. We prove that multicyclicity, multi-*-cyclicity, and multiplicity coincide for those operators.

[^0]This result includes cyclicity of the multiplication operator M_{z} by z in $L^{p}(\mu)$ for any finite Borel measure μ on \mathbb{C}, which in turn is a main step in the proof of the above result.

Let us rapidly recall the case of bounded M_{z} in $L^{2}(\mu)$. Here $\operatorname{supp}(\mu)$ is compact. Then the set $\Pi(z, \bar{z})$ of polynomials in z and \bar{z} is dense in $L^{2}(\mu)$, since $\Pi(z, \bar{z})$ is dense in $C(\operatorname{supp}(\mu))$ by the theorem of Stone/Weierstraß. Therefore, if $\Pi(z, \bar{z})$ is contained in the closure of the polynomials $\Pi(z)$, the latter are dense in $L^{2}(\mu)$, i.e., $\overline{\Pi(z)}=L^{2}(\mu)$, which means that the constant $1_{\mathbb{C}}$ is a cyclic vector for M_{z}. Actually, still due to the boundedness of M_{z}, it suffices to show that the function \bar{z} is element of the closure of $\Pi(z)$. Bram [4] solves this approximation problem decomposing \mathbb{C} into the union of an increasing sequence of α-sets and a μ-null set. An α-set is a compact subset of \mathbb{C} such that every continuous function on it can be approximated uniformly by polynomials in z. By Lavrentev's theorem (see, e.g. [5, 11]) the α-sets are just the compact subsets of \mathbb{C} with empty interior and connected complement.

In the unbounded case this way has to be modified, mostly by two reasons. First, due to unboundedness, the support of μ is not compact and the polynomials in z and \bar{z} are not bounded on $\operatorname{supp}(\mu)$. Secondly, $\Pi(z, \bar{z})$ need not be dense in $L^{2}(\mu)$ (see e.g. Hamburger's example in Simon [23, example 1.3]). In [17] Nagy generalizes Bram's decomposition of \mathbb{C} for any (non-compact) $\operatorname{supp}(\mu)$. This is an important result. We have considerably simplified its proof. By this, [17] succeeds in showing that \bar{z} is in the closure of $\Pi(z)$ in $L^{p}(\sigma)$ for some finite Borel measure σ equivalent to μ. We proceed similarly to [17], but show at once by an induction argument that the whole of $\Pi(z, \bar{z})$ lies in the closure of $\Pi(z)$.

The ensuing tacit assumption by Nagy that $z \overline{\Pi(z)} \subset L^{p}(\sigma)$ however, as we will explain below, definitely restricts the proof in [17] to the case of bounded M_{z}, thus missing the aim.

In the unbounded case, in the literature there seems even to exist no explicit proof for $*$-cyclicity of M_{z} in $L^{2}(\mu)$, and there are several futile attempts in the literature concerning the Hilbert space case. However, Agricola/Friedrich [2, sec. 3] show that the functions $p \mathrm{e}^{-|x|^{2}}, p$ polynomial on \mathbb{R}^{d}, are dense in $C_{0}\left(\mathbb{R}^{d}\right)$ with respect to uniform convergence. In particular this means that the function $e^{-|z|^{2}}$ is a $*$-cyclic vector for M_{z} in $C_{0}(\mathbb{C})$. As a ready consequence, $e^{-|z|^{2}}$ is $*$-cyclic for M_{z} in $L^{p}(\mu)$. We like to remark that we present in (4.3) a short classical proof of the density result of [2] (which is central in [2]) and that we apply successfully the same method for the proof of other results on cyclicity. Another proof for (4.3) can be found in [24]. Moreover, we add in (4) a direct proof of $*$-cyclicity of M_{z} in $L^{2}(\mu)$. It generalizes a proof in [1] for the self-adjoint case $\mu(\mathbb{C} \backslash \mathbb{R})=0$. We are indebted to the referee for having drawn our attention to [1].

Another important ingredient is the Rohlin decomposition of a measurable function which we apply to unbounded functions on finite separable measure spaces.

We get started on the multiplication operator M_{z} in $C_{0}(\mathbb{C})$ and extend also to M_{z} in $C_{0}(X)$ for locally compact $X \subset \mathbb{C}$. We find that M_{z} is $*$-cyclic and describe topologically those X, for which M_{z} is cyclic.

Finally, it is worth mentioning that the results on $(*)$-cyclicity for the most part are obtained by polynomial approximation, thus contributing to this field. We shall give some examples.

2. Definitions and Notations

Two measurable spaces $(\Omega, \mathcal{A}),\left(\Omega^{\prime}, \mathcal{A}^{\prime}\right)$ are said to be measurable space isomorphic, if there is a bijection $\iota: \Omega \rightarrow \Omega^{\prime}$ such that ι and ι^{-1} are measurable. A standard measurable space is a measurable space which is isomorphic with a Polish space provided with the Borel σ-algebra. A Borel measure is a measure on the σ-algebra of Borel sets of a topological space.

A measure space $(\Omega, \mathcal{A}, \mu)$ is said to be separable if there is countable subset $\mathcal{D} \subset \mathcal{A}$ such that for all $A \in \mathcal{A}, \epsilon>0$ there is $\Delta \in \mathcal{D}$ with $\mu(A \triangle \Delta)<\epsilon$. For every measure space $(\Omega, \mathcal{A}, \mu)$ there is the equivalence relation $A \sim B \Leftrightarrow$ $\mu(A \triangle B)=0$ on \mathcal{A}. Let the set of equivalence classes $[A]$ be denoted by $\mathcal{A} / \mathcal{N}$ with \mathcal{N} the ideal of null sets. The measure μ is constant on every equivalence class, and all set theoretical operations on \mathcal{A} as well set inclusion are carried over to $\mathcal{A} / \mathcal{N}$ since they are compatible with the equivalence relation. So $(\mathcal{A} / \mathcal{N}, \mu)$ together with this structure is called the associated measure algebra. Moreover, let $M(\mu)$ denote the function algebra of all classes $[\varphi]$ of measurable functions $\varphi: \Omega \rightarrow \mathbb{C}$ modulo μ-a.e. vanishing functions. - Given a further measure space $\left(\Omega^{\prime}, \mathcal{A}^{\prime}, \mu^{\prime}\right)$, a bijection $T: \mathcal{A} / \mathcal{N} \rightarrow \mathcal{A}^{\prime} / \mathcal{N}^{\prime}$ preserving the measure algebra structure is called a measure algebra isomorphism if $\mu^{\prime} \circ T=\mu$. - Every such isomorphism T induces a function algebra isomorphism $\tau: M(\mu) \rightarrow M\left(\mu^{\prime}\right)$ determined by $\tau\left(\left[1_{\Delta}\right]\right)=\left[1_{\Delta^{\prime}}\right]$ with $\Delta^{\prime} \in T([\Delta]) \forall \Delta \in \mathcal{A}$. It is multiplicative and preserves all p-metrics, $p \in] 0, \infty]$. - A measure space isomorphism $\iota:(\Omega, \mathcal{A}, \mu) \rightarrow\left(\Omega^{\prime}, \mathcal{A}^{\prime}, \mu^{\prime}\right)$ is a measurable space isomorphism with $\mu^{\prime}=\iota(\mu)$. It induces the measure algebra isomorphism $T([A]):=[\iota(A)]$ and the function algebra isomorphism $\tau([\varphi])=\left[\varphi \circ \iota^{-1}\right]$. - In general we will omit the brackets [•].

Let $p \in] 0, \infty[$ and let $(\Omega, \mathcal{A}, \mu)$ be a measure space. For a measurable function $\varphi: \Omega \rightarrow \mathbb{C}$ let M_{φ} denote the multiplication operator in $L^{p}(\mu)$ given by $M_{\varphi} f:=$ φf with domain $\mathcal{D}\left(M_{\varphi}\right):=\left\{f \in L^{p}(\mu): \varphi f \in L^{p}(\mu)\right\}$. We will deal with separable L^{p}-spaces. Therefore it is no restriction to assume in the sequel that $(\Omega, \mathcal{A}, \mu)$ is finite and separable. It is well-known that M_{φ} is closed and, if $p=2$, normal. Moreover, M_{φ} is bounded if and only if φ is μ-essentially bounded.

A set $Z \subset L^{p}(\mu)$ is called cyclic for M_{φ} if $p(\varphi) f \in L^{p}(\mu)$ for all polynomials $p \in \Pi(z), f \in Z$ and if

$$
\Pi\left(M_{\varphi}\right) Z:=\{p(\varphi) f: p \in \Pi(z), f \in Z\}
$$

is dense in $L^{p}(\mu)$. If there is no finite cyclic set the multicyclicity $\operatorname{mc}\left(M_{\varphi}\right)$ is set ∞. Otherwise it is defined as the smallest number of elements of a cyclic set. M_{φ} is called cyclic if $\operatorname{mc}\left(M_{\varphi}\right)=1$. Similarly, a set $Z \subset L^{p}(\mu)$ is called $*$-cyclic for M_{φ} if $p(\varphi, \bar{\varphi}) f \in L^{p}(\mu)$ for all polynomials $p \in \Pi(z, \bar{z}), f \in Z$ and if

$$
\Pi\left(M_{\varphi}, M_{\bar{\varphi}}\right) Z:=\{p(\varphi, \bar{\varphi}) f: p \in \Pi(z, \bar{z}), f \in Z\}
$$

is dense in $L^{p}(\mu)$. The multi-*-cyclicity $\mathrm{mc}^{*}\left(M_{\varphi}\right)$ is defined analogously and M_{φ} is called $*$-cyclic if $\mathrm{mc}^{*}\left(M_{\varphi}\right)=1$.

We define the multiplicity of M_{φ} on $L^{p}(\mu)$ by means of the Rohlin decomposition (π, ν) of (φ, μ). Let us briefly explain this decomposition. See also Seid [21, remark 3.4]. There is a measure algebra isomorphism T from $(\Omega, \mathcal{A}, \mu)$ onto $([0,1] \times \mathbb{C}, \mathcal{B}, \nu)$ with \mathcal{B} the Borel sets and ν a finite measure. The latter satisfies

$$
\nu=\lambda \otimes \mu_{c}+\sum_{n \in \mathbb{N}} \delta_{1 / n} \otimes \mu_{n},
$$

where λ denotes the Lebesgue measure on $[0,1], \delta_{1 / n}$ is the point measure at $1 / n$, and μ_{c}, μ_{n} are Borel measures on \mathbb{C} with $\mu_{n+1} \ll \mu_{n}$ for $n \in \mathbb{N}$. Moreover, the function algebra isomorphism τ induced by T satisfies $\tau(\varphi)=\pi$, where $\pi(t, z):=$ $z,(t, z) \in[0,1] \times \mathbb{C}$. This implies that M_{φ} in $L^{p}(\mu)$ is isomorphic with M_{π} in $L^{p}(\nu)$ by $\tau M_{\varphi} \tau^{-1} f=M_{\pi} f \forall f \in L^{p}(\nu)$. By these properties the measures μ_{n} for $n \in \mathbb{N} \cup\{c\}$ are uniquely determined up to equivalence. Since the measures $\lambda \otimes \mu_{c}, \delta_{1} \otimes \mu_{1}, \delta_{1 / 2} \otimes \mu_{2}, \ldots$ are mutually orthogonal, $L^{p}(\nu)$ and M_{π} are identified with the p-direct sums

$$
L^{p}\left(\lambda \otimes \mu_{c}\right) \oplus \bigoplus_{n \in \mathbb{N}} L^{p}\left(\mu_{n}\right), \quad M_{\pi} \oplus \bigoplus_{n \in \mathbb{N}} M_{z}
$$

Then M_{z} in $L^{p}\left(\mu_{n}\right), n \in \mathbb{N}$, is cyclic, whereas M_{π} on a subspace $\left\{1_{S} f: f \in\right.$ $\left.L^{p}\left(\lambda \otimes \mu_{c}\right)\right\}$ with $S \in \mathcal{B}$ is cyclic only if $\lambda \otimes \mu_{c}(S)=0$. Hence, in view of $\mu_{n+1} \ll \mu_{n}$ for $n \in \mathbb{N}$, the multiplicity of M_{φ} is defined as $\operatorname{mp}\left(M_{\varphi}\right):=\sup \left\{n \in \mathbb{N}: \mu_{n} \neq 0\right\}$ if $\mu_{c}=0$ and ∞ otherwise.

As it should, this definition of multiplicity is invariant under L^{p}-isomorphisms, which is due to the following known fact, see Seid [20]. Let $p \in] 0, \infty[\backslash\{2\}$, let $(\Omega, \mathcal{A}, \mu),\left(\Omega^{\prime}, \mathcal{A}^{\prime}, \mu^{\prime}\right)$ be two finite measure spaces, and suppose that $\iota: L^{p}(\mu) \rightarrow$ $L^{p}\left(\mu^{\prime}\right)$ is an isomorphism. Then ι equals the composition $\beta \circ \alpha$ of two isomorphisms $\alpha: L^{p}(\mu) \rightarrow L^{p}\left(\left|\iota\left(1_{\Omega}\right)\right|^{p} \mu^{\prime}\right)$ and $\beta: L^{p}\left(\left|\iota\left(1_{\Omega}\right)\right|^{p} \mu^{\prime}\right) \rightarrow L^{p}\left(\mu^{\prime}\right)$ of rather special types. Indeed, α comes from a measure algebra isomorphism. For β one simply has $\beta(g)=\iota\left(1_{\Omega}\right) g$.

As to the case $p=2$ note that for $\mu_{c} \neq 0$ the normal operator M_{π} in $L^{2}\left(\lambda \otimes \mu_{c}\right)$ is Hilbert space isomorphic with the countably infinite orthogonal sum of copies of M_{z} in $L^{2}\left(\mu_{c}\right)$. Hence multiplicity $\operatorname{mp}\left(M_{\varphi}\right)$ coincides with the usual multiplicity for a normal operator. Finally note that if for the Rohlin decomposition $\mu_{c}=0$ occurs, then the Rohlin decomposition is just the spectral decomposition of the normal operator M_{φ} in $L^{2}(\mu)$.

3. Main Results

Theorem 3.1. Let T be a multiplication operator in $\left.L^{p}(\mu), p \in\right] 0, \infty[$, on a finite separable measure space. Then $\mathrm{mc}(T)=\mathrm{mc}^{*}(T)=\mathrm{mp}(T)$ holds.

As already mentioned, using the spectral theorem, the classical theorem of Bram [4], by which any $*$-cyclic bounded normal operator is cyclic, is generalized by (3.1) to unbounded normal operators. By definition $\operatorname{mp}(T)=1$ holds if and only if T is isomorphic with M_{z} in $L^{p}(\mu)$ for some finite Borel measure on \mathbb{C}. Hence (3.1) includes also the result that M_{z} is cyclic. Recall that a normal
operator T is said to be simple if its spectral measure is simple. So by (3.1), T is simple if and only if T is cyclic.

In case that (Ω, \mathcal{A}) is a standard measurable space, multiplicity $\operatorname{mp}\left(M_{\varphi}\right)$ has the meaning one expects intuitively, i.e., it equals the maximal number in $\mathbb{N} \cup\{\infty\}$ of preimages of $z \in \mathbb{C}$ under some $\varphi^{\prime}=\varphi \mu$-a.e. See (5.4) for some details.

If for a cyclic set Z for M_{φ} the subspace $\Pi\left(M_{\varphi}\right) Z$ is even a core of M_{φ} then Z is called graph cyclic. We have taken this expression from Szafraniec [26], which we consider appropriate in view of (4.8). In case that $1_{\mathbb{C}}$ is graph cyclic for M_{z} in $L^{2}(\mu)$ then the Borel measure μ on \mathbb{C} is called ultradeterminate by Fuglede [10]. One has

Proposition 3.2. Let $p \in] 0, \infty[$. Let $(\Omega, \mathcal{A}, \mu)$ be a finite separable measure space and let $\varphi: \Omega \rightarrow \mathbb{C}$ be measurable. If Z is a cyclic set for M_{φ} in $L^{p}(\mu)$, then $Z e^{-|\varphi|}$ is graph cyclic for M_{φ}.

In particular (3.2) shows that every cyclic normal operator is even graph cyclic.
For the proof of (3.1) we had first to establish that M_{z} in $L^{p}(\mu)$ is cyclic for every finite Borel measure μ on \mathbb{C}. More precisely we have

Theorem 3.3. Let μ be a finite Borel measure on \mathbb{C}. Then there is a positive Borel measurable function ρ such that $\Pi(z) \rho$ is dense in $L^{p}\left(\mu^{\prime}\right)$ for all $\left.p \in\right] 0, \infty[$ if μ^{\prime} is a finite Borel measure on \mathbb{C} equivalent to μ. Moreover h is cyclic for M_{z} in $L^{p}\left(\mu^{\prime}\right)$ if h is Borel measurable and satisfies $0<|h| \leq C \rho$ for some constant $C>0$.

An immediate consequence of (3.3) due to Nagy [17] concerns polynomial approximation. It generalizes the result in Conway [9, corollary V.14.22] for measures with compact support. Let μ be a σ-finite Borel measure on \mathbb{C} and let $f: \mathbb{C} \rightarrow \mathbb{C}$ be measurable. Then there is a sequence $\left(p_{n}\right)$ of polynomials in z with $p_{n} \rightarrow f \mu$-a.e. Indeed, without restriction μ is finite. Let $h:=\inf \left\{\rho, \frac{1}{1+|f|}\right\}$. Then h is positive cyclic and $f h$ is bounded. Therefore there is a sequence $\left(p_{n}\right)$ satisfying $p_{n} h \rightarrow f h$ in $L^{p}(\mu)$, and the result follows for some subsequence of $\left(p_{n}\right)$.

Cyclicity of M_{z} in $L^{2}(\mu)$ has already been tackled by Béla Nagy in [17] adapting in parts the original proof of Joseph Bram [4] for bounded normal operators. See also Conway [9, theorem V.14.21] for a proof of Bram's theorem. The first step (i) and important result achieved in [17] is the decomposition of the complex plane into a null set and a countable union of increasing α-sets. Secondly (ii) \bar{z} is approximated by polynomials in $L^{2}(\sigma)$ for some finite Borel measure σ on \mathbb{C} equivalent to the original measure μ. The third step (iii) in [17] deals with the proof for the denseness in $L^{2}(\sigma)$ of the polynomials $\Pi(z)$. However the result obtained by Hilbert space methods is valid only for bounded M_{z}. Indeed, [17] starts the third step with the (unfounded) assumption that any function in the closure of $\Pi(z)$ is still square-integrable if multiplied by z. In other words, $\overline{\Pi(z)} \subset \mathcal{D}\left(M_{z}\right)$ is assumed. Proceeding on this assumption [17] shows $\overline{\Pi(z)}=L^{2}(\sigma)$ by a reducing subspace argument. Consequently $\mathcal{D}\left(M_{z}\right)$ is the whole of $L^{2}(\sigma)$ implying that
M_{z} is bounded, whence Nagy [17] does not achieve its goal. In addition, in accomplishing the reducing space argument, [17] uses *-cyclicity of M_{z} relying on a reference, which proves to be erroneous.

Our first step (i) in proving cyclicity of M_{z} in $L^{p}(\mu)$ for $\left.p \in\right] 0, \infty[$ and every finite Borel measure μ on \mathbb{C} is the same as in [17]. We present a short proof (4.4) of the decomposition valid for a large class of Polish spaces including e.g. separable Banach spaces with real dimension ≥ 2. In the second step (ii) we show by induction that even $\Pi(z, \bar{z})$ is contained in the closure of $\Pi(z)$, see (4.5). At this stage, in the third step (iii), we bring in $*$-cyclicity of M_{z} in $L^{2}(\mu)$ by (3.4) and thus avoid a reducing subspace argument, which anyway is not available in the case $p \neq 2$.

In the sequel we denote by $\Pi\left(f_{1}, \ldots, f_{n}\right)$ the set of complex polynomials in functions f_{1}, \ldots, f_{n} on some set with $f_{i}^{0}:=1$. Let $d \in \mathbb{N}$ and $|x|:=\sqrt{x_{1}^{2}+\cdots+x_{d}^{2}}$ for $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$. Moreover, let x_{i} also denote the i-th coordinate function on \mathbb{R}^{d}. Let $a>0$.

Proposition 3.4. Let $p \in] 0, \infty\left[\right.$ and let μ be a finite Borel measure on \mathbb{R}^{d}. Then $\Pi\left(x_{1}, \ldots, x_{d}\right) \mathrm{e}^{-a|x|^{2}}$ is dense in $L^{p}(\mu)$. In particular, $\Pi(z, \bar{z}) \mathrm{e}^{-a|z|^{2}}$ is dense in $L^{p}(\mu)$ for any finite Borel measure μ on \mathbb{C}.

Let h_{n} denote the n-th Hermite function in one real variable. Then (3.4) for $\mu:=\mathrm{e}^{-a|x|^{2}} \lambda^{d}$ with λ^{d} the Lebesgue measure on \mathbb{R}^{d} yields the completeness of the orthonormal system of Hermite functions $h_{n_{1}} \times \cdots \times h_{n_{d}}, n_{1}, \ldots, n_{d} \in \mathbb{N} \cup\{0\}$ in $L^{2}\left(\lambda^{d}\right)$.

As already mentioned, (3.4) is a corollary to the $*$-cyclicity of M_{z} in $C_{0}(\mathbb{C})$. The question we pose now is about $(*)$-cyclicity of M_{z} on $C_{0}(X)$ for $X \subset \mathbb{C}$.

Theorem 3.5. Let $X \subset \mathbb{C}$ be a locally compact subspace. Then M_{z} in $C_{0}(X)$ is *-cyclic by $e^{-a|z|^{2}} \eta$ with any positive $\eta \in C_{0}(X)$, and M_{z} is cyclic if and only if every compact K contained in X is an α-set.

In view of (3.5) we remark that a locally compact subspace of \mathbb{C} is σ-compact and locally closed. Hence, if $X \subset \mathbb{C}$ is locally compact and every compact $K \subset X$ has empty interior then X is nowhere dense. If $X \subset \mathbb{C}$ has empty interior and $\mathbb{C} \backslash K$ is connected for every compact $K \subset X$, then $\mathbb{C} \backslash X$ is dense and has no bounded components, and vice versa.

If X is compact then M_{z} in $C_{0}(X)$ is cyclic if and only if $1_{\mathbb{C}}$ is cyclic for M_{z}. This is due to $\|p h-f h\|_{\infty, X} \geq C\|p-f\|_{\infty, X}$ with $C:=\inf _{z \in X}|h(z)|>0$ for $f \in C(X), p \in \Pi(z)$, and h a cyclic vector for M_{z}. Hence in case of compact X one recovers Lavrentev's theorem on α-sets from (3.5).

As an example, (3.5) implies that M_{z} is cyclic by the function $\mathrm{e}^{-a|z|^{2}}$ in $C_{0}(X)$, where X is the spiral $\left\{\mathrm{e}^{(1+i) t}: t \in \mathbb{R}\right\}$.

In this context we mention the result by Lavrentev/Keldych [25] that for a closed subset X of \mathbb{C} every continuous function on X can be approximated uniformly by entire functions if and only if $\mathbb{C} \backslash X$ is dense, has no bounded components, and is locally connected at infinity.

4. Proofs

If necessary, in order to avoid ambiguities, we write \bar{M}^{μ} for the closure in $L^{p}(\mu)$ of the subset M. Similarly $\|f\|_{p \mu}$ denotes the norm of $f \in L^{p}(\mu)$. We start with two preliminary elementary results.

Lemma 4.1. Let $p \in] 0, \infty[$. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Let $M \cup\{h\}$ be a set of measurable functions on Ω with $h \neq 0 \mu$-a.e. Then $M h$ is dense in $L^{p}(\mu)$ if and only if M is dense in $L^{p}\left(|h|^{p} \mu\right)$.

Proof. Set $\nu:=|h|^{p} \mu$. - Suppose $\overline{M h}^{\mu}=L^{p}(\mu)$. Let $g \in L^{p}(\nu), \epsilon>0$. Then $g h \in L^{p}(\mu)$ and there is an $f \in M$ such that $\epsilon>\|f h-g h\|_{p \mu}=\|f-g\|_{p \nu}$. This proves $\bar{M}^{\nu}=L^{p}(\nu)$. - Now suppose $\bar{M}^{\nu}=L^{p}(\nu)$ and let $f \in L^{p}(\mu), \epsilon>0$. Then $f / h \in L^{p}(\nu)$ and there is $g \in M$ with $\epsilon>\|f / h-g\|_{p \nu}=\|f-g h\|_{p \mu}$. This proves $\overline{M h}^{\mu}=L^{p}(\mu)$.

Lemma 4.2. Let $p \in] 0, \infty[$. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Let $M \cup\{h\}$ be a set of measurable functions on Ω with h bounded and $h \neq 0 \mu$-a.e. If M is dense in $L^{p}(\mu)$, then so is Mh.

Proof. Let $C>0$ be a constant with $|h|<C$. Set $A_{n}:=\left\{\left|\frac{1}{h}\right| \leq n\right\}$. For $\Delta \in \mathcal{A}$ with $\mu(\Delta)<\infty$ and $\epsilon>0$ there exists $f \in M$ satisfying $\left\|1_{\Delta \cap A_{n}} \frac{1}{h}-f\right\|_{p}<\epsilon / C$. Then $\left\|1_{\Delta \cap A_{n}}-f h\right\|_{p}<\epsilon$ holds, which implies $1_{\Delta \cap A_{n}} \in \overline{M h}$ for all $n \in \mathbb{N}$. Therefore $1_{\Delta} \in \overline{M h}$ for all $\Delta \in \mathcal{A}$ with $\mu(\Delta)<\infty$. The result follows.

As to the proof of (4.3) note that $\Pi\left(x_{1}, \ldots, x_{d}\right) \mathrm{e}^{-a|x|^{2}}$ is not a subalgebra of $C_{0}\left(\mathbb{R}^{d}\right)$, whence the Stone-Weierstraß theorem cannot be applied directly. In [2] a combination of the theorems of Hahn/Banach, Riesz, and Bochner is used to overcome this problem.

Proposition 4.3. $\Pi\left(x_{1}, \ldots, x_{d}\right) e^{-a|x|^{2}}$ is dense in $C_{0}\left(\mathbb{R}^{d}\right)$. In particular, the set $\Pi(z, \bar{z}) e^{-a|z|^{2}}$ is dense in $C_{0}(\mathbb{C})$.

Proof. For convenience let $a=2$. The subalgebra $\Pi\left(x_{1}, \ldots, x_{d}, \mathrm{e}^{-|x|^{2}}\right) \mathrm{e}^{-2|x|^{2}}$ of $C_{0}\left(\mathbb{R}^{d}\right)$ satisfies the assumptions of the Stone/Weierstraß Theorem. Thus it is dense in $C_{0}\left(\mathbb{R}^{d}\right)$. Therefore it remains to show

$$
\Pi\left(x_{1}, \ldots, x_{d}, \mathrm{e}^{-|x|^{2}}\right) \mathrm{e}^{-2|x|^{2}} \subset \overline{\Pi\left(x_{1}, \ldots, x_{d}\right) \exp \left(-2|x|^{2}\right)},
$$

which follows from

$$
\Pi\left(x_{1}, \ldots, x_{d}\right) \mathrm{e}^{-n|x|^{2}} \mathrm{e}^{-2|x|^{2}} \subset \overline{\Pi\left(x_{1}, \ldots, x_{d}\right) \exp \left(-2|x|^{2}\right)}
$$

for $n=0,1,2 \ldots$ by forming the linear span at the left hand side. Now this is shown by induction on n. For the step $n \rightarrow n+1$ let T_{k} denote the k-th Taylor polynomial of e^{z} and let $p \in \Pi\left(x_{1}, \ldots, x_{d}\right)$. Then

$$
\begin{gathered}
\left\|p \mathrm{e}^{-(n+1)|x|^{2}} \mathrm{e}^{-2|x|^{2}}-p T_{k}\left(-|x|^{2}\right) \mathrm{e}^{-n|x|^{2}} \mathrm{e}^{-2|x|^{2}}\right\|_{\infty} \leq \\
C\left\|\mathrm{e}^{-|x|^{2}}\left(\mathrm{e}^{-|x|^{2}}-T_{k}\left(-|x|^{2}\right)\right)\right\|_{\infty}
\end{gathered}
$$

with $C:=\left\|p \mathrm{e}^{-(n+1)|x|^{2}}\right\|_{\infty}<\infty$. Estimating the remainder function according to Lagrange one gets $\mathrm{e}^{-t}\left|\mathrm{e}^{-t}-T_{k}(-t)\right|=\mathrm{e}^{-t}\left|R_{k+1}(-t, 0)\right|=\mathrm{e}^{-t} \frac{\mathrm{e}^{\tau}}{(k+1)!} t^{k+1} \leq$ $\frac{\mathrm{e}^{-t}}{(k+1)!} t^{k+1}$ with maximum at $t=k+1$, and Sterling's formula yields

$$
\frac{\mathrm{e}^{-(k+1)}}{(k+1)!}(k+1)^{k+1} \leq \frac{1}{\sqrt{2 \pi(k+1)}} \rightarrow 0
$$

for $k \rightarrow \infty$.
In other words, (4.3) means that $h_{n_{1}} \times \cdots \times h_{n_{d}}, n_{1}, \ldots, n_{d} \in \mathbb{N} \cup\{0\}$ is total in $C_{0}\left(\mathbb{R}^{d}\right)$. - In particular, for every continuous function f on \mathbb{C} vanishing at infinity there is a sequence $\left(p_{n}\right)$ of polynomials in z and \bar{z} such that $p_{n} e^{-|z|^{2}} \rightarrow f$ uniformly on \mathbb{C}.

Proof of (3.4). Recall that $C_{0}\left(\mathbb{R}^{d}\right)$ is dense in $L^{p}(\mu)$ (see e.g. [8]) and note that $\|\cdot\|\left\|_{p} \leq \mu\left(\mathbb{R}^{d}\right)^{1 / p}\right\| \cdot \|_{\infty}$. Therefore the result follows from (4.3).

In some textbooks completeness of the orthonormal system $\left(h_{n}\right)$ in $L^{2}\left(\lambda^{1}\right), \lambda^{1}$ Lebesgue measure on \mathbb{R}, usually is shown using analytic function theory (e.g. [12, exercise 21.64]). Then the d-dimensional Hermite functions $\left(h_{n_{1}} \times \cdots \times h_{n_{d}}\right)$ form a orthonormal basis in the d-fold Hilbert space tensor product $\bigotimes^{d} L^{2}\left(\lambda^{1}\right) \simeq L^{2}\left(\lambda^{d}\right)$. Taken this for granted one gets an alternative

Proof of (3.4) for $p=2$ and $d=2$. For convenience let $a=1$. Let $f \in L^{2}(\mu)$ be orthogonal to $\Pi\left(x_{1}, x_{2}\right) \mathrm{e}^{-|x|^{2}}$. One has to show $f=0$.

For $i=1,2$ put $\chi_{i}(x, y):=1_{]-\infty, x_{i}}\left(y_{i}\right)=1_{] y_{i}, \infty[}\left(x_{i}\right)$, where $x, y \in \mathbb{R}^{2}$. Then for every $p \in \Pi\left(x_{i}\right)$ the function $(x, y) \mapsto h(x, y):=\partial_{i}\left(p\left(x_{i}\right) \mathrm{e}^{-|x|^{2}}\right) \chi_{i}(x, y) f(y)$ on $\mathbb{R}^{2} \times \mathbb{R}^{2}$ is integrable with respect to $\lambda^{2} \otimes \mu$, since $|h(x, y)| \leq\left|q\left(x_{i}\right)\right| \mathrm{e}^{-|x|^{2}}|f(y)|$ with some polynomial q and where $f \in L^{1}(\mu)$ as μ is finite. Hence Fubini's theorem applies to $\iint h \mathrm{~d} \lambda^{2} \otimes \mu$ yielding

$$
-\int p\left(y_{i}\right) \mathrm{e}^{-y_{i}^{2}} f(y) \mathrm{d} \mu(y)=\int \partial_{i}\left(p\left(x_{i}\right) \mathrm{e}^{-x_{i}^{2}}\right) F_{i}\left(x_{i}\right) \mathrm{d} x_{i}
$$

for $F_{i}\left(x_{i}\right):=\int \chi_{i}(x, y) f(y) \mathrm{d} \mu(y)$. By assumption the left hand side is zero. The right hand side becomes $\int q(t) \mathrm{e}^{-\frac{1}{2} t^{2}} F_{i}(t) \mathrm{e}^{-\frac{1}{2} t^{2}} \mathrm{~d} t$ with $q(t):=p^{\prime}(t)-2 t p(t)$. Note that $t \mapsto F_{i}(t) \mathrm{e}^{-\frac{1}{2} t^{2}}$ is square-integrable as $\left|F_{i}(t)\right| \leq \sqrt{\mu\left(\mathbb{R}^{2}\right)}\|f\|_{2}$. Moreover q is the Hermite polynomial H_{n+1} if $p=-H_{n}, n=0,1, \ldots$. This implies that the only L^{2}-functions orthogonal to all $q \mathrm{e}^{-\frac{1}{2} t^{2}}$ are the constant multiples of $\mathrm{e}^{-\frac{1}{2} t^{2}}$. Consequently $F_{i}=0, i=1,2$.

Next consider $\chi(x, y):=\prod_{i=1}^{2} 1_{]-\infty, x_{i}}\left(y_{i}\right)=\prod_{i=1}^{2} 1_{1 y_{i}, \infty[}\left(x_{i}\right)$ and, for every $p \in \Pi\left(x_{1}, x_{2}\right)$, the function $(x, y) \mapsto h(x, y):=\partial_{1} \partial_{2}\left(p(x) \mathrm{e}^{-|x|^{2}}\right) \chi(x, y) f(y)$ on $\mathbb{R}^{2} \times \mathbb{R}^{2}$. Reasoning analogously one finds for $F(x):=\int \chi(x, y) f(y) \mathrm{d} \mu(y)$

$$
\int p(y) \mathrm{e}^{-|y|^{2}} f(y) \mathrm{d} \mu(y)=\int \partial_{1} \partial_{2}\left(p(x) \mathrm{e}^{-|x|^{2}}\right) F(x) \mathrm{d} \lambda^{2}(x)
$$

and further $F(x)=g_{1}\left(x_{1}\right)+g_{2}\left(x_{2}\right)$ with measurable $g_{i}: \mathbb{R} \rightarrow \mathbb{C}$.
Now $0=F_{i}\left(x_{i}\right)=\lim _{x_{j} \rightarrow \infty} F(x)=g_{i}\left(x_{i}\right)+\lim _{x_{j} \rightarrow \infty} g_{j}\left(x_{j}\right)$ with $i \neq j$.

Therefore g_{i} are constant and consequently $F=0$.
Finally by 2-dimensional Lebesgue-Stieltjes integration the result

$$
\int|f(y)|^{2} \mathrm{~d} \mu(y)=\int \overline{f(y)} \mathrm{d} F(y)=0
$$

follows.
So the foregoing proof for $p=2$ and $d=2$ yields a direct proof of the fact that $\mathrm{e}^{-a|z|^{2}}, a>0$ is a $*$-cyclic vector for M_{z} in $L^{2}(\mu)$ for every finite Borel measure μ on \mathbb{C}. It generalizes the proof in $[1$, sec. 83] of the case $d=1$ which concerns the self-adjoint case $\mu(\mathbb{C} \backslash \mathbb{R})=0$.

Lemma 4.4. Let X be a Polish space where every pair of distinct points are joined by infinitely many non-intersecting paths. Let μ be a σ-finite Borel measure on X. Then there is an increasing sequence of compact sets F_{n} with empty interior and connected complement such that $\mu\left(X \backslash \bigcup_{n} F_{n}\right)=0$.

Proof. Without restriction let μ be finite. All subspaces of X are separable. Choose a countable dense set $\left\{a_{1}, a_{2}, \ldots\right\}$ in the complement of the set of mass points. Since the latter is countable, it does not contain an inner point by Baire's theorem, whence $\left\{a_{1}, a_{2}, \ldots\right\}$ is dense in X. Since μ is finite and since there are infinitely many non-intersecting paths joining a_{n} to a_{n+1}, for every $m \in \mathbb{N}$ there are connected measurable sets A_{n} with $a_{n}, a_{n+1} \in A_{n}$ such that $B_{m}:=\bigcup_{n} A_{n}$ is dense connected with $\mu\left(B_{m}\right)<\frac{1}{2 m}$. By Ulam's theorem (see, e.g., [7, theorem 2.67]) μ is tight and in particular outer regular. Therefore there is an open V_{m} with $B_{m} \subset V_{m}$ and $\mu\left(V_{m}\right)<\frac{1}{m}$ and there is an increasing sequence $\left(C_{n}\right)$ of compact sets with $\mu\left(X \backslash \bigcup_{n} C_{n}\right)=0$.

Now set $U_{n}:=\bigcup_{m>n} V_{2^{m}}$ and $F_{n}:=C_{n} \backslash U_{n}$. Clearly, $\left(F_{n}\right)$ is increasing, $\mu\left(\complement F_{n}\right) \rightarrow 0$, and F_{n} is compact. Its interior is empty since $B_{2^{n}} \subset U_{n} \subset \complement F_{n}$ is dense. $\complement F_{n}$ is connected. Indeed, let U, V be open sets covering $\complement F_{n}$ with $U \neq \emptyset$ and $U \cap V \cap C F_{n}=\emptyset$. Since $B_{2^{n}}$ is dense, $U \cap V=\emptyset$ follows, and since $B_{2^{n}}$ is connected, $V=\emptyset$ follows.

Note that separable Banach spaces with real dimension ≥ 2 satisfy the assumptions on X in (4.4). For $X=\mathbb{C}$ the proof can be further shortened taking in place of all B_{m} a single dense null set B consisting of countably many straight lines through one common point, and of course, Ulam's theorem is not needed. The first (more cumbrous) proof for $X=\mathbb{C}$ and any finite Borel measure μ is given in Nagy [17]. If $\operatorname{supp}(\mu)$ is compact there is the original proof by Bram [4], a similar one in Conway [9], and a simpler one in Shields [22].
Lemma 4.5. Let μ be a finite Borel measure on \mathbb{C}. Then there is a positive Borel measurable function ρ such that $\Pi(z) \subset L^{p}(\nu)$ and $\Pi(z, \bar{z}) \subset \overline{\Pi(z)}{ }^{\nu}$ for all $p \in] 0, \infty\left[\right.$ and all $\nu:=|h|^{p} \mu^{\prime}$ with μ^{\prime} a finite Borel measure on \mathbb{C} equivalent to μ and h Borel measurable satisfying $0<|h| \leq \rho$.
Proof. Set $k: \mathbb{C} \rightarrow \mathbb{C}, k(z):=\bar{z}$. Let $\left(F_{n}\right)$ be an increasing sequence of α sets of \mathbb{C} satisfying $\mu(N)=0$ for $N:=\mathbb{C} \backslash \bigcup_{n} F_{n}$, see (4.4). For every $n \in \mathbb{N}$ there is $q_{n} \in \Pi(z)$ satisfying $\left\|1_{F_{n}}\left(k-q_{n}\right)\right\|_{\infty}<\mathrm{e}^{-\delta_{n}}$ with $\delta_{n}:=n\left\|1_{F_{n}} k\right\|_{\infty}$. Set $M_{n}:=\max \left\{1,\left\|q_{1} \mathrm{e}^{-|z|}\right\|_{\infty}, \ldots,\left\|q_{n} \mathrm{e}^{-|z|}\right\|_{\infty}\right\}$ and let ρ be the positive function on
\mathbb{C} given by $\rho \mid N:=1$ and $\rho \mid\left(F_{n} \backslash F_{n-1}\right):=\mathrm{e}^{-2|z|} / M_{n}$ for $n \in \mathbb{N}$ with $F_{0}:=\emptyset$.
Since $q \rho$ for $q \in \Pi(z)$ is bounded, $\Pi(z) \subset L^{p}(\nu)$ holds. For the proof of $\Pi(z, \bar{z}) \subset \overline{\Pi(z)}^{\nu}$ obviously it suffices to show $\Pi(z) \bar{z}^{m} \subset \overline{\Pi(z)}^{\nu}$ for $m=0,1,2, \ldots$ This occurs by induction on $m \in \mathbb{N} \cup\{0\}$. Let $j \in \mathbb{N} \cup\{0\}$ and write $\bar{z}^{m+1}=\bar{z}^{m} k$. Then $\left\|z^{j} \bar{z}^{m} k-z^{j} \bar{z}^{m} q_{n}\right\|_{p \nu} \leq \nu(\mathbb{C})^{1 / p} \delta_{n}^{(j+m)} \mathrm{e}^{-\delta_{n}}+\left\|1_{\mathrm{C}_{n}}\left(z^{j} \bar{z}^{m} k-z^{j} \bar{z}^{m} q_{n}\right)\right\|_{p \nu}$. The first summand vanishes for $n \rightarrow \infty$, the latter is less or equal to $\left\|1_{\mathrm{CF}_{n}} z^{j} \bar{z}^{m} k\right\|_{p \nu}+$ $\left\|1_{C_{F_{n}}} z^{j} \bar{z}^{m} q_{n} \rho\right\|_{p \mu^{\prime}}$, up to the constant factor $\sqrt[p]{2} / 2$ in the case $p<1$. Now $\left|1_{\mathrm{C}_{F_{n}}} z^{j} \bar{z}^{m} k\right| \leq\left|z^{(j+m+1)}\right|$ and $\left|1_{\mathrm{C}_{F_{n}}} z^{j} \bar{z}^{m} q_{n} \rho\right| \leq\left|z^{(j+m)}\right| \mathrm{e}^{-|z|}$, whence both summands vanish for $n \rightarrow \infty$ by dominated convergence. Since $z^{j} q_{n} \bar{z}^{m} \in \overline{\Pi(z)}^{\nu}$ by assumption, we infer $z^{j} \bar{z}^{m} k \in \overline{\Pi(z, \bar{z})}^{\nu}$ for every j, thus concluding the proof.

Proof of (3.3). By (4.5) there exists a Borel measurable function ρ with $0<\rho \leq$ $\mathrm{e}^{-|z|^{2}}$ such that $\Pi(z) \subset L^{p}(\nu)$ and $\Pi(z, \bar{z}) \subset \overline{\Pi(z)}^{\nu}$ for all $\left.p \in\right] 0, \infty\left[\right.$ if $\nu:=\rho^{p} \mu^{\prime}$. By (3.4) and (4.2) we have $\overline{\Pi(z, \bar{z}) \rho}{ }^{\mu^{\prime}}=L^{p}\left(\mu^{\prime}\right)$, whence $\overline{\Pi(z, \bar{z})}{ }^{\nu}=L^{p}(\nu)$ by (4.1). Therefore $\overline{\Pi(z)}^{\nu}=L^{p}(\nu)$ and hence $\overline{\Pi(z) \rho}{ }^{\mu^{\prime}}=L^{p}\left(\mu^{\prime}\right)$ by (4.1). The last assertion follows from (4.2) for $M=\Pi(z)$.

The decomposition (π, ν) of (φ, μ) can be derived from Rohlin's disintegration theorem (see Rohlin [19]), and can be found in Seid [21, remark 3.4]. There φ is a bounded Borel function on the finite measure space $([0,1], \mathcal{B}, \mu)$ with \mathcal{B} the Borel sets. By the following two lemmata we generalize this result in that φ is a measurable not necessarily bounded function on a finite separable measure space $(\Omega, \mathcal{A}, \mu)$ and the multiplication operator M_{φ} is isomorphic with M_{π} by means of a measure algebra isomorphism.

Lemma 4.6. Let $(\Omega, \mathcal{A}, \mu)$ be a finite separable measure space. Then there is a measurable function $a: \Omega \rightarrow[0,1]$ such that $[B] \mapsto\left[a^{-1}(B)\right], B \in \mathcal{B}$ is a measure algebra isomorphism from $(\mathcal{B}, a(\mu))$ onto (\mathcal{A}, μ) and that for every measurable $\varphi: \Omega \rightarrow \mathbb{C}$ there is an a(μ)-almost unique measurable $\psi:[0,1] \rightarrow \mathbb{C}$ with $\varphi=\psi \circ a \mu$-a.e.

Proof. (i) Let $\left(A_{n}\right)$ be a sequence in \mathcal{A} such that for all $\Delta \in \mathcal{A}, \epsilon>0$ there is $n \in \mathbb{N}$ with $\mu\left(\Delta \Delta A_{n}\right)<\epsilon$. Let $\Delta \in \mathcal{A}$. Choose a subsequence $\left(n_{k}\right)$ such that $\mu\left(\Delta \Delta A_{n_{k}}\right)<2^{-2 k}$. Set $\tilde{\Delta}:=\bigcup_{l} \bigcap_{k \geq l} A_{n_{k}}$. Then $\mu(\Delta \Delta \tilde{\Delta})=0$ holds. Indeed, for $\Delta_{l}:=\bigcap_{k \geq l} A_{n_{k}}$ one has $\Delta \Delta \Delta_{l}=\bigcup_{k \geq l}\left(\Delta \backslash A_{n_{k}}\right) \cup\left(\Delta_{l} \backslash \Delta\right) \subset \bigcup_{k \geq l}\left(\Delta \Delta A_{n_{k}}\right)$, whence $\mu\left(\Delta \triangle \Delta_{l}\right) \leq \sum_{k \geq l} 2^{-2 k}<2^{-l}$. Therefore $\mu\left(\Delta \backslash \Delta_{l}\right)<2^{-l} \forall l$ and hence $\mu(\Delta \backslash \tilde{\Delta})=0$. Since $\tilde{\Delta} \backslash \Delta=\bigcup_{l \geq m}\left(\Delta_{l} \backslash \Delta\right) \forall m$ one has also $\mu(\tilde{\Delta} \backslash \Delta)<\sum_{l \geq m} 2^{-l}$ $\forall m$ and hence $\mu(\tilde{\Delta} \backslash \Delta)=0$.

The set $A_{0}:=\bigcup_{l} \bigcap_{n \geq l} A_{n}$ is a μ-null set. Indeed, obviously $\tilde{\Delta} \supset A_{0}$ for all $\Delta \in \mathcal{A}$. In particular $\tilde{\Delta} \supset A_{0}$ for $\Delta:=\Omega \backslash A_{0}$, whence $0=\mu(\Delta \Delta \tilde{\Delta}) \geq \mu\left(A_{0}\right)$. Since $\mu\left(A_{0}\right)=0$ one may replace the original sequence $\left(A_{n}\right)$ by $\left(A_{n} \backslash A_{0}\right)$ achieving $A_{0}=\emptyset$.

The function $a: \Omega \rightarrow\left[0,1\left[, a:=\sum_{n=1}^{\infty} 2^{-n} 1_{A_{n}}\right.\right.$ is measurable. As $A_{0}=\emptyset$ every $a(\omega) \in[0,1[$ is represented as a binary number without the period $\{1\}$. For $x \in\left[0,1\left[\right.\right.$ let $d_{n}(x) \in\{0,1\}$ denote the n'th figure of its dual representation. Then $d_{n} \circ a=1_{A_{n}}$ holds. Moreover, d_{n} is measurable, since $d_{n}^{-1}(\{1\})=\bigcup\left\{\left[x, x+2^{-n}[\right.\right.$:
$x=\eta_{1} 2^{-1}+\cdots+\eta_{n-1} 2^{-n+1}+2^{-n}$ with $\left.\eta_{i}=0,1\right\} \in \mathcal{B}$.
For every subsequence $\left(n_{k}\right)$ consider the sets $A:=\bigcup_{l} \bigcap_{k \geq l} A_{n_{k}}$ and $B:=$ $\bigcup_{l} \bigcap_{k \geq l} d_{n_{k}}^{-1}(\{1\})$. Then $a^{-1}(B)=\bigcup_{l} \bigcap_{k \geq l} a^{-1}\left(d_{n_{k}}^{-1}(\{1\})\right)=\bigcup_{l} \bigcap_{k \geq l} A_{n_{k}}=A$. Therefore for every $\Delta \in \mathcal{A}$ there is $B \in \mathcal{B}$ such that $[\Delta]=[\tilde{\Delta}]=\left[a^{-1}(B)\right]$. This means that $T: \mathcal{B} / \mathcal{N}_{a(\mu)} \rightarrow \mathcal{A} / \mathcal{N}_{\mu}, T([B]):=\left[a^{-1}(B)\right]$ is surjective. But note first that, by $\mu\left(a^{-1}(B)\right)=a(\mu)(B), T$ is well-defined injective with $\mu \circ T=a(\mu)$. Obviously T preserves the measure algebra structure.
(ii) The linear map $L_{a(\mu)}^{\infty} \rightarrow L_{\mu}^{\infty}, \psi \mapsto \psi \circ a$ is isometric as $a(\mu)(\{|\psi| \geq$ $c\})=\mu\left(a^{-1}(\{|\psi| \geq c\})\right)=\mu(\{|\psi \circ a| \geq c\})$. Its range contains the total set $\left\{1_{\Delta}: \Delta \in \mathcal{A}\right\}$, since $1_{\Delta}=1_{\tilde{\Delta}}=1_{a^{-1}(B)}=1_{B_{\Delta}} \circ a$. Hence it is surjective, too. This means that for every bounded measurable $\varphi: \Omega \rightarrow \mathbb{C}$ there is an $a(\mu)$-almost unique measurable $\psi:[0,1] \rightarrow \mathbb{C}$ with $\varphi=\psi \circ a \mu$-a.e.

This result is easily generalized to unbounded measurable $\varphi: \Omega \rightarrow \mathbb{C}$. Let $\Delta_{n}:=\{n-1 \leq|\varphi|<n\} \in \mathcal{A}$ and let $\psi_{n}:\left[0,1\left[\rightarrow \mathbb{C}\right.\right.$ satisfy $\varphi 1_{\Delta_{n}}=\psi_{n} \circ a \mu$-a.e. Then $\varphi=\sum_{n} \varphi 1_{\Delta_{n}}=\sum_{n}\left(\psi_{n} \circ a\right)=\left(\sum_{n} \psi_{n}\right) \circ a$ holds on the complement of some μ-null set Γ. Let $M:=\left\{x \in\left[0,1\left[: \sum_{n} \psi_{n}(x)\right.\right.\right.$ not convergent $\}$. Then M is measurable and $a^{-1}(M) \subset \Gamma$. Therefore $\varphi=\psi \circ a \mu-$ a.e. with $\psi:=\sum_{n} \psi_{n} 1_{[0,1\lceil\backslash M}$. Moreover, ψ is $a(\mu)$-almost unique as every ψ_{n} is so.

Let (Ω, \mathcal{A}) be an uncountable standard measurable space. Then, by the wellknown Isomorphism Theorem [18, theorem I. 2.12], there is a measurable space isomorphism a onto $([0,1], \mathcal{B})$. Hence $a:(\Omega, \mathcal{A}, \mu) \rightarrow([0,1], \mathcal{B}, a(\mu))$ is even a measure space isomorphisms.

Lemma 4.7. Let $(\Omega, \mathcal{A}, \mu)$ be a finite separable measure space and let $\varphi: \Omega \rightarrow \mathbb{C}$ be measurable. Let $k: \mathbb{C} \rightarrow \mathbb{D}, k(z):=\frac{z}{1+|z|}$, and let κ denote its inverse. Let $\gamma:[0,1] \times \mathbb{D} \rightarrow[0,1] \times \mathbb{C}, \gamma(t, z):=(t, \kappa(z))$. Then $k \circ \varphi$ is bounded and, if (π, ν) is a Rohlin decomposition of $(k \circ \varphi, \mu)$, then $(\pi, \gamma(\nu))$ is a Rohlin decomposition of (φ, μ).

Proof. Let $\tau: M(\mu) \rightarrow M(\nu)$ be the function algebra isomorphism accomplishing the decomposition (π, ν) of $(k \circ \varphi, \mu)$. Then $\tau(k \circ \varphi)=\pi$ and hence $\tau(\varphi)=\kappa \circ \pi$. Note that $\operatorname{supp}(\pi(\nu)) \subset \mathbb{D}$ as $\pi(\nu)=(k \circ \varphi)(\mu)$, whence $\nu([0,1] \times \mathbb{C})=0$.

Let $\nu^{\prime}:=\gamma(\nu)=\lambda \otimes \mu_{c}^{\prime}+\sum_{n \neq c} \delta_{1 / n} \otimes \mu_{n}^{\prime}$ with $\mu_{n}^{\prime}:=\kappa\left(\mu_{n}\right) \forall n$. Then γ is a measure space isomorphism from $([0,1] \times \mathbb{C}, \mathcal{B}, \nu)$ onto $\left([0,1] \times \mathbb{C}, \mathcal{B}, \nu^{\prime}\right)$. Let $\tau_{\gamma}: M(\nu) \rightarrow M\left(\nu^{\prime}\right), f \mapsto f \circ \gamma^{-1}$ be the induced function algebra isomorphism.

Then the function algebra isomorphism $\tau_{\gamma} \circ \tau: M(\mu) \rightarrow M\left(\nu^{\prime}\right)$ satisfies $\left(\tau_{\gamma} \circ \tau\right)(\varphi)(t, z)=\tau(\varphi)\left(\gamma^{-1}(t, z)\right)=\tau(\varphi)(t, k(z))=(\kappa \circ \pi)(t, k(z))=\kappa(k(z))=z$. Therefore $\left(\tau_{\gamma} \circ \tau\right)(\varphi)=\pi$ thus accomplishing the proof.

Proof of (3.1). By definition of multicyclicity, multi-*-cyclicity, and multiplicity it suffices to show $\operatorname{mc}\left(M_{\pi}\right)=\operatorname{mc}^{*}\left(M_{\pi}\right)=\operatorname{mp}\left(M_{\pi}\right)$ for a Rohlin decomposition (π, ν). Plainly $\mathrm{mc}^{*}(T) \leq \operatorname{mc}(T)$.

Consider first the case $\mu_{c} \neq 0$. Then $\operatorname{mp}\left(M_{\pi}\right)=\infty$ holds by definition. In order to show $\mathrm{mc}^{*}\left(M_{\pi}\right)=\infty$, it suffices to treat the case $\nu=\lambda \otimes \mu_{c}$, since in general $L^{p}(\nu)$ is the direct sum of the subspaces $L^{p}\left(\lambda \otimes \mu_{c}\right)$ and $\bigoplus_{n} L^{p}\left(\delta_{1 / n} \otimes \mu_{n}\right)$, which are invariant under M_{π} and $M_{\bar{\pi}}$. Let us assume that there is a finite
*-cyclic set $\left\{f_{1}, \ldots, f_{d}\right\}$ for M_{π} with $d \in \mathbb{N}$. We consider $\chi_{n} 1_{\mathbb{C}} \in L^{p}(\nu)$ with $\chi_{n}:=1_{j 1 /(n+1), 1 / n]}$. Then for $n \in \mathbb{N}$ and $\delta=1, \ldots, d$ there is a sequence $\left(p_{k}^{n \delta}\right)_{k}$ in $\Pi(z, \bar{z})$ such that $q_{k}^{n \delta}(z):=p_{k}^{n \delta}(z, \bar{z})$ satisfy $\sum_{\delta=1}^{d} q_{k}^{n \delta} f_{\delta} \rightarrow \chi_{n} 1_{\mathbb{C}}$ for $k \rightarrow \infty$ in $L^{p}(\nu)$. Set $f_{\delta z}:=f_{\delta}(\cdot, z)$. By Tonelli's theorem there is a subsequence $\left(k_{l}\right)_{l}$, without restriction $(k)_{k}$ itself, with $\sum_{\delta=1}^{d} q_{k}^{n \delta}(z) f_{\delta z} \rightarrow \chi_{n}$ for $k \rightarrow \infty$ in $L^{p}(\lambda)$ for μ_{c}-almost all $z \in \mathbb{C}$. We consider this convergence for $n=1, \ldots, d$. Since $\chi_{1}, \ldots, \chi_{d}$ are linear independent, it follows that $f_{1 z}, \ldots, f_{d z}$ are so for μ_{c}-almost all $z \in \mathbb{C}$. Consequently $q_{k}^{n \delta}(z)$ for $k \rightarrow \infty$ converge to the coordinates $\alpha_{\delta n}(z)$ of χ_{n} with respect to $\left(f_{\delta z}\right)_{\delta}$. Hence one gets $f_{\delta z}=\sum_{n=1}^{d} \beta_{n \delta}(z) \chi_{n}, \delta=1, \ldots, d$ with coordinates $\beta_{n \delta}(z)$. - Repeating these considerations for $\chi_{d+1}, \ldots, \chi_{2 d}$ in place of $\chi_{1}, \ldots, \chi_{d}$ we obtain $f_{\delta z}=\sum_{n=1}^{d} \beta_{n \delta}^{\prime}(z) \chi_{d+n}, \delta=1, \ldots, d$. Since $\chi_{1}, \ldots, \chi_{2 d}$ are linear independent, this implies for μ_{c}-almost all $z \in \mathbb{C}$ that $f_{\delta}(t, z)=0$ for λ-almost all $t \in[0,1]$. Hence $\int\left|f_{\delta}\right|^{p} \mathrm{~d} \lambda \otimes \mu_{c}=0$ by Tonelli's theorem. This means $f_{\delta}=0$ for $\delta=1, \ldots, d$, which is not possible.

Now let $\mu_{c}=0$ and set $\chi_{n}:=1_{\{1 / n\}}, n \in \mathbb{N}$. We consider first the case $\operatorname{mp}\left(M_{\pi}\right)=\infty$. Then $\mu_{n} \neq 0 \forall n \in \mathbb{N}$. Assuming the existence of a $*$-cyclic set of d elements, as in the previous case $f_{\delta z}=\sum_{n=1}^{d} \beta_{n \delta}(z) \chi_{n}=\sum_{n=1}^{d} \beta_{n \delta}^{\prime}(z) \chi_{d+n}$, $\delta=1, \ldots, n$ follows. This implies for μ_{c}-almost all $z \in \mathbb{C}$ that $f_{\delta}(t, z)=0$ for all $1 / t \in \mathbb{N}$. This means $f_{\delta}=0$ for all $\delta=1, \ldots, d$, which is not possible.
We turn to the last case $N:=\operatorname{mp}\left(M_{\pi}\right) \in \mathbb{N}$. Then $\mu_{n} \neq 0$ for $n=1, \ldots, N$ und $\mu_{n}=0$ else. Since M_{π} is cyclic in $L^{p}\left(\delta_{1 / n} \otimes \mu_{n}\right)$ according to (3.3), $\operatorname{mc}\left(M_{\pi}\right) \leq N$ follows. Let us assume now that there is a $*$-cyclic set $\left\{f_{1}, \ldots, f_{d}\right\}$ for M_{π} with $d<N$. By considerations as in the case $\mu_{c} \neq 0$ we get $f_{\delta z}=\sum_{n=1}^{d} \beta_{n \delta}(z) \chi_{n}=$ $\sum_{n=2}^{d} \beta_{n \delta}^{\prime}(z) \chi_{n}+\beta_{m \delta}^{\prime} \chi_{m}$ with $m \notin\{1, \ldots, d\}$. Since all χ 's are linear independent this implies $\beta_{1 \delta}(z)=0$ for μ_{c}-almost all $z \in \mathbb{C}$. Analogously $\beta_{n \delta}(z)=0$ for μ_{c}-almost all $z \in \mathbb{C}$ for every $n \in\{1,, \ldots, d\}$. Therefore $f_{\delta z}=0$ for μ_{c}-almost all $z \in \mathbb{C}$. This means $f_{\delta}=0$ for every δ, which is not possible.

The next lemma is not new but it puts together the equivalences for convenience.

Lemma 4.8. Let $p \in] 0, \infty[$. Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space and let $Z \cup\{\varphi\}$ be a set of measurable functions. Then (a) - (e) are equivalent.
(a) Z is graph cyclic for M_{φ} in $L^{p}(\mu)$
(b) $\Pi\left(M_{\varphi}\right) Z$ is a core for M_{φ} in $L^{p}(\mu)$
(c) $\left\{\left(f, M_{\varphi} f\right): f \in \Pi\left(M_{\varphi}\right) Z\right\}$ is dense in $\left\{\left(f, M_{\varphi} f\right): f \in \mathcal{D}\left(M_{\varphi}\right)\right\}$
(d) $\Pi\left(M_{\varphi}\right) Z \sqrt[p]{1+|\varphi|^{p}}$ is dense in $L^{p}(\mu)$
(e) $\Pi\left(M_{\varphi}\right) Z$ is dense in $L^{p}\left(\left(1+|\varphi|^{p}\right) \mu\right)$

Proof. The equivalences of (a) and (b) and (c) hold by definition, the equivalence of (d) and (e) holds by (4.1). - As to (c) \Rightarrow (d) let $g \in L^{p}(\mu)$. Then $g^{\prime}:=$ $g / \sqrt[p]{1+|\varphi|^{p}} \in \mathcal{D}\left(M_{\varphi}\right)$ and hence for $\epsilon>0$ there is $f \in \Pi\left(M_{\varphi}\right) Z$ satisfying $\left\|\left(f, M_{\varphi} f\right)-\left(g^{\prime}, M_{\varphi} g^{\prime}\right)\right\|_{p}<\epsilon$, which means $\epsilon^{p}>\int\left(\left|f-g^{\prime}\right|^{p}+\left|\varphi f-\varphi g^{\prime}\right|^{p}\right) \mathrm{d} \mu=$ $\int\left|\sqrt[p]{1+|\varphi|^{p}} f-g\right|^{p} \mathrm{~d} \mu$ proving (d). - Finally assume (d) and let $f \in \mathcal{D}\left(M_{\varphi}\right)$. Then $f^{\prime}:=\sqrt[p]{1+|\varphi|^{p}} f \in L^{p}(\mu)$ and for $\epsilon>0$ there is $g \in \Pi\left(M_{\varphi}\right) Z$ satisfying
$\left\|f^{\prime}-\sqrt[p]{1+|\varphi|^{p}} g\right\|_{p}<\epsilon$, which means $\left\|\left(f, M_{\varphi} f\right)-\left(g, M_{\varphi} g\right)\right\|_{p}<\epsilon$, thus proving (c).

Proof of (3.2). Since $\Pi\left(M_{\varphi}\right) Z$ is dense in $L^{p}(\mu)$, by (4.2), we conclude that $\Pi\left(M_{\varphi}\right) Z \mathrm{e}^{-|\varphi|} \sqrt[p]{1+|\varphi|^{p}}$ is dense in $L^{p}(\mu)$. The result follows from (4.8).

Proof of (3.5). Let $a=1$ for convenience. - (i) Since X is locally compact there are compact sets $F_{n} \subset X$ with F_{n} contained in the interior of F_{n+1}, and functions $\eta_{n} \in C_{c}(X)$ satisfying $\eta_{n}\left|F_{n}=1, \eta_{n}\right|\left(X \backslash F_{n+1}\right)=0$, and $0 \leq \eta_{n} \leq 1_{X}$. Let $\alpha_{n}>0$ with $\sum_{n} \alpha_{n}<\infty$. Then $\eta:=\sum_{n} \alpha_{n} \eta_{n} \in C_{0}(X)$ and $\eta>0$.
(ii) Let $f \in C_{c}(X)$. Extend f continuously, first onto the closure \bar{X} by 0 , and subsequently onto \mathbb{C} by the Tietze-Urysohn extension theorem. Finally, multiplying the resulting function by a $j \in C_{c}(\mathbb{C})$ with $j \mid \operatorname{supp}(f)=1$ one achieves an extension of f with compact support. - Now let $g \in C_{c}(\mathbb{C})$ extend $f / \eta \in$ $C_{c}(X)$ with a positive $\eta \in C_{0}(X)$, see (i). Let $\epsilon>0$. By (4.3) there is $p \in \Pi(z, \bar{z})$ with $\left\|g-p \mathrm{e}^{-|z|^{2}}\right\|_{\infty}<\epsilon /\|\eta\|_{\infty, X}$. This implies $\left\|f-p \mathrm{e}^{-|z|^{2}} \eta\right\|_{\infty, X}<\epsilon$. Thus $e^{-|z|^{2}} \eta$ is a $*$-cyclic vector.
(iii) Let $h \in C_{0}(X)$ be a cyclic vector. Since $C_{0}(X)$ vanishes nowhere, so does h. Let $K \subset X$ be compact. Let $\varphi \in C(K)$. By the Tietze-Urysohn extension theorem exists a bounded continuous ϕ on X with $\phi \mid K=\varphi$. Then $\phi h \in C_{0}(X)$. Set $c:=\sup _{z \in K}\left|\frac{1}{h(z)}\right|$ and let $\epsilon>0$. Then there is $p \in \Pi(z)$ satisfying $\|\phi h-p h\|_{\infty}<\epsilon / c$. This implies $\|\varphi-p\|_{\infty, K}<\epsilon$. Thus K is an α-set by definition.
(iv) Now let every compact $K \subset X$ be an α-set. Set $k(z):=\bar{z}$. There are $q_{n} \in \Pi(z)$ satisfying $\left\|1_{F_{n}}\left(k-q_{n}\right)\right\|_{\infty}<\frac{1}{n}$. Then set $M_{n}:=\max \left\{1,\left\|1_{F_{n+1}} k\right\|_{\infty}\right.$, $\left.\left\|1_{F_{n+1}} q_{1}\right\|_{\infty}, \ldots,\left\|1_{F_{n+1}} q_{n}\right\|_{\infty}\right\}$ and $\alpha_{n}:=2^{-n} / M_{n}$ in (i). For $j \geq n$ one has $\left\|\alpha_{j} \eta_{j}\left(k-q_{n}\right)\right\|_{\infty, X} \leq 2 \cdot 2^{-j}$, whence $\left\|1_{C_{F_{n}}} \eta\left(k-q_{n}\right)\right\|_{\infty, X} \rightarrow 0$. It follows $\| \eta(k-$ $\left.q_{n}\right) \|_{\infty, X} \rightarrow 0$. - Now we show that $h:=\mathrm{e}^{-|z|^{2}} \eta$ is a cyclic vector. By (ii), $A:=\Pi(z, \bar{z}) h$ is dense in $C_{0}(X)$. We conclude the proof showing $A \subset \overline{\Pi(z) h}$ by the method used in (4.3). Let $q \in \Pi(z)$. Induction occurs on $m=0,1,2 \ldots$ Then $\left\|q \bar{z}^{m+1} h-q q_{n} \bar{z}^{m} h\right\|_{\infty, X} \leq C\left\|\eta\left(k-q_{n}\right)\right\|_{\infty, X}$ with $C:=\left\|q \bar{z}^{m} \mathrm{e}^{-|z|^{2}}\right\|_{\infty}$ vanishes for $n \rightarrow \infty$.

5. Further Results

Let $p \in] 0, \infty[$. We know by (3.4), (3.3) that, for every finite Borel measure μ, M_{z} in $L^{p}(\mu)$ is $*$-cyclic by the continuous vector $\mathrm{e}^{-a|z|^{2}}$ and that M_{z} is cyclic. The question is whether there are continuous cyclic vectors.

Example 5.1. Let $\mu:=1_{\mathbb{D}} \lambda$ with λ the Lebesgue measure on \mathbb{C} and \mathbb{D} the open unit disc. Let h be a cyclic vector for M_{z} in $L^{2}(\mu)$. Then $\{h=0\}$ is a μ-null set containing all continuity points of h.

Proof. $\{h=0\}$ is a μ-null set, since $L^{2}(\mu)=\overline{\Pi(z) h} \subset\left\{f \in L^{2}(\mu): f=1_{\{h \neq 0\}} f\right\}$. - Let h be continuous at $x \in \mathbb{D}$. Assume $h(x) \neq 0$. Then there are an open disc D with center x and $\delta>0$ such that $\delta 1_{D} \leq|h|$. Hence, by (4.2), $\Pi(z) 1_{D}$ is dense in $L^{2}\left(1_{D} \lambda\right)$. This contradicts e.g. 3.22. (c) in [6].

In particular, there is no cyclic vector for M_{z} in $L^{2}\left(1_{\mathbb{D}} \lambda\right)$ that is continuous on \mathbb{D}, thus answering a question about continuity of cyclic vectors posed by Shields [22]. If, however, $\bar{z} \in \overline{\Pi(z)}$ holds then we have
Proposition 5.2. Let $p \in] 0, \infty[$. Let μ be a finite Borel measure on \mathbb{C} such that $\Pi(z) \subset L^{p}(\mu)$ and $\bar{z} \in \overline{\Pi(z)}$, then $\mathrm{e}^{-a|z|^{2}}$ for $a>0$ is a cyclic vector for M_{z} in $L^{p}(\mu)$.
Proof. Apply (5.3) below with $A:=\Pi(z), b:=\bar{z}$, and $c:=\mathrm{e}^{-a|z|^{2}}$. The result follows from (3.4).

The following is a useful tool in establishing as in (5.2) that the closure of a coset of a given algebra contains the coset of some larger algebra.

Lemma 5.3. Let $p \in] 0, \infty[$ and let μ be a finite Borel measure on \mathbb{C}. Let $A \subset$ $L^{p}(\mu)$ be an algebra, let $b \in \bar{A}$, and let $c \in L^{p}(\mu)$. Suppose $A b^{n} c \subset L^{\infty}(\mu)$ for $n=0,1,2 \ldots$ Then $\Pi(A, b) c \subset \overline{A c}$.

Proof. It suffices to show $A b^{n} c \subset \overline{A c}$ by induction on n. Let $\left(a_{k}\right)$ be a sequence in A converging to b. As to the step $n \rightarrow n+1$ note $\left\|a b^{n+1} c-a a_{k} b^{n} c\right\|_{p} \leq$ $\left\|a b^{n} c\right\|_{\infty}\left\|b-a_{k}\right\|_{p} \rightarrow 0$ for $k \rightarrow \infty$. Since by assumption $a a_{k} b^{n} c \in \overline{A c}$ the result follows.

For $z \in \mathbb{C}$ and $\Delta \subset \Omega$ let $\mathrm{n}_{\Delta}(z):=|\{\omega \in \Delta: \varphi(\omega)=z\}|$ denote the number in $\mathbb{N} \cup\{\infty\}$ of preimages in Δ of z under φ. For a Rohlin decomposition (π, ν) of $(\varphi, \mu), \varphi(\mu)=\mu_{c}+\sum_{n} \mu_{n}$ holds. Set $P_{n}:=\left\{\frac{\mathrm{d} \mu_{n}}{\mathrm{~d} \varphi(\mu)}>0\right\}$ for $n \in\{c\} \cup \mathbb{N}$ and define the local multiplicity by

$$
\mathrm{m}_{\varphi}(z):=\infty 1_{P_{c}}(z)+\sup \left(\{0\} \cup\left\{n \in \mathbb{N}: z \in P_{n}\right\}\right)
$$

We will keep in mind that P_{n} is unique up to a $\varphi(\mu)$-null set.
Theorem 5.4. Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space with (Ω, \mathcal{A}) a standard measurable space. Let $\varphi: \Omega \rightarrow \mathbb{C}$ be measurable. Then there is a μ-null set N such that $\mathrm{n}_{\Omega \backslash N}$ is measurable and such that

$$
\mathrm{m}_{\varphi}=\mathrm{n}_{\Omega \backslash N} \leq \mathrm{n}_{\Omega \backslash N^{\prime}} \quad \varphi(\mu)-a . e .
$$

for every μ-null set N^{\prime}. Furthermore $\operatorname{mp}\left(M_{\varphi}\right)=\sup _{\varphi}$ holds for M_{φ} in $L^{p}(\mu)$, $p \in] 0, \infty[$.
Proof. As (Ω, \mathcal{A}) is standard and μ is finite there is a Rohlin decomposition (π, ν) of (φ, μ) by a measure space isomorphism ϑ onto the complement of a ν-null set of $[0,1] \times \mathbb{C}$. Because of $\mu_{n+1} \ll \mu_{n} \forall n,\left(P_{n}\right)_{n}$ is $\varphi(\mu)$-almost decreasing. Therefore $\mathrm{m}_{\varphi}=\infty 1_{P_{c}}+\sum_{n} 1_{P_{n}} \varphi(\mu)$-a.e. holds. $S:=\left([0,1] \times P_{c}\right) \cup \bigcup_{n}\left(\left\{\frac{1}{n}\right\} \times P_{n}\right)$ is the complement of a ν-null set since $\mu_{n}\left(\complement P_{n}\right)=0$ for $n=c, 1,2, \ldots$, and $\left|S_{z}\right|=\infty 1_{P_{c}}(z)+\sum_{n} 1_{P_{n}}(z) \forall z \in \mathbb{C}$ for $S_{z}:=\{t \in[0,1]:(t, z) \in S\}$ holds. - Now let R be the complement of any ν-null set. Then $B_{c}:=\{z \in \mathbb{C}$: $\left.\lambda\left(R_{z}\right)=1\right\}$ and $B_{n}:=\left\{z \in \mathbb{C}: \frac{1}{n} \in R_{z}\right\}$ satisfy $\mu_{n}\left(\mathbb{C} \backslash B_{n}\right)=0$, whence $\varphi(\mu)\left(P_{n} \backslash B_{n}\right)=0$ for $n=c, 1,2, \ldots$ This implies $\left|R_{z}\right| \geq\left|S_{z}\right| \varphi(\mu)$-a.e. Moreover, we may choose without restriction $P_{n} \subset B_{n}, n=c, 1,2, \ldots$ for $R:=\vartheta(\Omega)$. Then $\left|S_{z}\right|=\left|S_{z} \cap \vartheta(\Omega)\right|$. Since generally $\mathrm{n}_{\Delta}(z)=\vartheta(\Delta)_{z}$ by $\varphi=\pi \circ \vartheta$, we obtain
$\mathrm{n}_{\Omega \backslash N}(z)=\left|S_{z}\right|$ for $N:=\complement \vartheta^{-1}(S)$, whence $\mathrm{n}_{\Omega \backslash N}$ is measurable, and $\mathrm{n}_{\Omega \backslash N}(z)=$ $\left|S_{z}\right| \leq\left|\vartheta\left(\Omega \backslash N^{\prime}\right)_{z}\right|=\mathrm{n}_{\Omega \backslash N^{\prime}}(z) \varphi(\mu)$-a.e. - The last assertion is obvious.

Obviously, in (5.4), $\mathrm{n}_{\Omega \backslash\left(N \cup N^{\prime}\right)}=\mathrm{n}_{\Omega \backslash N}$, whence $\mathrm{m}_{\varphi}=\mathrm{n}_{\Omega \backslash M}$ holds $\varphi(\mu)$-a.e., if the ν-null set M is large enough. Finally we mention that in the Hilbert space case m_{φ} is a complete invariant. This means that normal operators $T \simeq M_{\varphi}$ in $L^{2}(\mu)$ and $T^{\prime} \simeq M_{\varphi^{\prime}}$ in $L^{2}\left(\mu^{\prime}\right)$ with μ and μ^{\prime} Borel measures on \mathbb{C} are isomorphic if and only if $\varphi(\mu) \sim \varphi^{\prime}\left(\mu^{\prime}\right)$ and $m_{\varphi}=m_{\varphi^{\prime}}$ a.e. In other words m_{φ} is the usual local multiplicity derived from the spectral theorem. Results relating local multiplicity to the number of preimages can be found in $[3,13,14,15,16]$.

References

1. N.I. Achieser and I.M. Glasmann, Theorie der linearen Operatoren im Hilbert-Raum, Akademie-Verlag, Berlin 1968.
2. I. Agricola and T. Friedrich, The Gaussian measure on algebraic varieties, Fund. Math. 159 (1999), no. 1, 91-98.
3. E.A. Azoff and K.F. Clancey, Spectral multiplicity for direct integrals of normal operators, J. Operator Theory 3 (1980), no. 2, 213-235.
4. J. Bram, Subnormal operators, Duke Math. J. 22 (1955) 75-94.
5. L. Carleson, Mergelyan's theorem on uniform polynomial approximation, Math. Scand. 15 (1964) 167-175.
6. D.P.L. Castrigiano and F. Hofmaier, Bounded point evaluations for orthogonal polynomials, Adv. Appl. Math. Sci. 10 (2011), no. 4, 373-392.
7. D.P.L. Castrigiano and W. Roelcke, Topological Measures and Weighted Radon Measures, Alpha Science, Oxford 2008.
8. K. Conrad, L_{p}-spaces for $0<p<1$, preprint.
9. J.B. Conway, The Theory of Subnormal Operators, Mathematical Surveys and Monographs, 36. American Mathematical Society, Providence, RI, 1991.
10. B. Fuglede, The multidimensional moment Problem, Expo. Math. 1 (1983), no. 1, 47-65.
11. F. Hartogs and A. Rosenthal, Über Folgen analytischer Funktionen, Math. Ann. 100 (1928), no. 1, 212-263.
12. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York 1969.
13. J.S. Howland, A decomposition of a measure space with respect to a multiplication operator, Proc. Amer. Math. Soc. 78 (1980), no. 2, 231-234.
14. K.G. Kalb, Über die spektralen Vielfachheitsfunktionen des Multiplikationsoperators, Studia Math. 66 (1979), no. 1, 1-12.
15. T.L. Kriete, An elementary approach to the multiplicity theory of multiplication operators, Rocky Mountain J. Math. 16 (1986), no. 1, 23-32.
16. M.G. Nadkarni, Hellinger-Hahn type decompositions of the domain of a Borel function, Studia Math. 47 (1973) 51-62.
17. B. Nagy, Multicyclicity of unbounded normal operators and polynomial approximation in C, J. Funct. Anal. 257 (2009), no. 6, 1655-1665.
18. K.R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York 1967.
19. V.A. Rohlin, On the fundamental ideas of measure theory, Mat. Sborn. 25 (1949) 107-150, Amer. Math. Soc. Transl. (1952), no. 71, 55 pp.
20. H.A. Seid, Cyclic multiplication operators on L_{p}-spaces, Pacific J. Math. 51 (1974), no. 2, 549-562
21. H.A. Seid, The decomposition of multiplication operators on L_{p}-Spaces, Pacific J. Math. 62 (1976), no. 1, 265-274.
22. A. Shields, Cyclic vectors for multiplication operators, Michigan Math. J. 35 (1988), no. 3, 451-454.
23. B. Simon, The classical moment problem as a self-adjoint finite difference operator, Adv. Math. 137 (1998), no. 1, 82-203.
24. K. Stempak, J.L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal. 202 (2003), no. 2, 443-472.
25. E.L. Stout, Polynomial Convexity, Springer, New York 2007.
26. F.H. Szafraniec, Normals, subnormals and an open question, Oper. Matrices 4 (2010), no. 4, 485-510.

Technische Universität München, Fakultät für Mathematik, München, GerMANY.

E-mail address: seb@zaigler.com
E-mail address: castrig@ma.tum.de

[^0]: Date: Received: Jun 20, 2013; Revised: Feb. 19, 2014; Accepted: Apr. 21, 2014.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 47A16; Secondary 41A10, 47B15.
 Key words and phrases. Bram's theorem, unbounded normal operator, multiplicity, cyclic vector, uniform approximation.

