Ann. Funct. Anal. 1 (2010), no. 2, 103-111
\mathscr{A} nnals of \mathscr{F} unctional \mathscr{A} nalysis
ISSN: 2008-8752 (electronic)
URL: www.emis.de/journals/AFA/

(δ, ε)-DOUBLE DERIVATIONS ON BANACH ALGEBRAS

SHIRIN HEJAZIAN ${ }^{1 *}$, HUSSEIN MAHDAVIAN RAD ${ }^{2}$ AND MADJID MIRZAVAZIRI ${ }^{3}$

Communicated by S.-M. Jung

Abstract

Let \mathcal{A} be an algebra and let $\delta, \varepsilon: \mathcal{A} \rightarrow \mathcal{A}$ be two linear mappings. A (δ, ε)-double derivation is a linear mapping $d: \mathcal{A} \rightarrow \mathcal{A}$ satisfying $d(a b)=d(a) b+a d(b)+\delta(a) \varepsilon(b)+\varepsilon(a) \delta(b)(a, b \in \mathcal{A})$. We study some algebraic properties of these mappings and give a formula for calculating $d^{n}(a b)$. We show that if \mathcal{A} is a Banach algebra such that either is semi-simple or every derivation from \mathcal{A} into any Banach \mathcal{A}-bimodule is continuous then every (δ, ε) double derivation on \mathcal{A} is continuous whenever so are δ and ε. We also discuss the continuity of ε when d and δ are assumed to be continuous.

1. Introduction and preliminaries

Let \mathcal{A} be an algebra. A linear mapping $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is said to be a derivation if it satisfies the Leibniz rule $\delta(x y)=\delta(x) y+x \delta(y)$ for all $x, y \in \mathcal{A}$. Now suppose that δ, ε are two ordinary derivations. We see that $d=\delta \varepsilon$ satisfies

$$
\begin{equation*}
d(a b)=d(a) b+a d(b)+\delta(a) \varepsilon(b)+\varepsilon(a) \delta(b) \quad(a, b \in \mathcal{A}) . \tag{1.1}
\end{equation*}
$$

This can be assumed as a generalization of the concept of a derivation.
Now let $\delta, \varepsilon: \mathcal{A} \rightarrow \mathcal{A}$ be two linear mappings. A linear mapping $d: \mathcal{A} \rightarrow \mathcal{A}$ is said to be a (δ, ε)-double derivation if it satisfies (1.1). By a δ-double derivation we mean a (δ, δ)-double derivation. See [7$]$ for an initial study of δ-double derivations. Clearly, if d is a derivation then d^{2} is a d-double derivation, and also d is a 0 double derivation where 0 denotes the zero mapping. Moreover, if I denotes the identity mapping on \mathcal{A}, then each σ-derivation $d: \mathcal{A} \rightarrow \mathcal{A}$ is a $(\sigma-I, d)$-double derivation. Here by a σ-derivation we mean a linear mapping d on \mathcal{A} satisfying $d(a b)=d(a) \sigma(b)+\sigma(a) d(b) \quad(a, b \in \mathcal{A})$, for some linear mapping σ on \mathcal{A}, see

[^0]Key words and phrases. derivation, (δ, ε)-double derivation, automatic continuity.
$[4,6]$ for more about σ-derivations. Also, every homomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}$ is a $\left(\frac{\varphi}{2}-I, \varphi\right)$-double derivation.

In Section 2, we study some algebraic properties of (δ, ε)-double derivations and give a formula to calculate $d^{n}(a b)$. Section 3 is devoted to the study of automatic continuity of (δ, ε)-double derivations on Banach algebras and to extension of some results of [7]. We will observe that under the assumption of continuity of any pair of the linear mappings d, δ and ε, what happens for the third one. Assuming that δ and ε are continuous on \mathcal{A}, we show that if every derivation from \mathcal{A} into a Banach \mathcal{A}-bimodule is continuous then every (δ, ε)-double derivation on \mathcal{A} is continuous. Also, it is proved that every (δ, ε)-double derivation on a semisimple Banach algebra is continuous whenever so are δ and ε. Next we assume that d and δ are continuous and obtain some results concerning the separating space of ε. We will show that if d is a continuous (δ, ε)-double derivation on a commutative unital prime Banach algebra, then ε is continuous whenever δ is nonzero and continuous. We also obtain some results concerning δ-double derivations.

2. ALGEBRAIC PROPERTIES

Let \mathcal{A} be an algebra. Suppose that δ, ε are two linear mappings on \mathcal{A}, and $d: \mathcal{A} \rightarrow \mathcal{A}$ is a (δ, ε)-double derivation, that is

$$
d(a b)=d(a) b+a d(b)+\delta(a) \varepsilon(b)+\varepsilon(a) \delta(b) \quad(a, b \in \mathcal{A})
$$

For simplicity, we consider a bilinear mapping $\lambda: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\lambda(a, b)=\delta(a) \varepsilon(b)+\varepsilon(a) \delta(b) \quad(a, b \in \mathcal{A})
$$

Proposition 2.1. Let \mathcal{A} be an algebra and let δ, ε be two linear mappings on \mathcal{A}. Suppose that $d: \mathcal{A} \rightarrow \mathcal{A}$ is a (δ, ε)-double derivation.
(i) For each idempotent $e \in \mathcal{A}$, ed $(e) e=-e \lambda(e, e) e$.

Moreover, if \mathcal{A} is unital, then
(ii) $\lambda(a, 1)=-a d(1), \lambda(1, a)=-d(1)$ a for all $a \in \mathcal{A}$, and $d(1)=-\lambda(1,1)$;
(iii) $\lambda(a b, 1)=a \lambda(b, 1), \lambda(1, a b)=\lambda(1, a) b$ for all $a, b \in \mathcal{A}$;
(iv) $d(1)=0$ if and only if $\lambda(a, 1)=0=\lambda(1, a)$ for all $a \in \mathcal{A}$.

Proof. (i) Let e be an idempotent in \mathcal{A}. Then

$$
\begin{equation*}
d(e)=d\left(e^{2}\right)=e d(e)+d(e) e+\lambda(e, e) \tag{2.1}
\end{equation*}
$$

Multiplying (2.1) by e gives the result.
(ii) For each $a \in \mathcal{A}$,

$$
\begin{equation*}
d(a)=a d(1)+d(a) 1+\lambda(a, 1) \tag{2.2}
\end{equation*}
$$

Hence $\lambda(a, 1)=-a d(1)$. Similarly $\lambda(1, a)=-d(1) a$. The last assertion is now obvious.
(iii) By (ii), for $a, b \in \mathcal{A}$ we have $\lambda(a b, 1)=-a b d(1)=a \lambda(b, 1), \lambda(1, a b)=$ $-d(1) a b=\lambda(1, a) b$.
(iv) It follows from (2.2).

If δ, ε are derivations on an algebra \mathcal{A}, it is easy to see that $\delta \varepsilon$ is a (δ, ε)-double derivation. Now let δ, ε be derivations and let d be a (δ, ε)-double derivation. What can we say about d ?

Proposition 2.2. Let δ, ε be derivations and let d be a (δ, ε)-double derivation on an algebra \mathcal{A}. Then there exists a derivation D on \mathcal{A} such that $d=\delta \varepsilon+D$.

Proof. Straightforward.
It is well known that every derivation on a commutative Banach algebra maps it into its radical, see [8]. As a consequence of Proposition 2.2, every (δ, ε)-double derivation d on a commutative Banach algebra \mathcal{A}, for which δ, ε are derivations, maps into the radical. If moreover, \mathcal{A} is semi-simple, then $d=0$.

Now we are going to find a formula for $d^{n}(a b)$, where d is a (δ, ε)-double derivation. This is not as simple as the one for an ordinary derivation. In fact what we give here is something such as an algorithm to calculate $d^{n}(a b)$.

Let δ, ε be arbitrary linear mappings on an algebra \mathcal{A}. We construct a family of linear mappings $\left\{\phi_{n, k}^{\delta, \varepsilon}\right\}, \quad\left(n \in \mathbb{N}, 0 \leq k \leq 2^{n}-1\right)$, which is called the binary family for the ordered pair of linear mappings (δ, ε), as follows.

Write the non-negative integer k in base 2 with exactly n digits, and put δ in place of 1 's and ε in place of 0 's. For example, if $n=4$ then $6=(0110)_{2}$, $10=(1010)_{2}, \quad \phi_{4,6}^{\delta, \varepsilon}=\varepsilon \delta \delta \varepsilon=\varepsilon \delta^{2} \varepsilon$ and $\phi_{4,10}^{\delta, \varepsilon}=\delta \varepsilon \delta \varepsilon$. When there is no risk of ambiguity, we simply write $\phi_{n, k}$ instead of $\phi_{n, k}^{\delta, \varepsilon}$. The following lemma is stated in [6]. We give its proof for the sake of convenience.

Lemma 2.3. Let $n \in \mathbb{N}$ and let k be a non-negative integer such that $0 \leq k \leq$ $2^{n}-1$. Then
(i) $\delta \phi_{n, k}=\phi_{n+1, k+2^{n}}$;
(ii) $\varepsilon \phi_{n, k}=\phi_{n+1, k}$;
(iii) $\phi_{n, k} \delta=\phi_{n+1,2 k+1}$;
(iv) $\phi_{n, k} \varepsilon=\phi_{n+1,2 k}$.

Proof. Write k in the base 2 as $\left(c_{n} \ldots c_{2} c_{1}\right)_{2}$, where $c_{j} \in\{0,1\}$ for $j=1, \ldots, n$. Then
(i) $\delta \phi_{n, k}=\phi_{n+1,\left(1 c_{n} \ldots c_{2} c_{1}\right)_{2}}=\phi_{n+1, k+2^{n}}$;
(ii) $\varepsilon \phi_{n, k}=\phi_{n+1,\left(0 c_{n} \ldots c_{2} c_{1}\right)_{2}}=\phi_{n+1, k}$;
(iii) $\phi_{n, k} \delta=\phi_{n+1,\left(c_{n} \ldots c_{2} c_{1} 1\right)_{2}}=\phi_{n+1,2 k+1}$;
(iv) $\phi_{n, k} \varepsilon=\phi_{n+1,\left(c_{n} \ldots c_{2} c_{1} 0\right)_{2}}=\phi_{n+1,2 k}$.

Now consider the algebraic tensor product $\mathcal{A} \otimes \mathcal{A}$. Let δ, ε and d be arbitrary linear mappings on \mathcal{A}. Consider two bilinear mappings $(a, b) \mapsto d(a) \otimes b+a \otimes d(b)$ and $(a, b) \mapsto \delta(a) \otimes \varepsilon(b)+\varepsilon(a) \otimes \delta(b)$ from $\mathcal{A} \times \mathcal{A}$ to $\mathcal{A} \otimes \mathcal{A}$. Then we have two linear mappings $\alpha, \beta: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$ satisfying

$$
\begin{gather*}
\alpha(a \otimes b)=d(a) \otimes b+a \otimes d(b), \tag{2.3}\\
\beta(a \otimes b)=\delta(a) \otimes \varepsilon(b)+\varepsilon(a) \otimes \delta(b) \tag{2.4}
\end{gather*}
$$

for $a, b \in \mathcal{A}$.

Lemma 2.4. If δ, ε and d are linear mappings on an algebra \mathcal{A} and α, β are defined as above, then for each positive integer n
(i) $\alpha^{n}(a \otimes b)=\sum_{k=0}^{n}\binom{n}{k} d^{k}(a) \otimes d^{n-k}(b) ;$
(ii) $\beta^{n}(a \otimes b)=\sum_{k=0}^{2^{n}-1} \phi_{n, k}(a) \otimes \phi_{n, 2^{n}-1-k}(b)$.

Proof. (i) We proceed by induction. Clearly the equality in (i) holds for $n=1$. Assume that the result is true for the positive integer n. Then form (2.3) we have

$$
\begin{aligned}
& \alpha^{n+1}(a \otimes b)=\alpha\left(\sum_{k=0}^{n}\binom{n}{k} d^{k}(a) \otimes d^{n-k}(b)\right) \\
& = \\
& =\sum_{k=0}^{n}\binom{n}{k} d^{k+1}(a) \otimes d^{n-k}(b)+\sum_{k=0}^{n}\binom{n}{k} d^{k}(a) \otimes d^{n+1-k}(b) \\
& =\sum_{k=0}^{n-1}\binom{n}{k} d^{k+1}(a) \otimes d^{n+1-(k+1)}(b)+\binom{n}{n} d^{n+1}(a) \otimes b \\
& \quad+\sum_{k=0}^{n-1}\binom{n}{k+1} d^{k+1}(a) \otimes d^{n+1-(k+1)}(b)+\binom{n}{0} a \otimes d^{n+1}(b) \\
& = \\
& \sum_{k=0}^{n-1}\left(\binom{n}{k+1}+\binom{n}{k}\right) d^{k+1}(a) \otimes d^{n+1-(k+1)}(b) \\
& \quad+\binom{n}{0} a \otimes d^{n+1}(b)+\binom{n}{n} d^{n+1}(a) \otimes b \\
& = \\
& \sum_{k=1}^{n}\binom{n+1}{k} d^{k}(a) \otimes d^{n+1-k}(b)+\binom{n+1}{0} a \otimes d^{n+1}(b)+\binom{n+1}{n+1} d^{n+1}(a) \otimes b \\
& = \\
& \sum_{k=0}^{n+1}\binom{n+1}{k} d^{k}(a) \otimes d^{n+1-k}(b) .
\end{aligned}
$$

(ii) Obviously, the result is true for $n=1$. Let (ii) hold for n. Then from (2.4) and Lemma 2.3, we have

$$
\begin{aligned}
& \beta^{n+1}(a \otimes b)=\beta\left(\sum_{k=0}^{2^{n}-1} \phi_{n, i}(a) \otimes \phi_{n, 2^{n}-1-j}(b)\right) \\
& =\sum_{k=0}^{2^{n}-1} \delta \phi_{n, k}(a) \otimes \varepsilon \phi_{n, 2^{n}-1-k}(b)+\sum_{k=0}^{2^{n}-1} \varepsilon \phi_{n, k}(a) \otimes \delta \phi_{n, 2^{n}-1-k}(b) \\
& =\sum_{k=0}^{2^{n}-1} \phi_{n+1, k+2^{n}}(a) \otimes \phi_{n+1,2^{n}-1-k}(b)+\sum_{k=0}^{2^{n}-1} \phi_{n+1, k}(a) \otimes \phi_{n+1,2^{n+1}-1-k}(b)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=2^{n}}^{2^{n+1}-1} \phi_{n+1, k}(a) \otimes \phi_{n+1,2^{n+1}-1-k}(b)+\sum_{k=0}^{2^{n}-1} \phi_{n+1, k}(a) \otimes \phi_{n+1,2^{n+1}-1-k}(b) \\
& =\sum_{k=0}^{2^{n+1}-1} \phi_{n+1, k}(a) \otimes \phi_{n+1,2^{n+1}-1-k}(b)
\end{aligned}
$$

Suppose that $\delta, \varepsilon, d, \alpha$ and β are as above. Let $\left\{\psi_{n, j}\right\} \quad\left(n \in \mathbb{N}, 0 \leq j \leq 2^{n}-1\right)$, be the binary family for (α, β). We calculate $\left\{\psi_{n, j}\right\}$ for $n=3$.

Example 2.5. Take $n=3$. By the definition of $\left\{\psi_{n, j}\right\}$ and Lemma 2.4 we have

$$
\begin{aligned}
& 0=(000)_{2}, \psi_{3,0}(a \otimes b)=\beta^{3}(a \otimes b)=\sum_{i=0}^{2^{3}-1} \phi_{3, i}(a) \otimes \phi_{3,2^{3}-1-i}(b) \\
& 1=(001)_{2}, \psi_{3,1}(a \otimes b)=\beta^{2} \alpha(a \otimes b)=\sum_{i=0}^{2^{2}-1} \sum_{k=0}^{1}\binom{1}{k} \phi_{2, i}\left(d^{k}(a)\right) \otimes \phi_{2,2^{2}-1-i}\left(d^{1-k}(b)\right) \\
& 2=(010)_{2}, \psi_{3,2}(a \otimes b)=\alpha \beta \alpha(a \otimes b) \\
& =\sum_{r=0}^{2^{1}-1} \sum_{k=0}^{1} \sum_{i=0}^{2^{1}-1}\binom{1}{k} \phi_{1, r}\left(d^{k}\left(\phi_{1, i}(a)\right)\right) \otimes \phi_{1,2^{1}-1-r}\left(d^{1-k}\left(\phi_{1,2^{1}-1-i}(b)\right)\right) \\
& 3=(011)_{2}, \psi_{3,3}(a \otimes b)=\beta \alpha^{2}(a \otimes b)=\sum_{i=0}^{2^{1}-1} \sum_{k=0}^{2}\binom{2}{k} \phi_{1, i}\left(d^{k}(a)\right) \otimes \phi_{1,2^{1}-1-i}\left(d^{1-k}(b)\right) \\
& 4=(100)_{2}, \psi_{3,4}(a \otimes b)=\alpha \beta^{2}(a \otimes b)=\sum_{k=0}^{1} \sum_{i=0}^{2^{2}-1}\binom{1}{k} d^{k}\left(\phi_{2, i}(a)\right) \otimes d^{1-k}\left(\phi_{2,2^{2}-1-i}(b)\right) \\
& 5=(101)_{2}, \psi_{3,5}(a \otimes b)=\alpha \beta \alpha(a \otimes b) \\
& =\sum_{k=0}^{1} \sum_{i=0}^{2^{1}-1} \sum_{s=0}^{1}\binom{1}{k}\binom{1}{s} d^{k}\left(\phi_{1, i}\left(d^{s}(a)\right) \otimes d^{1-k} \phi_{1,2^{1}-1-i}\left(d^{1-s}(b)\right)\right. \\
& 6=(110)_{2}, \psi_{3,6}(a \otimes b)=\alpha^{2} \beta(a \otimes b)=\sum_{k=0}^{2} \sum_{i=0}^{2^{1}-1}\binom{2}{k} d^{k}\left(\phi_{1, i}(a)\right) \otimes d^{2-k}\left(\phi_{1,2^{1}-1-i}(b)\right) \\
& 7=(111)_{2}, \psi_{3,7}(a \otimes b)=\alpha^{3}(a \otimes b)=\sum_{k=0}^{3}\binom{3}{k} d^{k}(a) \otimes d^{3-k}(b) .
\end{aligned}
$$

Lemma 2.6. $(\alpha+\beta)^{n}=\sum_{j=0}^{2^{n}-1} \psi_{n, j}$.

Proof. The equality holds for $n=1$. Suppose that we have the equality for n. Then

$$
\begin{aligned}
(\alpha+\beta)^{n+1}(a \otimes b) & =(\alpha+\beta)\left((\alpha+\beta)^{n}(a \otimes b)\right)=(\alpha+\beta)\left(\sum_{j=0}^{2^{n}-1} \psi_{n, j}\right)(a \otimes b) \\
& =\alpha\left(\sum_{j=0}^{2^{n}-1} \psi_{n, j}(a \otimes b)\right)+\beta\left(\sum_{j=0}^{2^{n}-1} \psi_{n, j}(a \otimes b)\right) \\
& =\sum_{j=0}^{2^{n}-1} \psi_{n+1, j+2^{n}}(a \otimes b)
\end{aligned}
$$

Let \mathcal{A} ba an algebra and d a (δ, ε)-double derivation on \mathcal{A}. Suppose that $\sigma: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$, is the linear mapping defined by $\sigma(a \otimes b)=a b(a, b \in \mathcal{A})$. If α, β are defined as above, then it is easy to see that $d(a b)=\sigma((\alpha+\beta)(a \otimes b))$. In other words, $d(\sigma(a \otimes b)=\sigma((\alpha+\beta)(a \otimes b))$, that is $d \sigma=\sigma(\alpha+\beta)$.
Theorem 2.7. Let d be a (δ, ε)-double derivation on an algebra \mathcal{A}. Then

$$
\begin{equation*}
d^{n}(a b)=\sigma\left((\alpha+\beta)^{n}(a \otimes b)\right)=\sigma\left(\sum_{j=0}^{2^{n}-1} \psi_{n, j}(a \otimes b)\right) \tag{2.5}
\end{equation*}
$$

Proof. We apply an induction argument. The result is clear for $n=1$. Let (2.5) hold for n. Then

$$
\begin{aligned}
d^{n+1}(a b) & \left.=d\left(d^{n}(a b)\right)=d\left(\sigma(\alpha+\beta)^{n}(a \otimes b)\right)=\sigma(\alpha+\beta)(\alpha+\beta)^{n}(a \otimes b)\right) \\
& =\sigma\left((\alpha+\beta)^{n+1}(a \otimes b)\right)
\end{aligned}
$$

The last equality follows from Lemma 2.6.

3. Automatic continuity

Let \mathcal{A} be a Banach algebra and d a (δ, ε)-double derivation on \mathcal{A}. We recall that for a linear mapping $T: \mathcal{A} \rightarrow \mathcal{A}$, the separating space of T is the set

$$
\mathcal{S}(T)=\left\{a \in \mathcal{A}: \exists\left\{a_{n}\right\} \subseteq \mathcal{A} \text { s.t. } a_{n} \rightarrow 0, T\left(a_{n}\right) \rightarrow a\right\}
$$

By the closed graph theorem T is continuous if and only if $\mathcal{S}(T)=\{0\}$.
We are going to find out under which conditions the continuity of any pair of the linear mappings d, δ and ε, implies the continuity of the third one. First we assume that δ and ε are continuous and observe what happens for d. In the second step we assume continuity of d and one of δ or ε, say δ, and observe what happens for the third one. We also prove some results concerning δ-double derivations. For the first step we need some preliminaries.

Let \mathcal{A} be a Banach algebra and \mathcal{X} a Banach \mathcal{A}-bimodule. A linear mapping $S: \mathcal{A} \longrightarrow \mathcal{X}$ is said to be left-intertwining if the mapping

$$
b \longmapsto a S(b)-S(a b), \mathcal{A} \longrightarrow \mathcal{X}
$$

is continuous for each $a \in \mathcal{A}$, and right-intertwining if the mapping

$$
a \longmapsto S(a) b-S(a b), \mathcal{A} \longrightarrow \mathcal{X}
$$

is continuous for all $b \in \mathcal{A}$. A linear mapping $S: \mathcal{A} \longrightarrow \mathcal{X}$ is intertwining if it is both left- and right-intertwining. For more about these objects see [1, Section 2.7].

Theorem 3.1. [2, Theorem 2.1] Let \mathcal{A} be a Banach algebra. Suppose that each derivation from \mathcal{A} to a Banach \mathcal{A}-bimodule is continuous. Then each left intertwining map from \mathcal{A} to each Banach \mathcal{A}-bimodule is continuous.

Theorem 3.2. Let \mathcal{A} be a Banach algebra. Suppose that each derivation from \mathcal{A} into a Banach \mathcal{A}-bimodule is continuous. Then each (δ, ε)-double derivation d on \mathcal{A} with continuous δ and ε is continuous.

Proof. Since δ and ε are continuous, it is easy to see that d is an intertwining map when we consider \mathcal{A} as a Banach \mathcal{A}-bimodule in a natural way. Thus, by Theorem 3.1, d is continuous.

It is a well known result due to B. E. Johnson and A. M. Sinclair [5] that every derivation on a semi-simple Banach algebra is continuous. Here we give a similar result for double derivations.

Theorem 3.3. Let \mathcal{A} be a semi-simple Banach algebra and let δ, ε be continuous linear mappings on \mathcal{A}. Then every (δ, ε)-double derivation on \mathcal{A} is continuous.

Proof. Consider \mathcal{A} as a Banach \mathcal{A}-bimodule with it's own product. Let d be a (δ, ε)-double derivation on \mathcal{A}. Thus d is an intertwining map and the separating space $\mathcal{S}(d)$ of d is a separating ideal of \mathcal{A}, see [1, Theorem 5.2.24]. Therefore by [1, Lemma 5.2.25], $\mathcal{S}(d)$ is finite dimensional and hence it contains a nonzero idempotent e, whenever $\mathcal{S}(d) \neq\{0\}$, [1, Corollary 5.2.26]. Let $a_{n} \rightarrow 0$ and $d\left(a_{n}\right) \rightarrow e$. Then

$$
d\left(e a_{n}\right)=e d\left(a_{n}\right)+d(e) a_{n}+\lambda\left(e, a_{n}\right)
$$

which tends to e as $n \rightarrow \infty$. But $e a_{n} \in S(d)$ and d is continuous on the finite dimensional Banach algebra $\mathcal{S}(d)$. Hence $e=0$, a contradiction.

In [7, Theorem 3.7] it is proved that every $*-(\delta, \varepsilon)$-double derivation on a C^{*} algebra, with continuous δ and ε, is continuous. Also in [7, Theorem 3.8] it is proved that a (δ, ε)-double derivation on a C^{*}-algebra is continuous whenever δ and ε are continuous linear $*$-mappings. The next Corollary is a more general result.
Corollary 3.4. Let δ, ε be continuous linear mappings on a C^{*}-algebra \mathcal{A}. Then every (δ, ε)-double derivation on \mathcal{A} is continuous.

Now we begin the second step.
Let \mathcal{B} and \mathcal{C} be subsets of \mathcal{A}. By $\mathcal{B C}$ we mean the set $\{b c: b \in \mathcal{B}, \quad c \in \mathcal{C}\}$. We recall that, the left (resp. right) ideal of \mathcal{A} generated by \mathcal{B} is the linear span of $\mathcal{A B}$ (resp. $\mathcal{B A}$). The closed left (resp. right) ideal of \mathcal{A} generated by \mathcal{B} is defined to be the closure of the linear span of $\mathcal{A B}$ (resp. $\mathcal{B A}$). Clearly, if \mathcal{A} is commutative then the two sided ideal generated by \mathcal{B} is the linear span of $\mathcal{A B}$.

Theorem 3.5. Let d be a (δ, ε)-double derivation on a Banach algebra \mathcal{A}. If d and δ are continuous then $\mathcal{S}(\varepsilon) \delta(\mathcal{A})=\delta(\mathcal{A}) \mathcal{S}(\varepsilon)=\{0\}$.
Proof. Let $a \in \mathcal{A}, b \in \mathcal{S}(\varepsilon)$. There is a sequence $\left\{b_{n}\right\}$ in \mathcal{A} converging to 0 with $\lim _{n \rightarrow \infty} \varepsilon\left(b_{n}\right)=b$. We have

$$
d\left(a b_{n}\right)=a d\left(b_{n}\right)+d(a) b_{n}+\delta(a) \varepsilon\left(b_{n}\right)+\varepsilon(a) \delta\left(b_{n}\right)
$$

Continuity of d and δ implies that $\delta(a) b=0$. Similarly $b \delta(a)=0$.
Corollary 3.6. Let d be a (δ, ε)-double derivation on a commutative unital prime Banach algebra \mathcal{A}. If d and δ are continuous and δ is nonzero, then ε is also continuous.

Proof. We have $\delta(\mathcal{A}) \mathcal{S}(\varepsilon)=\{0\}$. Let \mathcal{I}_{1} and \mathcal{I}_{2} be the ideals generated by $\delta(\mathcal{A})$ and $\mathcal{S}(\varepsilon)$, respectively. Then $\mathcal{I}_{1} \mathcal{I}_{2}=\{0\}$. Since $\mathcal{I}_{1} \neq\{0\}$, \mathcal{I}_{2} and hence $\mathcal{S}(\varepsilon)$ is zero.

Finally, we give some results concerning continuity of δ-double derivations.
Theorem 3.7. If d is a continuous δ-double derivation on a Banach algebra \mathcal{A} then $\mathcal{S}(\delta) \delta(\mathcal{A})=\delta(\mathcal{A}) \mathcal{S}(\delta)=\{0\}$. Moreover, for each $a \in \mathcal{S}(\delta), a^{2}=0$.

Proof. The same argument as in Theorem 3.5 gives that $\mathcal{S}(\delta) \delta(\mathcal{A})=\delta(\mathcal{A}) \mathcal{S}(\delta)=$ $\{0\}$. Now let $a_{n} \rightarrow 0$ and $\delta\left(a_{n}\right) \rightarrow a$. Then

$$
0=\lim _{n \rightarrow \infty} d\left(a_{n}{ }^{2}\right)=\lim _{n \rightarrow \infty} a_{n} d\left(a_{n}\right)+d\left(a_{n}\right) a_{n}+2 \delta\left(a_{n}\right)^{2}
$$

which implies that $a^{2}=0$.
Corollary 3.8. If d is a continuous δ-double derivation on a commutative unital semi-prime Banach algebra \mathcal{A}, then δ is continuous.

Proof. Consider \mathcal{I} to be the closed ideal generated by $\mathcal{S}(\delta)$ in \mathcal{A}. Note that \mathcal{I} contains $\mathcal{S}(\delta)$ since \mathcal{A} is unital. Commutativity of \mathcal{A} and Theorem 3.7 imply that \mathcal{I} is a closed nil and hence nilpotent ideal, see [3]. Since \mathcal{A} is semi-prime, $\mathcal{I}=\{0\}$. It follows that $\mathcal{S}(\delta)=\{0\}$.
Corollary 3.9. If D is a derivation on a Banach algebra \mathcal{A} such that D^{2} is continuous, then $\mathcal{S}(D)$ is nilpotent.

Proof. When D is a derivation D^{2} is a D-double derivation and $\mathcal{S}(D)$ is a closed nil and hence nilpotent ideal.

Acknowledgement. The authors would like to thank the referee for valuable comments and suggestions.

References

1. H.G. Dales, Banach Algebras and Aautomatic Continuity, Clarendon Press, Oxford, 2000.
2. H.G. Dales, and A.R. Villena, Continuity of derivations, intertwining maps, and cocycles from Banach algebras, J. Lond. Math. Soc. (2) 63 (2001), 215-225.
3. S. Grabiner, The nilpotency of nil Banach algebras, Proc. Amer. Math. Soc. 21 (1969) 510.
4. J.T. Hartwig, D. Larsson and S.D. Silvestrov, Deformations of Lie algebras using σ derivations, J. Algebra 295 (2006), 314-361.
5. B.E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073.
6. M. Mirzavaziri and M.S. Moslehian, σ-derivations in Banach algebras, Bull. Iranian Math. Soc. 32 (2006), 65-78.
7. M. Mirzavaziri, E. Omidvar Tehrani, δ-double derivations on C^{*}-algebras, Bull. Iranian Math. Soc. 35 (2009), 147-154.
8. M.P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. (2) $\mathbf{1 2 8}$ (1988), no. 3, 435-460.

1 Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran.

E-mail address: hejazian@um.ac.ir
${ }^{2}$ Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran;
Tusi Mathematical Research Group (TMRG), Mashhad, Iran.
E-mail address: hmahdavianrad@gmail.com
${ }^{3}$ Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran.

E-mail address: mirzavaziri@math.um.ac.ir

[^0]: Date: Received: 20 November 2010; Accepted: 25 December 2010.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 47B47; Secondary 46H40.

