
Ann. Funct. Anal. 1 (2010), no. 2, 64–67
A nnals of Functional A nalysis

ISSN: 2008-8752 (electronic)

URL: www.emis.de/journals/AFA/
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Abstract. We investigate an Erdös problem on almost quadratic functions
on R.

1. Introduction

Motivated by a result of Hartman [9], Erdös asked an interesting problem
concerning almost functions as follows:

Erdös Problem [5]. Let f : R → R be a function such that f(x + y) =
f(x) + f(y) for almost all (x, y) ∈ R × R. Dose there exist an additive function
F : R→ R such that f(x) = F (x) for almost all x ∈ R?

Recall that we say a property holds for ‘almost all’ if it holds except on a set of
measure zero. Affirmative answers to this problem were given by Bruijin [3] and
Jurkat [11]. Several mathematicians have studied different functional equations
under the assumption of being hold almost everywhere, among them we could
refer [2, 6, 7, 8, 10].

One of important functional equations is

f(x+ y) + f(x− y) = 2f(x) + 2f(y). (1.1)

The real function f(x) = αx2 is a solution of (1.1), and so this functional
equation is called the quadratic functional equation. In particular, every solution
Q of the quadratic functional equation is said to be a quadratic mapping. It is
well known that a mapping f between real vector space is quadratic if and only
if there exists a unique symmetric bi-additive mapping B is given by B(x, y) =
1
4

(f(x + y)− f(x− y)) (see [14]). Another rather related notion to our work is
that of stability in which one deals with the following essential question “When is
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it true that the solution of an equation differing slightly from a given one, must be
close to the solution of the given equation?” The interested reader is refereed to
[1, 4, 12, 13] and references therein for more information on stability of quadratic
functional equation.

In this note we use the notation and strategy of [3] to give an answer to the
Erdös problem above in the case where the function f satisfies (1.1) for almost
all pairs (x, y) of R× R.

2. Main result

Throughout this short paper the Lebesgue measure is denoted by m. If N ⊆
R × R and (x, y) ∈ R, then (x, y) + N is the set of all (x + n1, y + n2) with
(n1, n2) ∈ N , and −N denotes the set of all (−n1,−n2) with (n1, n2) ∈ N .

Theorem 2.1. Let f : R→ R be a function satisfies (1.1) for almost all (x, y) ∈
R×R. Then there exists a quadratic function h such that f(x) = h(x) for almost
all x ∈ R.

Proof. Assume that (1.1) holds for all (x, y) 6∈ N where N ⊆ R×R and m(N) = 0.
A set of measure zero in x-y-plan has the property that almost every line parallel
to the y-axis intersects it in a set of measure zero. In the other words, there
exists a subset M ⊆ R with m(M) = 0 such that for all x 6∈ M it is true that
(1.1) holds for almost all y (see [3]). Let x be an arbitrary real number. Since

m(M) = m(x−M) = m(
x−M

2
) = 0, we have M ∪ (x−M)∪ (x−M)

2
6= R, so

there exists x1 ∈ R such that x1 6∈M , x−2x1 6∈M and x−x1 6∈M . Therefore,

f(x1 + y) + f(x1 − y) = 2f(x1) + 2f(y) (2.1)

for almost all y.

f(x− 2x1 + y) + f(x− 2x1 − y) = 2f(x− 2x1) + 2f(y) (2.2)

for almost all y, and

f(x− x1 + z) + f(x− x1 − z) = 2f(x− x1) + 2f(z) (2.3)

for almost all z. Putting z = x1 + y and z = x1 − y, in (2.3) we obtain

f(x+ y) + f(x− 2x1 − y) = 2f(x− x1) + 2f(x1 + y) (2.4)

for almost all y, and

f(x− y) + f(x− 2x1 + y) = 2f(x− x1) + 2f(x1 − y) (2.5)

for almost all y, respectively.
By (2.1), (2.2), (2.4) and (2.5) we get

f(x+ y) + f(x− y)− 2f(y) = 4f(x− x1) + 4f(x1)− 2f(x− 2x1)

= 2(2f(x− x1) + 2f(x1)− f(x− 2x1))

for almost all y. Thus there exists a uniquely function h with the property that
for every x,

f(x+ y) + f(x− y)− 2f(y) = 2h(x) (2.6)



66 M. ESHAGHI GORDJI, M. RAMEZANI

for almost all y.
For every x, let Kx denote the set of all y for which (2.6) dose not hold, so that
m(Kx) = 0. If x 6∈ M we also have (1.1) for almost all y. Since m(R) = ∞
it follows that h(x) = f(x) (x 6∈ M). Let a ∈ R , b ∈ R. We shall show the
existence of w, z such that simultaneously

f(a+ w) + f(a− w)− 2f(w) = 2h(a) (2.7)

f(b+ z) + f(b− z)− 2f(z) = 2h(b) (2.8)

f(a+ b+ w + z) + f(a+ b− w − z)− 2f(w + z) = 2h(a+ b) (2.9)

f(a− b+ w − z) + f(a− b− w + z)− 2f(w − z) = 2h(a− b) (2.10)

f(w + z) + f(w − z) = 2f(w) + 2f(z) (2.11)

f(a+ b+ w + z) + f(a− b+ w − z) = 2f(a+ w) + 2f(b+ z) (2.12)

f(a+ b− w − z) + f(a− b− w + z) = 2f(a− w) + 2f(b− z) (2.13)

The exceptional sets are, respectively, for (2.7):Ka×R, for (2.8):R×Kb, for (2.9):
the set of (w, z) with w+z ∈ Ka+b, for (2.10): the set (w, z) with w−z ∈ Ka−b, for
(2.11): the set N , for (2.12): the set (−a,−b) +N , for (2.13): the set (a, b)−N .
Since this sets have measure zero, therefore, the set of (w, z) for which (2.7),
(2.8), (2.9), (2.10), (2.11), (2.12) and (2.13) hold simultaneously is non-empty.
Thus (2.7), (2.8), (2.9) and (2.10) are compatible. It immediately follows that
h(a+ b) + h(a− b) = 2h(a) + 2h(b). �
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