

Ann. Funct. Anal. 1 (2010), no. 2, 68–74
ANNALS OF FUNCTIONAL ANALYSIS
ISSN: 2008-8752 (electronic)
URL: www.emis.de/journals/AFA/

HYERS-ULAM STABILITY OF MEAN VALUE POINTS

PASC GĂVRUŢĂ¹, SOON-MO JUNG^{2*} AND YONGJIN LI³

Communicated by T. Riedel

ABSTRACT. We prove the Hyers–Ulam stability of the Lagrange's mean value points and the Hyers–Ulam–Rassias stability of a differential equation derived from the equation defining the Flett's mean value point.

1. INTRODUCTION

In 1940, S. M. Ulam [16] presented a wide ranging talk to the mathematics club of the University of Wisconsin in which he discussed a number of important unsolved problems. The question concerning the stability of group homomorphisms was among one of the presented topics:

Let G_1 be a group and let G_2 be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon > 0$, does there exist a $\delta > 0$ such that if a function $h: G_1 \to G_2$ satisfies the inequality $d(h(xy), h(x)h(y)) < \delta$ for all $x, y \in G_1$, then there exists a homomorphism $H: G_1 \to G_2$ with $d(h(x), H(x)) < \varepsilon$ for all $x \in G_1$?

D. H. Hyers [5] worked on and solved Ulam problem for the case of approximately additive functions under the assumption that G_1 and G_2 are Banach spaces. In fact, Hyers proved that each solution of the inequality $||f(x + y) - f(x) - f(y)|| \le \varepsilon$, for all x and y, can be approximated by an exact solution, say an additive function. In this case, it is said that the Cauchy additive functional equation, f(x + y) = f(x) + f(y), satisfies the Hyers–Ulam stability or that the equation is stable in the sense of Hyers and Ulam.

Date: Received: 26 August 2010; Accepted: 22 December 2010.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 39B82; Secondary 26A24, 28A15.

Key words and phrases. Lagrange's mean value point, Flett's mean value point, Hyers–Ulam stability, Hyers–Ulam–Rassias stability.

Th. M. Rassias [15] attempted to moderate the condition for the bound of the norm of the Cauchy difference as follows

$$||f(x+y) - f(x) - f(y)|| \le \varepsilon(||x||^p + ||y||^p)$$

and derived Hyers' theorem for the stability of the additive mapping as a special case. Thus Rassias obtained a proof of the generalized Hyers–Ulam stability for the linear mapping between Banach spaces in [15], while T. Aoki [1] proved a particular case of Rassias' theorem regarding the Hyers–Ulam stability of the additive mapping.

The stability concept introduced and presented by Rassias' theorem has influenced a number of mathematicians studying the stability problems of functional equations. Since then, the stability of several functional equations has been extensively investigated by several mathematicians (see for example [4, 6, 7, 9] and the references therein). The terminologies Hyers–Ulam stability and Hyers–Ulam– Rassias stability can also be applied to the case of other mathematical objects (see [10, 11, 12, 13]).

We will now introduce the Lagrange's mean value theorem:

Theorem 1.1. If a function $f : \mathbb{R} \to \mathbb{R}$ is continuous on the finite closed inteval [a, b] and differentiable on (a, b), then there exists a point $\eta \in (a, b)$ such that

$$f'(\eta) = \frac{f(b) - f(a)}{b - a}.$$

The point η will be called a Lagrange's (mean value) point of f.

In 1958, T. M. Flett [3] proved a variant of Lagrange's mean value theorem: If a function $f : [a, b] \to \mathbb{R}$ is differentiable on [a, b] and f'(a) = f'(b), then there exists a point $\eta \in (a, b)$ satisfying

$$f'(\eta) = \frac{f(\eta) - f(a)}{\eta - a},$$

and the point η is called the Flett's (mean value) point.

Recently, M. Das, T. Riedel and P. K. Sahoo examined the stability problem for Flett's mean value points (see [2]). Subsequently, W. Lee, S. Xu and F. Ye [14] applied the idea from [2] to prove the Hyers–Ulam stability of Sahoo-Riedel's points. (For the exact definition of Sahoo-Riedel's points, we refer to [14].)

In Section 2 of this paper, employing the ideas from [2, 14], we prove the Hyers– Ulam stability of the Lagrange's mean value points. Moreover, in Section 3, we investigate the Hyers–Ulam–Rassias stability of the differential equation

$$f'(x) - \frac{f(x) - f(a)}{x - a} = 0$$
(1.1)

which copies the equation for the definition of Flett's mean value points.

2. Hyers-Ulam stability of Lagrange's mean value points

First, we will introduce a theorem proved by Hyers and Ulam in 1954 that plays an important role in proving our main theorem (see [8]). **Theorem 2.1.** Let $f : \mathbb{R} \to \mathbb{R}$ be n-times differentiable in a neighborhood N of the point η . Suppose that $f^{(n)}(\eta) = 0$ and $f^{(n)}(x)$ changes sign at η . Then, for all $\varepsilon > 0$, there exists a $\delta > 0$ such that for every function $g : \mathbb{R} \to \mathbb{R}$ which is n-times differentiable in N and satisfies $|f(x) - g(x)| < \delta$ for any $x \in N$, there exists a point $\xi \in N$ with $g^{(n)}(\xi) = 0$ and $|\xi - \eta| < \varepsilon$.

Using Theorem 2.1 and the ideas from [2, 14], we will now prove our main theorem concerning the Hyers–Ulam stability of the Lagrange's mean value points.

Theorem 2.2. Let a, b, η be real numbers satisfying $a < \eta < b$. Assume that $f : \mathbb{R} \to \mathbb{R}$ is a twice continuously differentiable function and η is the unique Lagrange's mean value point of f in an open interval (a, b) and moreover that $f''(\eta) \neq 0$. Suppose $g : \mathbb{R} \to \mathbb{R}$ is a differentiable function. Then, for a given $\varepsilon > 0$, there exists a $\delta > 0$ such that if $|f(x) - g(x)| < \delta$ for all $x \in [a, b]$, then there is a Lagrange's mean value point $\xi \in (a, b)$ of g with $|\xi - \eta| < \varepsilon$.

Proof. First, we define an auxiliary function $H_f : \mathbb{R} \to \mathbb{R}$ by

$$H_f(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Obviously, H_f is also twice continuously differentiable and $H_f(a) = H_f(b)$. By the Rolle's theorem, there exists an $\eta^* \in (a, b)$ with

$$H'_{f}(\eta^{*}) = f'(\eta^{*}) - \frac{f(b) - f(a)}{b - a} = 0,$$

that is, η^* is a Lagrange's mean value point of f in (a, b), and the uniqueness of η in (a, b) implies that $\eta^* = \eta$.

Since $f''(\eta) \neq 0$ and f''(x) is continuous at η , there exists a $\sigma > 0$ such that either f''(x) > 0 for all $x \in (\eta - \sigma, \eta + \sigma)$ or f''(x) < 0 for each $x \in (\eta - \sigma, \eta + \sigma)$, that is, either f'(x) is strictly increasing on $(\eta - \sigma, \eta + \sigma)$ or f'(x) is strictly decreasing on $(\eta - \sigma, \eta + \sigma)$. More explicitly, it holds true that either

$$H'_{f}(x) = f'(x) - \frac{f(b) - f(a)}{b - a} \begin{cases} < 0 & \text{for } x \in (\eta - \sigma, \eta) \\ = 0 & \text{for } x = \eta \\ > 0 & \text{for } x \in (\eta, \eta + \sigma) \end{cases}$$

or

$$H'_f(x) = f'(x) - \frac{f(b) - f(a)}{b - a} \begin{cases} > 0 & \text{for } x \in (\eta - \sigma, \eta) \\ = 0 & \text{for } x = \eta \\ < 0 & \text{for } x \in (\eta, \eta + \sigma), \end{cases}$$

that is, H'_f changes sign at η .

Now, let us define a differentiable function $H_g : \mathbb{R} \to \mathbb{R}$ by

$$H_g(x) = g(x) - \frac{g(b) - g(a)}{b - a}(x - a),$$

and assume that $|f(x) - g(x)| < \delta$ for any $x \in [a, b]$ and for some $\delta > 0$. Then, such function yields

$$|H_{f}(x) - H_{g}(x)| \leq |f(x) - g(x)| + \frac{x - a}{b - a} |f(a) - g(a)| + \frac{x - a}{b - a} |f(b) - g(b)|$$

$$\leq |f(x) - g(x)| + |f(a) - g(a)| + |f(b) - g(b)|$$

$$< 3\delta$$
(2.1)

for any $x \in (a, b)$.

Assume that $\varepsilon > 0$ is given. According to Theorem 2.1 and (2.1), there exists a $\delta > 0$ such that if $|f(x) - g(x)| < \delta$ for all $x \in [a, b]$, then there is a point $\xi \in (a, b)$ satisfying $|\xi - \eta| < \varepsilon$ and

$$H'_g(\xi) = g'(\xi) - \frac{g(b) - g(a)}{b - a} = 0$$

from which it follows that ξ is a Lagrange's mean value point of g.

Another type of Hyers–Ulam stability problem for the Lagrange's mean value points is presented in the following theorem.

Theorem 2.3. Let a, b, ξ be real numbers satisfying $a < \xi < b$. Assume that $f : \mathbb{R} \to \mathbb{R}$ is a twice continuously differentiable function satisfying either f''(x) > 0 for all $x \in [a, b]$ or f''(x) < 0 for all $x \in [a, b]$. If

$$\left| f'(\xi) - \frac{f(b) - f(a)}{b - a} \right| \le \varepsilon$$
(2.2)

for some $\varepsilon > 0$, then there exists a Lagrange's mean value point η of f on (a, b) satisfying

$$|\eta - \xi| \le \frac{\varepsilon}{\min_{x \in [a,b]} |f''(x)|}.$$

Proof. Due to Lagrange's mean value theorem, there exists a Lagrange's mean value point $\eta \in (a, b)$ with

$$f'(\eta) = \frac{f(b) - f(a)}{b - a}.$$

Hence it follows from (2.2) that

$$|f'(\xi) - f'(\eta)| \le \varepsilon.$$

If $\xi = \eta$ then our assertion is true. Otherwise, without loss of generality, we assume that $a < \eta < \xi < b$. Since f is twice differentiable, by Lagrange's mean value theorem again, there exists a point $\xi_0 \in (\eta, \xi)$ such that

$$|\eta - \xi||f''(\xi_0)| = |f'(\eta) - f'(\xi)|$$

Since f'' is continuous, we further have

$$|\eta - \xi| = \frac{|f'(\eta) - f'(\xi)|}{|f''(\xi_0)|} \le \frac{\varepsilon}{\min_{x \in [a,b]} |f''(x)|},$$

which ends the proof.

3. Hyers–Ulam–Rassias stability of (1.1)

We will now investigate the Hyers–Ulam–Rassias stability of the differential equation (1.1) which copies the equation defining the Flett's mean value point.

Theorem 3.1. Given $a, b \in \mathbb{R}$ with a < b, let $f : [a, b] \to \mathbb{C}$ be a function, which is continuous on [a, b] and continuously differentiable on (a, b). Assume that $\varphi : [a, b] \to [0, \infty)$ is a function satisfying

$$\int_{a}^{x} \frac{\varphi(\tau)}{\tau - a} d\tau < \infty \tag{3.1}$$

for any $x \in (a, b)$. If the function f satisfies

$$\left|f'(x) - \frac{f(x) - f(a)}{x - a}\right| \le \varphi(x)$$

for all $x \in (a,b)$, then there exists a unique function $y : [a,b] \to \mathbb{C}$, which is continuously differentiable on (a,b), such that

$$y'(x) = \frac{y(x) - y(a)}{x - a}$$

and

$$|f(x) - y(x)| \le (x - a) \int_a^x \frac{\varphi(\tau)}{\tau - a} d\tau$$

for all $x \in (a, b)$.

Proof. It is obvious that the function $\frac{-1}{x-a}$ is integrable on (c,b) for a < c < b. Moreover, we have

$$\int_{c}^{x} \exp\left\{-\int_{b}^{\tau} \frac{du}{u-a}\right\} \frac{f(a)}{\tau-a} d\tau = (b-a)\left\{\frac{f(a)}{c-a} - \frac{f(a)}{x-a}\right\} < \infty$$

for any $c, x \in (a, b)$ with c < x. Taking these observations and (3.1) into consideration, [12, Corollary 2] implies that there exists a unique complex number z such that

$$\left| f(x) - \exp\left\{ \int_{b}^{x} \frac{du}{u-a} \right\} \left(z - \int_{b}^{x} \exp\left\{ -\int_{b}^{\tau} \frac{du}{u-a} \right\} \frac{f(a)}{\tau - a} d\tau \right) \right.$$

$$\leq \exp\left\{ \int_{b}^{x} \frac{du}{u-a} \right\} \int_{a}^{x} \varphi(\tau) \exp\left\{ -\int_{b}^{\tau} \frac{du}{u-a} \right\} d\tau$$

for any $x \in (a, b)$, that is, there is a unique function $y : [a, b] \to \mathbb{C}$ such that

$$|f(x) - y(x)| \le (x - a) \int_a^x \frac{\varphi(\tau)}{\tau - a} d\tau$$

for all $x \in (a, b)$, where we set $y(x) = \frac{z - f(a)}{b - a}x + \frac{bf(a) - za}{b - a}$, and we know that y is continuously differentiable on (a, b) and y(a) = f(a).

Moreover, we get

$$y'(x) = \frac{z - f(a)}{b - a}$$

= $\frac{1}{x - a} \left(\frac{z - y(a)}{b - a} x - \frac{z - y(a)}{b - a} a \right)$
= $\frac{1}{x - a} \left(\frac{z - y(a)}{b - a} x + \frac{by(a) - za}{b - a} - y(a) \right)$
= $\frac{y(x) - y(a)}{x - a}$

for all $x \in (a, b)$.

If we set $\varphi(x) = \varepsilon(x-a)^p$ for some $\varepsilon \ge 0$ and p > 0, then we obtain the following

Corollary 3.2. Given $a, b \in \mathbb{R}$ with a < b, let $f : [a, b] \to \mathbb{C}$ be a function, which is continuous on [a, b] and continuously differentiable on (a, b). If the function f satisfies

$$\left| f'(x) - \frac{f(x) - f(a)}{x - a} \right| \le \varepsilon (x - a)^p$$

for all $x \in (a,b)$ and for some $\varepsilon \ge 0$ and p > 0, then there exists a unique function $y : [a,b] \to \mathbb{C}$, which is continuously differentiable on (a,b), such that

$$y'(x) = \frac{y(x) - y(a)}{x - a}$$

and

$$|f(x) - y(x)| \le \frac{\varepsilon}{p} (x - a)^{p+1}$$

for all $x \in (a, b)$.

Acknowledgement. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-0007143). The third named author is supported by the NSF of China (10871213).

References

- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66.
- M. Das, T. Riedel and P.K. Sahoo, Hyers-Ulam stability of Flett's points, Appl. Math. Lett. 16 (2003), 269–271.
- 3. T.M. Flett, A mean value theorem, Math. Gaztte 42 (1958), 38-39.
- G.L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143–190.
- D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224.
- D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkäuser, Boston, 1998.

- D.H. Hyers and Th.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125–153.
- D.H. Hyers and S.M. Ulam, On the stability of differential expressions, Math. Mag. 28 (1954), 59–64.
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
- S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (2004), 1135–1140.
- S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, III, J. Math. Anal. Appl. **311** (2005), 139–146.
- S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, II, Appl. Math. Lett. 19 (2006), 854–858.
- 13. S.-M. Jung, Hyers–Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl. **320** (2006), 549–561.
- W. Lee, S. Xu and F. Ye, Hyers-Ulam stability of Sahoo-Riedel's point, Appl. Math. Lett. 22 (2009), no. 11, 1649–1652.
- Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- 16. S.M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.

¹ DEPARTMENT OF MATHEMATICS, UNIVERSITY "POLITEHNICA" OF TIMISOARA, PIATA VICTORIEI, NO. 2, 300006 TIMISOARA, ROMANIA.

E-mail address: pgavruta@yahoo.com

 2 Mathematics Section, College of Science and Technology, Hongik University, 339-701 Jochiwon, Republic of Korea.

E-mail address: smjung@hongik.ac.kr

 3 Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, China.

E-mail address: stslyj@mail.sysu.edu.cn