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Abstract. Parallel to the concept of quasi-separate continuity, we define a
notion for quasi-oscillation of a mapping f : X × Y → R. We also introduce a
topological game on X to approximate the oscillation of f . It follows that under
suitable conditions, every quasi-separately continuous mapping f : X×Y → R
has the Namioka property. An illuminating example is also given.

1. Introduction

Throughout this paper, unless explicitly stated otherwise, we will assume that
X and Y are topological spaces and Y is compact. Let f : X × Y → R be a
mapping. Following [7], f is called quasi-separately continuous at (x0, y0) ∈ X×Y
if the function t 7→ f(x0, t) is continuous at y0 and for every finite set F of Y and
ε > 0, there is some open set V ⊂ X such that x0 ∈ V and |f(x, y)−f(x0, y)| < ε
whenever x ∈ V and y ∈ F . The function f is called quasi-separately continuous
if f is quasi-separately continuous at each point of X × Y. We define the quasi-
oscillation of a mapping f : X × Y → R at x0 ∈ X as follows:

Q(f, x0) = sup
F is finite

{inf{ sup
(x,y)∈V×F

|f(x, y)− f(x0, y)| : V open, x0 ∈ V }}.

It is easy to see that f : X × Y → R is quasi-separately continuous at (x0, y0) if
and only if f is continuous with respect to second variable in y0 and Q(f, x0) = 0.

Following [6], a mapping f : X × Y → R is said to have the Namioka property
if there exists a dense in Gδ subset D of X such that f is jointly continuous at
each point of D × Y .
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In this paper, we are interested to the following problem:
Suppose that f : X × Y → R is a mapping. Under what conditions on X, there
are constants c1 and c2 such that

O(f ; (x, y)) ≤ c1 sup
t∈X
Q(f, t) + c2 sup

(t,s)∈X×Y
O(f(t, .), s)

for each point (x, y) ∈ D × Y , where

O(f(t, .), s) = inf{diam(f({t} × U)) : U is open in Y and s ∈ U}

denotes the oscillation of y 7→ f(t, y) in s and D is a dense Gδ subset of X?
Problems of this type are considered by some authors (see e.g. [1, 2, 10, 11]

and the references therein).
In this paper, inspired by [1, 5] and [9], we will introduce a topological game

G(X) on X. Then we will show that for each mapping f : X × Y → R, there
exists a dense Gδ subset D of X such that the oscillation of f at each point of
D × Y is less than 10 supx∈X Q(f, x) + 6 sup(x,y)∈X×Y O(f(x, ·), y) provided that
the first player has no winning strategy in G(X).

It follows that under the above condition on X, every quasi-separately contin-
uous mapping f : X×Y → R has the Namioka property. This can be considered
as a generalization of the main result in [12].

2. Main results

The story of topological games goes back to Baire [4]. Since then several
topological games were invented and applied by some authors [5, 8, 9, 12]. Here,
we introduce a topological game as follows.

G(X) is played by two players β and α as follows: β starts a game by choosing
a non-empty open set U1 ⊂ X. α answers by selecting a couple (V1, x1), where
V1 ⊂ U1 and x1 ∈ X. In step n, β’s move is a non-empty open Un ⊂ Vn−1. Then
α’s n-th move is a pair (Vn, xn) where Vn is a non-empty open subset of Un and
xn ∈ X. The player α wins the game G(X) if there is some z ∈

⋂∞
i=1 Vn such that

for every open subset G in X with z ∈ G,

G ∩ {x1, x2, . . . } 6= ∅.

A strategy s for α in the game G(X) is a rule which determines α’s move at each
stage. X is called β-favorable for the play G(X) if β has a winning strategy in
this play, otherwise X is said to be β- unfavorable for this play. Clearly every
separable Baire space X is β-unfavorable for the game G(X).

A similar topological game, with a different winning rule, was introduced in [5].

Let Z be a metric space and r > 0, a family F ⊂ ZX is said to be r-
equicontinuous if there is an open neighborhood W of ∆, the diagonal of X ×X,
such that

d(f(x), f(x′)) < r for all f ∈ F and (x, x′) ∈ W.
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Theorem 2.1. Let X be a β-unfavorable space and f : X×Y → R be a mapping.
Then there is a dense Gδ subset D of X such that

O
(
f, (x, y)

)
≤ 10 sup

t∈X
Q(f, t) + 6 sup

(s,t)∈X×Y
O(f(t, ·), s) for all (x, y) ∈ D × Y.

In particular, if f : X × Y → R is quasi-separately continuous, then it has the
Namioka property.

Let

a = sup
x∈X
Q(f, x), b = sup

(x,y)∈X×Y
O(f(x, ·), y).

In order to prove the above theorem, we need to some auxiliary results.

Lemma 2.2. Suppose that {f(x, .) : x ∈ U} is r-equicontinuous for some r > 0
and a non-empty open subset U of X. Then for each ε > 0, there exist a non-
empty open subset U ′ of U and a finite open cover {V1, . . . , Vn} of Y such that

diam
(
f(U ′ × Vi)

)
≤ 2(r + a) + ε for each 1 ≤ i ≤ n.

Proof. Since {f(x, .) : x ∈ U} is r-equicontinuous, there is a neighborhood W of
∆ such that

|f(x, y)− f(x, y′)| < r x ∈ U, (y, y′) ∈ W.
For each y ∈ Y , put Wy = {y′ : (y, y′) ∈ W}. Then {Wy : y ∈ Y } is an
open cover for Y . Since Y is compact, there are points y1, . . . , yn ∈ Y such that
Y =

⋃n
i=1Wyi . Write Vi = Wyi for each 1 ≤ i ≤ n. Fix some x1 ∈ U . Since

Q(f, x1) < a+ ε/2, there is some non-empty open subset U1 ⊂ U such that

|f(x1, y1)− f(x, y1)| < a+ ε/2 (x ∈ U1).

Suppose that for 1 ≤ k < n points x1, . . . , xk and open subsets U1, . . . , Uk of
U have been selected. Then choose some arbitrary point xk+1 ∈ UK . By our
assumption, Q(f, xk) < a + ε/2, therefore we can find some non-empty open
subset Uk+1 ⊂ Uk such that

|f(xk, yk)− f(x, yk)| < a+ ε/2 (x ∈ Uk+1).

In this way by (finite) induction on k, points x1, . . . , xn ∈ U and U1 ⊃ · · · ⊃ Un
are determined. Put U ′ = Un, then for each 1 ≤ i ≤ k, y ∈ Vi and x ∈ U ′ we
have

|f(x, y)− f(xi, yi)| ≤ |f(x, y)− f(x, yi)| + |f(xi, yi)− f(x, yi)|
< r + a+ ε/2.

It follows that for each 1 ≤ i ≤ k, diam
(
f(U ′ × Vi)

)
≤ 2(r + a) + ε. �

Lemma 2.3. For each non-empty open subset U of X and ε > 0, there is a
non-empty open subset U ′ of U such that {f(t, ·) : t ∈ U ′} is (4a + 3b + ε)-
equicontinuous.
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Proof. Suppose that for some ε > 0, there is a non-empty open subset U of X
such that {f(x, ·) : x ∈ U ′} is not (4a+3b+ε)-equicontinuous for each non-empty
open subset U ′ of U . We will define inductively a strategy for the player β in
G(X). Put U1 = U as the first move of β. Let n > 1 and (V1, x1), . . . , (Vn, xn) be
selected by α and δ = ε/20. Since for each x ∈ X, supy∈Y O(f(x, ·), y) ≤ b, by [3,
Proposition 1.18], we can find some gx ∈ C(Y ) such that |gx(y)−f(x, y)| < b/2+δ
for all y ∈ Y . Let

Wn =
{

(y, y′) ∈ Y × Y : |gxi(y)− gxi(y′)| <
1

n
, 1 ≤ i ≤ n

}
.

Thanks to continuity of gxi ’s, Wn is an open neighborhood of ∆. Let r = 4a +
3b+ ε. Since {f(x, ·) : x ∈ Vn} is not r-equicontinuous, we can find some tn ∈ Vn
and (yn, y

′
n) ∈ Wn such that |f(tn, yn)− f(tn, y

′
n)| ≥ r. Since Q(f, tn) ≤ a, there

is a non-empty subset Un+1 ⊂ Vn such that for each t ∈ Un+1,

|f(tn, yn)− f(t, yn)| < a+ δ and |f(tn, y
′
n)− f(t, y′n)| < a+ δ.

Let Un+1 be the answer of β to
(
(V1, x1), . . . , (Vn, xn)

)
. Therefore a strategy for

the player β is inductively defined. Since this strategy is not winning for β, some
play

{
(Un, (Vn, xn))

}
is won by α. Therefore, there is some z ∈

⋂
n≥1 Vn such

that for each open subset G of X with z ∈ G, G∩{x1, x2, . . . } 6= ∅. Let (y∞, y
′
∞)

be a cluster point of {(yn, y′n)} in Y × Y . Then for each n ≥ i ≥ 1, we have
|gxi(yn)− gxi(y′n)| < 1

n
. Since gxi is continuous, it follows that gxi(y∞) = gxi(y

′
∞).

Moreover, for each n we have

r ≤ |f(tn, yn)− f(tn, y
′
n)|

≤ |f(tn, yn)− f(z, yn)|+ |f(z, yn)− f(z, y′n)|+ |f(z, y′n)− f(tn, y
′
n)|

< 2a+ 2δ + |f(z, yn)− gz(yn)|+ |gz(yn)− gz(y′n)|+ |gz(yn)− f(z, y′n)|
< 2a+ b+ 4δ + |gz(yn)− gz(y′n)|.

Thanks to continuity of gz,

r ≤ 2a+ b+ 4δ + |gz(y∞)− gz(y′∞)|. (2.1)

Since Q(f, z) ≤ a, there is an open subset G of X such that z ∈ G and

|f(z, y∞)− f(t, y∞)| < a+ δ and |f(z, y′∞)− f(t, y′∞)| < a+ δ

for each t ∈ G. Take some i ≥ 1 such that xi ∈ G, then we have

|gz(y∞)− gz(y′∞)| ≤ |gz(y∞)− gxi(y∞)| + |gxi(y∞)− gxi(y′∞)|
+ |gxi(y′∞)− gz(y′∞)|

≤ |gz(y∞)− f(z, y∞)| + |f(z, y∞)− f(xi, y∞)|
+|f(xi, y∞)− gxi(y∞)| + 0 + |gxi(y′∞)− f(xi, y

′
∞)|

+|f(xi, y
′
∞)− f(z, y′∞)| + |f(z, y′∞)− gz(y′∞)|

≤ 2b+ 4δ + 2a+ 2δ = 2a+ 2b+ 6δ.

It follows from the above inequality and (2.1) that

r ≤ 2a+ b+ 4δ + 2a+ 2b+ 6δ = 4a+ 3b+ 10δ = r − ε/2.
This contradiction proves our result. �
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Proof of Theorem 2.1. Let r = 10a+ 6b and

An =
{
x ∈ X : O

(
f, (x, y)

)
< r +

1

n
for all y ∈ Y

}
(n ∈ N).

Since Y is compact and oscillation is upper semi-continuous, An is open for each
n ∈ N. We will show that An is dense in X for each n ∈ N. Let U be an arbitrary
non-empty open subset of X. By Lemma 2.3, there is a non-empty open subset
U ′ of U such that {f(t, ·) : t ∈ U ′} is (4a + 3b + 1

8n
)-equicontinuous. According

to Lemma 2.2, there exits a non-empty open subset U ′′ of U ′ and a finite cover
{V1, . . . , Vm} such that

diam(U ′′ × Vi) ≤ 2
(
(4a+ 3b+

1

8n
) + a

)
+

1

4n
< r +

1

n
.

This means that U ′′ ⊂ An∩U . Therefore An is dense in X for each n ∈ N. Define
D =

⋂
n≥1An. Then for each (x, y) ∈ D × Y , we have O

(
f, (x, y)

)
≤ 10a + 6b.

This completes the proof of the Theorem. �

Remark 2.4. (1) Saint-Raymond [12] proved that every separately continuous
mapping f : X × Y → R, where X is a separable Baire space has the Namioka
property. Since every separable Baire space is α-favorable for the game G(X), by
Theorem 2.1 this result is also true when f is quasi-separately continuous.
(2) Let X be a β-unfavorable space and g : X → R be a quasi-continuous
mapping which is not continuous. For example, let g(x) = [x] for each x ∈ R.
Define f : X×Y → R by f(x, y) = g(x). Since f is not separately continuous, the
results on joint continuity of separate continuous mappings can not be applied.
However, f is quasi-separately continuous. Therefore, by Theorem 2.1, f has the
Namioka property.
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