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APPLICATIONS TO THE CAMERON–STORVICK TYPE
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Abstract. In this paper, we establish a Cameron–Storvick type theorem with
respect to the Gaussian process. We then use this theorem to obtain various
integration formulas involving the transform, the �-product and the first vari-
ation.

1. Introduction

Let C0[0, T ] denote one-parameter Wiener space; that is the space of real-valued
continuous functions x(t) on [0, T ] with x(0) = 0.

In [2], the authors introduced the Cameron–Storvick theorem; that is to say,
the Wiener integral of the first variation of a functional F is expressed in terms
of the Wiener integral of F multiplied by a linear factor. In [14, 17], the authors
used the Cameron–Storvick theorem to obtained the various integration formulas
involving the Fourier-Feynman transform, the convolution product and the first
variation.

In [7], the authors established a Cameron–Storvick type theorem on Ca,b[0, T ]
which is general function space rather than the Wiener space C0[0, T ]. Also,
they obtained various integration formulas [3, 7]. Recently, in [15], the authors
introduced the concept of the transform with respect to the Gaussian process on
function space Ca,b[0, T ]. And then they used the Gaussian process to defined the
�-product and the first variation. Also, they established all possible relationships
involving all three of these concepts.
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In this paper, we show that the function space integral, involving two or three
concepts, can be expressed in terms of the function space integral of one concept.
First, a Cameron–Storvick relationship and translation theorem was established
with respect to the Gaussian process on function space. Simply by allowing
h = s = 1, we demonstrate that equation (3.4) in Section 3 is a Cameron–Storvick
type theorem, similar to that introduced by Chang and Skoug [7]. Using this,
we obtain various results involving the transform, the �-product, and the first
variation with respect to the Gaussian process. Finally, we demonstrate several
applications of the proposed method to explain the usefulness of our results.

2. Definitions and preliminaries

In this section, we list some definitions and properties from [4, 5, 15].

Let D = [0, T ] and let (Ω,B, P ) be a probability measure space. A real-valued
stochastic process Y on (Ω,B, P ) and D is called a generalized Brownian motion
process if Y (0, ω)=0 almost everywhere and for 0 = t0 < t1 < · · · < tn ≤ T ,
the n-dimensional random vector (Y (t1, ω), · · · , Y (tn, ω)) is normally distributed
with the density function

K(~t, ~η) =
(
(2π)n

n∏
j=1

(
b(tj)− b(tj−1)

))−1/2

· exp

{
−1

2

n∑
j=1

((ηj − a(tj))− (ηj−1 − a(tj−1)))
2

b(tj)− b(tj−1)

}
where ~η = (η1, · · ·, ηn), η0 = 0, ~t = (t1, · · · , tn), a(t) is an absolutely continuous
real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ], and b(t) is a strictly
increasing, continuously differentiable real-valued function with b(0) = 0 and
b′(t) > 0 for each t ∈ [0, T ].

As explained in [18, pp.18-20], Y induces a probability measure µ on the
measurable space (RD,BD) where RD is the space of all real-valued functions
x(t), t ∈ D, and BD is the smallest σ-algebra of subsets of RD with respect to
which all the coordinate evaluation maps et(x) = x(t) defined on RD are measur-
able. The triple (RD,BD, µ) is a probability measure space. This measure space
is called the function space induced by the generalized Brownian motion process
Y determined by a(·) and b(·).

In [18], Yeh showed that the generalized Brownian motion process Y deter-
mined by a(·) and b(·) is a Gaussian process with mean function a(t) and covari-
ance function r(s, t) = min{b(s), b(t)}, and that the probability measure µ in-
duced by Y , taking a separable version, is supported by Ca,b[0, T ] (which is equiv-
alent to the Banach space of continuous functions x on [0, T ] with x(0) = 0 under
the sup norm). Hence (Ca,b[0, T ],B(Ca,b[0, T ]), µ) is the function space induced
by Y where B(Ca,b[0, T ]) is the Borel σ-algebra of Ca,b[0, T ]. We then complete
this function space to obtain (Ca,b[0, T ],W(Ca,b[0, T ]), µ) where W(Ca,b[0, T ]) is
the set of all Wiener measurable subsets of Ca,b[0, T ].



CAMERON–STORVICK TYPE THEOREM 13

Given two C-valued measurable functions F and G on Ca,b[0, T ], F is said to
be equal to G scale almost everywhere(s-a.e.) if for each ρ > 0, µ({x ∈ Ca,b[0, T ] :
F (ρx) 6= G(ρx)}) = 0 [8, 12].

Let L2
a,b[0, T ] be the set of functions on [0, T ] which are Lebesgue measurable

and square integrable with respect to the Lebesgue–Stieltjes measures on [0, T ]
induced by a(·) and b(·); i.e.,

L2
a,b[0, T ] =

{
v :

∫ T

0

|v2(s)|db(s) < ∞ and

∫ T

0

|v2(s)|d|a|(s) < ∞
}

where |a|(t) denotes the total variation of the function a(·) on the interval [0, t].
For u, v ∈ L2

a,b[0, T ], let

(u, v)a,b =

∫ T

0

u(t)v(t)d[b(t) + |a|(t)].

Then (·, ·)a,b is an inner product on L2
a,b[0, T ] and ‖u‖a,b =

√
(u, u)a,b is a norm

on L2
a,b[0, T ]. In particular, note that ‖u‖a,b = 0 if and only if u(t) = 0 a.e. on

[0, T ]. Furthermore, (L2
a,b[0, T ], ‖ · ‖a,b) is a separable Hilbert space. Note that all

functions of bounded variation on [0, T ] are elements of L2
a,b[0, T ]. Also note that

if a(t) ≡ 0 and b(t) = t, then L2
a,b[0, T ] = L2[0, T ]. In fact,

(L2
a,b[0, T ], ‖ · ‖a,b) ⊂ (L2

0,b[0, T ], ‖ · ‖0,b) = (L2[0, T ], ‖ · ‖2)

since the two norms ‖ · ‖0,b and ‖ · ‖2 are equivalent. For u ∈ L2
a,b[0, T ], let

(u, a′) =

∫ T

0

u(t)a′(t)dt =

∫ T

0

u(t)da(t)

and

(u2, b′) =

∫ T

0

u2(t)b′(t)dt =

∫ T

0

u2(t)db(t).

It is well-known that for each v ∈ L2
a,b[0, T ], the Paley–Wiener–Zygmund (PWZ)

stochastic integral 〈v, x〉, see [4, 5, 7], exists for µ-a.e. x ∈ Ca,b[0, T ].

Next we state several definitions and introduce various notations which are
used throughout the remainder of this paper.

For h ∈ L2
a,b[0, T ], we define the Gaussian process Zh by

Zh(x, t) =

∫ t

0

h(s)d̃x(t)

where
∫ t

0
h(s)d̃x(t) denotes the PWZ integral. For each v ∈ L2

a,b[0, T ], let 〈v, x〉 =∫ T

0
v(t)d̃x(t). From [9], we note that

〈v, Zh(x, ·)〉 = 〈vh, x〉

for h ∈ L∞[0, T ] and s-a.e. x ∈ Ca,b[0, T ]. Thus, throughout this paper, we
require h to be in L∞[0, T ] rather than simply in L2

a,b[0, T ].
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Let Ka,b[0, T ] be the set of all complex-valued continuous functions x(t) defined
on [0, T ] which vanish at t = 0 and whose real and imaginary parts are elements
of Ca,b[0, T ]; namely,

Ka,b[0, T ] = {x : [0, T ] → C|x(0) = 0, Re(x) ∈ Ca,b[0, T ] and

Im(x) ∈ Ca,b[0, T ]}.
Thus Ca,b[0, T ] is the subspace of all real-valued functions in Ka,b[0, T ].

Now, we state the definitions of the transform with respect to the Gaussian
process, the �-product and the first variation.

Definition 2.1. Let F and G be a functionals on Ka,b[0, T ] and let ρ, β, γ and τ
be non-zero complex numbers. Then the transform with respect to the Gaussian
process, the �-product and the first variation are defined by formulas

(T h1,h2

γ,β (F ))(y) =

∫
Ca,b[0,T ]

F
(
γZh1(x, ·) + βZh2(y, ·)

)
dµ(x), (2.1)

((F �G)s1,s2
ρ,τ )(y) =

∫
Ca,b[0,T ]

F
(
τZs2(y, ·) + ρZs1(x, ·)

)
·G

(
τZs2(y, ·)− ρZs1(x, ·)

)
dµ(x),

(2.2)

δF
(
Zh(x, ·)|Zs(z, ·)

)
=

∂

∂k
F

(
Zh(x, ·) + kZs(z, ·)

)∣∣∣∣
k=0

(2.3)

if they exist.

Remark 2.2. (1) When h1(t) = h2(t) = 1 on [0, T ], γ =
√

2 and β = i, T 1,1√
2,i

(F )

is the generalized Fourier-Wiener function space transform introduced by Chang
and Chung [4]. Also, T 1,1

γ,β(F ) is the generalized integral transform used by Chang,

Chung and Skoug [5]. In particular, if a(t) ≡ 0 and b(t) = t on [0, T ], then T 1,1√
2,i

(F )

is the Fourier-Wiener transform used by Cameron and Martin [1] and the T 1,1
γ,β(F )

is the integral transform used by Kim and Skoug [13].

(2) If s1(t) = s2(t) = 1 on [0, T ], τ = 1√
2

and ρ = 1√
2λ

for λ ∈ C̃+, then the

�-product (F �G)s1,s2
ρ,τ coincides with the convolution product (F ∗G)λ [6, 10, 11];

that is to say, (F � G)s1,s2
ρ,τ = (F ∗ G)λ for λ ∈ C̃+. Hence many results for

convolution products are corollaries of the results for �-product.
(3) If h(t) = s(t) = 1 on [0, T ], then the first variation of F with respect to

Gaussian process coincides with the first variation of δF [7, 14].

3. Integration by parts formulas on function space

In [7], Chang and Skoug established a translation theorem and a Cameron–
Storvick type theorem on function space. In this section, we will derive a gen-
eralized translation theorem and a Cameron–Storvick type theorem with respect
to a Gaussian process. It is clear (by assigning h = s = 1) that the results in [7]
are corollaries of the results obtained in this section. Finally, we establish several
integration formulas involving a transform with respect to a Gaussian process.
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The following lemma was established in [7, Theorem 3.1].

Lemma 3.1. (Translation theorem) Let x0(t) =
∫ t

0
z(s)db(s) for some z ∈

L2
a,b[0, T ]. Let F be a µ-integrable functional on Ca,b[0, T ]. Then∫

Ca,b[0,T ]

F (x + x0)dµ(x)

= exp
{
− 1

2
(z2, b′)− (z, a′)

}∫
Ca,b[0,T ]

F (x) exp{〈z, x〉}dµ(x).

(3.1)

In our next theorem, we obtain a translation theorem for the transform with
respect to the Gaussian process.

Theorem 3.2. (Generalized translation theorem) Let w(t) =
∫ t

0
z(u)db(u) for

some z ∈ L2
a,b[0, T ] and let 1

h
∈ L∞[0, T ]. Let F

(
Zh(x, ·)

)
be a µ-integrable

functional on Ka,b[0, T ]. Then∫
Ca,b[0,T ]

F
(
Zh(x, ·) + Zs(w, ·)

)
dµ(x)

= exp
{
− 1

2

((sz

h

)2

, b′
)
−

(sz

h
, a′

)}
·
∫

Ca,b[0,T ]

F
(
Zh(x, ·)

)
exp

{〈sz

h
, x

〉}
dµ(x).

(3.2)

Proof. Let G(x) = F
(
Zh(x, ·)

)
. Then

G(x + x0) = F
(
Zh(x, ·) + Zs(w, ·)

)
(3.3)

where x0(t) =
∫ t

0
s(u)
h(u)

dw(u). Hence using equations (3.1) and (3.3), it follows that∫
Ca,b[0,T ]

F
(
Zh(x, ·) + Zs(w, ·)

)
dµ(x) =

∫
Ca,b[0,T ]

G(x + x0)dµ(x)

= exp
{
− 1

2

((sz

h

)2

, b′
)
−

(sz

h
, a′

)} ∫
Ca,b[0,T ]

G(x) exp
{〈sz

h
, x

〉}
dµ(x)

= exp
{
− 1

2

((sz

h

)2

, b′
)
−

(sz

h
, a′

)} ∫
Ca,b[0,T ]

F
(
Zh(x, ·)

)
exp

{〈sz

h
, x

〉}
dµ(x).

Thus we have the desired result. �

Remark 3.3. (1) The result established by Chang and Skoug in [7] follows imme-
diately from Theorem 3.2 above by choosing h(t) = s(t) = 1 on [0, T ].

(2) In the setting of one parameter Wiener space C0[0, T ] (i.e., in the case where
a(t) ≡ 0 and b(t) = t on [0, T ] in our research), the function space Ca,b[0, T ]
reduces to the Wiener space C0[0, T ]. Thus the result of in [16, Theorem 3.2]
follows immediately from Theorem 3.2 above.
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The following theorem is one of main results in this paper and is called a
Cameron–Storvick type theorem with respect to the Gaussian process on function
space.

Theorem 3.4. (Cameron–Storvick type theorem) Let F , w and h be as in The-
orem 3.2. Assume that∫

Ca,b[0,T ]

∣∣∣δF(
Zh(x, ·)|Zs(w, ·)

)∣∣∣dµ(x) < ∞.

Then∫
Ca,b[0,T ]

δF
(
Zh(x, ·)|Zs(w, ·)

)
dµ(x)

=

∫
Ca,b[0,T ]

〈sz

h
, x

〉
F

(
Zh(x, ·)

)
dµ(x)−

(sz

h
, a′

) ∫
Ca,b[0,T ]

F
(
Zh(x, ·)

)
dµ(x).

(3.4)

Proof. By using equations (2.2) and (3.2), we have∫
Ca,b[0,T ]

δF
(
Zh(x, ·)|Zs(w, ·)

)
dµ(x)

=
∂

∂k

[ ∫
Ca,b[0,T ]

F
(
Zh(x, ·) + kZs(w, ·)

)
dµ(x)

]∣∣∣∣
k=0

=
∂

∂k

[
exp

{
− k2

2

((sz

h

)2

, b′
)
− k

(sz

h
, a′

)}
·
∫

Ca,b[0,T ]

F
(
Zh(x, ·)

)
exp

{
k
〈sz

h
, x

〉}
dµ(x)

]∣∣∣∣
k=0

=

∫
Ca,b[0,T ]

〈sz

h
, x

〉
F

(
Zh(x, ·)

)
dµ(x)−

(sz

h
, a′

) ∫
Ca,b[0,T ]

F
(
Zh(x, ·)

)
dµ(x),

which completes the proof of Theorem 3.4. �

Remark 3.5. (1)The main result [7] follows immediately from Theorem 3.4 above
by choosing h(t) = s(t) = 1 on [0, T ].

(2) If a(t) ≡ 0 and b(t) = t on [0, T ], then Theorem 3.4 in [16] follows immedi-
ately from Theorem 3.4 above.

We establish an integration by parts formula in our next theorem.

Theorem 3.6. Let F and G be complex-valued Borel measurable functionals on
Ka,b[0, T ]. Let h and w be as in Theorem 3.2. Assume that F (Zh(x, ·))G(Zh(x, ·))
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and δF (Zh(x, ·)|Zs(w, ·))G(Zh(x, ·)|Zs(w, ·)) are µ-integrable on Ka,b[0, T ]. Then∫
Ca,b[0,T ]

F
(
Zh(x, ·)

)
δG

(
Zh(x, ·)|Zs(w, ·)

)
+ G

(
Zh(x, ·)

)
δF

(
Zh(x, ·)|Zs(w, ·)

)
dµ(x)

=

∫
Ca,b[0,T ]

〈sz

h
, x

〉
F

(
Zh(x, ·)

)
G

(
Zh(x, ·)

)
dµ(x)

−
(sz

h
, a′

) ∫
Ca,b[0,T ]

F
(
Zh(x, ·)

)
G

(
Zh(x, ·)

)
dµ(x).

Proof. Let H
(
Zh(x, ·)

)
= F

(
Zh(x, ·)

)
G

(
Zh(x, ·)

)
. Then

δH
(
Zh(x, ·)|Zs(w, ·)

)
= F

(
Zh(x, ·)

)
δG

(
Zh(x, ·)|Zs(w, ·)

)
+ G

(
Zh(x, ·)

)
δF

(
Zh(x, ·)|Zs(w, ·)

)
.

(3.5)

Thus, applying Theorem 3.4 to equation (3.5) above, we have∫
Ca,b[0,T ]

δH
(
Zh(x, ·)|Zs(w, ·)

)
dµ(x)

=

∫
Ca,b[0,T ]

〈sz

h
, x

〉
H

(
Zh(x, ·)

)
dµ(x)−

(sz

h
, a′

) ∫
Ca,b[0,T ]

H
(
Zh(x, ·)

)
dµ(x),

which completes the proof of Theorem 3.6. �

Remark 3.7. If a(t) ≡ 0 and b(t) = t on [0, T ], then the result in [16, Theorem
3.6] follows immediately from Theorem 3.6 above.

The following corollary is a special case of Theorem 3.6.

Corollary 3.8. Under the hypotheses of Theorem 3.6.∫
Ca,b[0,T ]

F
(
Zh(x, ·)

)
δF

(
Zh(x, ·)|Zs(w, ·)

)
dµ(x)

=
1

2

∫
Ca,b[0,T ]

〈sz

h
, x

〉[
F

(
Zh(x, ·)

)]2

dµ(x)

− 1

2

(sz

h
, a′

) ∫
Ca,b[0,T ]

[
F

(
Zh(x, ·)

)]2

dµ(x).

In our next theorem, we establish an integration by parts formula involving the
transforms with respect to the Gaussian process.

Theorem 3.9. Let h and w be as in Theorem 3.2. Let F and G be complex-valued
Borel measurable functionals on Ka,b[0, T ]. Assume that T h1,h2

γ,β (F )T h1,h2

γ,β (G) and
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δ(T h1,h2

γ,β (F )T h1,h2

γ,β (G)) are µ-integrable on Ka,b[0, T ]. Then∫
Ca,b[0,T ]

T h1,h2

γ,β (F )
(
Zh(y, ·)

)
δT h1,h2

γ,β (G)
(
Zh(y, ·)|Zs(w, ·)

)
+ δT h1,h2

γ,β (F )
(
Zh(y, ·)|Zs(w, ·)

)
T h1,h2

γ,β (G)
(
Zh(y, ·)

)
dµ(y)

=

∫
Ca,b[0,T ]

〈sz

h
, y

〉
T h1,h2

γ,β (F )
(
Zh(y, ·)

)
T h1,h2

γ,β (G)
(
Zh(y, ·)

)
dµ(y)

−
(sz

h
, a′

) ∫
Ca,b[0,T ]

T h1,h2

γ,β (F )
(
Zh(y, ·)

)
T h1,h2

γ,β (G)
(
Zh(y, ·)

)
dµ(y)

(3.6)
for y ∈ Ka,b[0, T ].

Proof. Equation (3.6) follows from Theorem 3.5 with F and G replaced with

T h1,h2

γ,β (F ) and T h1,h2

γ,β (G), respectively. �

The following corollary is a special case of Theorem 3.9.

Corollary 3.10. Under the hypotheses of Theorem 3.9.∫
Ca,b[0,T ]

T h1,h2

γ,β (F )
(
Zh(y, ·)

)
δT h1,h2

γ,β (F )
(
Zh(y, ·)|Zs(w, ·)

)
dµ(y)

=
1

2

∫
Ca,b[0,T ]

〈sz

h
, y

〉[
T h1,h2

γ,β (F )
(
Zh(y, ·)

)]2

dµ(y)

− 1

2

(sz

h
, a′

) ∫
Ca,b[0,T ]

[
T h1,h2

γ,β (F )
(
Zh(y, ·)

)]2

dµ(y).

Our next lemma plays a key role in obtaining various integration formulas. In
Lemma 3.11 below, we establish that the transform of the first variation equals
the first variation of the transform with respect to the Gaussian process.

Lemma 3.11. Let F be as in Theorem 3.4. Let h and w be as in Theorem 3.2.
Let h, s, hj(j = 1, 2, 3, 4), l and m satisfy the following conditions;

(1) h3(t) = h(t)h1(t)
(2) l(t)h4(t) = h(t)h2(t)
(3) m(t)h4(t) = s(t) on [0, T ].

Then for all non-zero complex numbers γ and β

T h1,h2

γ,β

(
δF

(
Zh(·, ·)|Zs(w, ·)

))
(y) = δT h3,h4

γ,β (F )
(
Zl(y, ·)| 1

β
Zm(w, ·)

)
for y ∈ Ka,b[0, T ].
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Proof. By using equations (2.1) and (2.3), we have

T h1,h2

γ,β

(
δF

(
Zh(·, ·)|Zs(w, ·)

))
(y)

=
∂

∂k

[ ∫
Ca,b[0,T ]

F
(
γZhh1(x, ·) + βZhh2(y, ·) + kZs(w, ·)

)
dµ(x)

]∣∣∣∣
k=0

=
∂

∂k

[ ∫
Ca,b[0,T ]

F
(
γZh3(x, ·) + βZlh4(y, ·) +

βk

β
Zmh4(w, ·)

)
dµ(x)

]∣∣∣∣
k=0

=
∂

∂k
T h3,h4

γ,β (F )
(
Zl(y, ·) +

k

β
Zm(w, ·)

)∣∣∣∣
k=0

= δT h3,h4

γ,β (F )
(
Zl(y, ·)| 1

β
Zm(w, ·)

)
.

Thus we have the desired results. �

The following theorem follows immediately from Theorem 3.4 and Lemma 3.11.

Theorem 3.12. Let F , h, s, l, m and hj(j = 1, 2, 3, 4) be as in Lemma 3.11.

Let 1
l

be in L∞[0, T ]. Assume that T h1,h2

γ,β (F ) and T h1,h2

γ,β (δF ) are µ-integrable on
Ka,b[0, T ]. Then for all non-zero complex numbers γ and β∫

Ca,b[0,T ]

T h1,h2

γ,β

(
δF

(
Zh(·, ·)|Zs(w, ·)

))
(y)dµ(y)

=
1

β

∫
Ca,b[0,T ]

〈mz

l
, y

〉
T h3,h4

γ,β (F )
(
Zl(y, ·)

)
dµ(y)

− 1

β

(mz

l
, a′

) ∫
Ca,b[0,T ]

T h3,h4

γ,β (F )
(
Zl(y, ·)

)
dµ(y)

for y ∈ Ka,b[0, T ].

4. Various integration by parts formulas

In Section 3, we established a Cameron–Storvick type theorem and the transla-
tion theorem, with respect to the Gaussian process. We then obtained integration
by parts formulas, using the transform with respect to the Gaussian process. In
this section, we establish the relationships between the transform, the �-product,
and the first variation with respect to the Gaussian process.

First we introduce some notation which will be used throughout this section.

(1) For each pair of non-zero complex numbers γ and β, let

ν(t) ≡ νh1,h2

γ,β (t) =
∞∑

j=1

(
γ2(h1, φj)

2
a,b + β2(h2, φj)

2
a,b

) 1
2
φj(t)

Φ±φj
= γ(h1, φj)a,b ± β(h2, φj)a,b −

(
γ2(h1, φj)

2
a,b + β2(h2, φj)

2
a,b

) 1
2

,
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W h1,h2

γ,β (·) =
∞∑

j=1

Φ+
φj

Zφj
(a, ·) and Bh1,h2

γ,β (·) =
∞∑

j=1

Φ−φj
Zφj

(a, ·).

Since |γ2 + β2| 12 ≤ |γ2| 12 + |β2| 12 for all complex numbers γ and β, we have

|ν(t)| ≤
∞∑

j=1

∣∣∣γ2(h1, φj)
2
a,b + β2(h2, φj)

2
a,b

∣∣∣ 1
2 |φj(t)|

=
∞∑

j=1

∣∣∣γ2(h1, φj)
2
a,bφ

2
j(t) + β2(h2, φj)

2
a,bφ

2
j(t)

∣∣∣ 1
2

≤
∞∑

j=1

∣∣∣γ2(h1, φj)
2
a,bφ

2
j(t)

∣∣∣ 1
2

+
∞∑

j=1

∣∣∣β2(h2, φj)
2
a,bφ

2
j(t)

∣∣∣ 1
2

= |γ2|
1
2 h1(t) + |β2|

1
2 h2(t) ≤ |γ2|

1
2‖h1‖∞ + |β2|

1
2‖h2‖∞.

Hence ν is an element of L∞[0, T ].
(2) Let F be a functional defined on Ka,b[0, T ] and let

Fy(x) = F (x + y) for x, y ∈ Ka,b[0, T ].

The following theorem was established in [15].

Theorem 4.1. (1) Let F be a complex-valued Borel measurable functional on
Ka,b[0, T ] such that∫

C2
a,b[0,T ]

∣∣∣F(
γZh1(x, ·) + βZh2(y, ·)

)∣∣∣d(µ× µ)(x, y) < ∞.

Then for the non-zero complex numbers γ and β,∫
C2

a,b[0,T ]

F
(
γZh1(x, ·) + βZh2(y, ·)

)
d(µ× µ)(x, y)

=

∫
Ca,b[0,T ]

F

(
Zν(w, ·) + W h1,h2

γ,β (·)
)

dµ(w)

where ν ≡ νh1,h2

γ,β and W h1,h2

γ,β .
(2) Let F be as in (1) above. Then for non-zero complex numbers γj and

βj(j = 1, 2, 3)

T h1,h2

γ1,β1
(T h3,h4

γ2,β2
(F ))(y) = T ν,h2h4

1,β1β2
(FW )(y)

where ν ≡ νh3,h1h4

γ2,γ1β2
and W ≡ W h3,h1h4

γ2,γ1β2
.

(3) Let F be as in (1) above and assume that G : Ka,b[0, T ] → C satisfies the
same condition as F . Assume that τγh1(t)s2(t) = ρs1(t) on [0, T ]. Then for each
non-zero complex numbers γ, β, ρ and τ

(T h1,h2

γ,β ((F �G)s1,s2
ρ,τ ))(y) = T s1,h2s2√

2ρ,τβ
(FW )(y)T s1,h2s2√

2ρ,τβ
(GB)(y)

where W = (2−
√

2ρ)Zs1(a, ·) and B = −
√

2ρZs1(a, ·).
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Now, we consider the various integration formulas involving the transform, the
first variation and �-product with respect to the Gaussian process. We will only
state the formulas without proofs.

The following formula 1 tells us that the function space integral of the double
transform for the first variation of F is expressed in terms of the function space
integral of the transform of F .

Formula 1. Let F be as in Theorem 3.4. Let h, s, hj(j = 1, 2, 3, 4), l and m
satisfy the following conditions;

(1) h3(t) = h(t)ν
(2) l(t)h4(t) = h(t)h2

2(t)
(3) m(t)h4(t) = s(t) on [0, T ].

Assume that T h1,h2

γ,β (T h1,h2

γ,β (δF )) is µ-integrable on Ka,b[0, T ]. Then for all non-zero
complex numbers γ and β∫

Ca,b[0,T ]

T h1,h2

γ,β

(
T h1,h2

γ,β δF
(
Zh(·, ·)|Zs(w, ·)

))
(y)dµ(y)

=
1

β2

∫
Ca,b[0,T ]

〈mz

l
, y

〉
T h3,h4

1,β2 (FW )
(
Zl(y, ·)

)
dµ(y)

− 1

β2

(mz

l
, a′

) ∫
Ca,b[0,T ]

T h3,h4

1,β2 (FW )
(
Zl(y, ·)

)
dµ(y)

for y ∈ Ka,b[0, T ] where ν ≡ νh2,h1h2

γ,γβ and W ≡ W h2,h1h2

γ,γβ .

Formula 2 below shows that the function space integral of the transform of
the �-product of two functionals can be expressed in terms of the function space
integral of the product of their transforms.

Formula 2. Let F and G be as in Theorem 3.6. Let h, s, hj(j = 1, 2, 3, 4), l
and m satisfy the following conditions;

(1) h3(t) = h(t)h1(t)
(2) l(t)h4(t) = h(t)h2(t)
(3) m(t)h4(t) = s(t)
(4) τγh3(t)s2(t) = ρs1(t) on [0, T ].

Assume that T h1,h2

γ,β (δ(F �G)s1,s2
ρ,τ ) is µ-integrable on Ka,b[0, T ]. Then for all non-

zero complex numbers γ, β, ρ and τ∫
Ca,b[0,T ]

T h1,h2

γ,β

(
δ(F �G)s1,s2

ρ,τ

(
Zh(·, ·)|Zs(w, ·)

))
(y)dµ(y)

=
1

β

∫
Ca,b[0,T ]

〈mz

l
, y

〉
T s1,h4s2√

2ρ,τβ
(FW )

(
Zl(y, ·)

)
T s1,h4s2√

2ρ,τβ
(GB)

(
Zl(y, ·)

)
dµ(y)

− 1

β

(mz

l
, a′

) ∫
Ca,b[0,T ]

T s1,h4s2√
2ρ,τβ

(FW )
(
Zl(y, ·)

)
T s1,h4s2√

2ρ,τβ
(GB)

(
Zl(y, ·)

)
dµ(y)

where W = (2−
√

2)ρZs1(a, ·) and B = −
√

2ρZs1(a, ·).
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Formula 3 below shows that the function space integral of the transform of the
first variation of the �-product of their transforms can be expressed in terms of
the function space integral of the product of their transforms.

Formula 3. Let F and G be as in Theorem 3.6. Let h, s, hj(j = 1, 2, 3, 4), l
and m be satisfying the following conditions;

(1) h3(t) = h(t)h1(t)
(2) l(t)h4(t) = h(t)h2(t)
(3) m(t)h4(t) = s(t)
(4) τγh1(t)s2(t) = ρs1(t) on [0, T ].

Assume that T h1,h2

γ,β (δ(T h1,h2

γ,β (F ) � T h1,h2

γ,β (G))s1,s2
ρ,τ ) is µ-integrable on Ka,b[0, T ].

Then for all non-zero complex numbers γ, β, ρ and τ∫
Ca,b[0,T ]

T h1,h2

γ,β

(
δ
(
T h1,h2

γ,β (F ) � T h1,h2

γ,β (G)
)s1,s2

ρ,τ

(
Zh(·, ·)|Zs(w, ·)

))
(y)dµ(y)

=
1

β

∫
Ca,b[0,T ]

〈mz

l
, y

〉
T

ν,h2
2s2

1,τβ2 (FW+W̃ )
(
Zl(y, ·)

)
T

ν,h2
2s2

1,τβ2 (GB+W̃ )
(
Zl(y, ·)

)
dµ(y)

− 1

β

(mz

l
, a′

) ∫
Ca,b[0,T ]

T
ν,h2

2s2

1,τβ2 (FW+W̃ )
(
Zl(y, ·)

)
T

ν,h2
2s2

1,τβ2 (GB+W̃ )
(
Zl(y, ·)

)
dµ(y)

where ν ≡ νh1,s1h2

γ,
√

2ρβ
, W = (2 −

√
2)ρZs1(a, ·), B = −

√
2ρZs1(a, ·) and W̃ ≡

W̃ h1,s1h2

γ,
√

2ρβ
.

The following simple example illustrates the results in Section 4.

Let F, G : Ka,b[0, T ] → R be defined by the formula

F (x) = 〈u, x〉, G(x) = 〈v, x〉, for u, v ∈ L2
a,b[0, T ]. (4.1)

Then for all non-zero complex numbers γ and β, direct calculations show that

T h1,h2

γ,β (FW )
(
Zl(y, ·)

)
= β〈uh2l, y〉+ 2γ(uh1, a

′) + β(uh2, a
′)− (uν, a′)

∫
Ca,b[0,T ]

〈z, y〉T h1,h2

γ,β (FW )
(
Zl(y, ·)

)
dµ(y)

− (z, a′)

∫
Ca,b[0,T ]

T h1,h2

γ,β (FW )
(
Zl(y, ·)

)
dµ(y) = β(uzh2l, b

′)

(4.2)
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and ∫
Ca,b[0,T ]

〈z, y〉T h1,h2

γ,β (FW )
(
Zl(y, ·)

)
T h1,h2

γ,β (GB)
(
Zl(y, ·)

)
dµ(y)

− (z, a′)

∫
Ca,b[0,T ]

T h1,h2

γ,β (FW )
(
Zl(y, ·)

)
T h1,h2

γ,β (GB)
(
Zl(y, ·)

)
dµ(y)

= β2[(uh2lz, b
′)(vh2l, a

′) + (vh2lz, b
′)(uh2l, a

′)]

+ 2γβ[(vh2lz, b
′)(uh1, a

′) + (uh2lz, b
′)(vh1, a

′)]

+ β(vh2lz, b
′)[β(uh2, a

′)− (uν, a′)]

− β(uh2lz, b
′)[β(uh2, a

′) + (uν, a′)]

(4.3)

where ν ≡ νh1,h2

γ,β , W ≡ W h1,h2

γ,β and B ≡ Bh1,h2

γ,β . Equations (4.2) and (4.3) follow
from the following well-known integration formulas∫

Ca,b[0,T ]

〈u, y〉〈v, y〉dµ(y) = (uv, b′) + (u, a′)(v, a′)

and ∫
Ca,b[0,T ]

〈z, y〉〈u, y〉〈v, y〉dµ(y)

= (uz, b′)(v, a′) + (vz, b′)(u, a′) + (z, a′)(uv, b′) + (z, a′)(u, a′)(v, a′)

for all z, u, v ∈ L2
a,b[0, T ].

In the following example the function space integral of the double transform of
the first variation of F can be calculated from the function space integral of the
transform of F , without using the first.

Example using the Formula 1. Let F be given by equation (4.1). Then by
using equation (4.2), we obtain that∫

Ca,b[0,T ]

〈mz

l
, y

〉
T h3,h4

1,β2 (FW )
(
Zl(y, ·)

)
dµ(y)

−
(mz

l
, a′

) ∫
Ca,b[0,T ]

T h3,h4

1,β2 (FW )
(
Zl(y, ·)

)
dµ(y) = β2(usz, b′)

and hence from Formula 1,∫
Ca,b[0,T ]

T h1,h2

γ,β

(
T h1,h2

γ,β δF
(
Zh(·, ·)|Zs(w, ·)

))
(y)dµ(y) = (usz, b′).

The function space integral of the transform for the �-product of two func-
tionals can be calculated from the function space integral of the product of their
transforms, without the concepts of the �-product or the first variation. An
example of this approach is given below.
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Example using the Formula 2. Let F and G be given by equation (4.1).
Then by using equation (4.3), we obtain that∫

Ca,b[0,T ]

〈mz

l
, y

〉
T s1,h4s2√

2ρ,τβ
(FW )

(
Zl(y, ·)

)
T s1,h4s2√

2ρ,τβ
(GB)

(
Zl(y, ·)

)
dµ(y)

−
(mz

l
, a′

) ∫
Ca,b[0,T ]

T s1,h4s2√
2ρ,τβ

(FW )
(
Zl(y, ·)

)
T s1,h4s2√

2ρ,τβ
(GB)

(
Zl(y, ·)

)
dµ(y)

= τ 2β2[(uss2z, b
′)(vhh2s2, a

′) + (vss2z, b
′)(uhh2s2, a

′)] + 2τβ(vss2z, b
′)(us1, a

′)

and hence from Formula 2,∫
Ca,b[0,T ]

T h1,h2

γ,β

(
δ(F �G)s1,s2

ρ,τ

(
Zh(·, ·)|Zs(w, ·)

))
(y)dµ(y)

= τ 2β[(uss2z, b
′)(vhh2s2, a

′) + (vss2z, b
′)(uhh2s2, a

′)] + 2τ(vss2z, b
′)(us1, a

′).

Additionally, in the following example we show that the function space integral
of the transform for the first variation of the �-product of their transforms can be
used to calculate the function space integral of the product of their transforms,
without having to use the concepts of the �-product or the first variation

Example using the Formula 3. Let F and G be given by equation (4.1).
Then by using equation (4.3), we obtain that∫

Ca,b[0,T ]

〈mz

l
, y

〉
T

ν,h2
2s2

1,τβ2 (FW+W̃ )
(
Zl(y, ·)

)
T

ν,h2
2s2

1,τβ2 (GB+W̃ )
(
Zl(y, ·)

)
dµ(y)

−
(mz

l
, a′

) ∫
Ca,b[0,T ]

T
ν,h2

2s2

1,τβ2 (FW+W̃ )
(
Zl(y, ·)

)
T

ν,h2
2s2

1,τβ2 (GB+W̃ )
(
Zl(y, ·)

)
dµ(y)

= τ 2β4[(uh2
2s2mz, b′)(vh2

2s2l, a
′) + (vh2

2s2mz, b′)(uh2
2s2l, a

′)]

+ τβ2(vh2
2s2mz, b′)[(2−

√
2)ρ(us1, a

′) + γ(uh1, a
′) +

√
2ρβ(us1h2, a

′)]

+ τβ2(uh2
2s2mz, b′)[−

√
2ρ(vs1, a

′) + γ(vh1, a
′) +

√
2ρβ(vs1h2, a

′)]

and hence from Formula 3,∫
Ca,b[0,T ]

T h1,h2

γ,β

(
δ
(
T h1,h2

γ,β (F ) � T h1,h2

γ,β (G)
)s1,s2

ρ,τ

(
Zh(·, ·)|Zs(w, ·)

))
(y)dµ(y)

= τ 2β3[(uh2
2s2mz, b′)(vh2

2s2l, a
′) + (vh2

2s2mz, b′)(uh2
2s2l, a

′)]

+ τβ(vh2
2s2mz, b′)[(2−

√
2)ρ(us1, a

′) + γ(uh1, a
′) +

√
2ρβ(us1h2, a

′)]

+ τβ(uh2
2s2mz, b′)[−

√
2ρ(vs1, a

′) + γ(vh1, a
′) +

√
2ρβ(vs1h2, a

′)]

where ν ≡ νh1,s1h2

γ,
√

2ρβ
.
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