Ann. Funct. Anal. 1 (2010), no. 2, 64-67
\mathscr{A} nnals OF \mathscr{F} UNCtional \mathscr{A} NALYSis
ISSN: 2008-8752 (electronic)
URL: www.emis.de/journals/AFA/

ERDÖS PROBLEM AND QUADRATIC EQUATION

M. ESHAGHI GORDJI ${ }^{1 *}$ AND M. RAMEZANI ${ }^{2}$
Communicated by M. S. Moslehian

Abstract. We investigate an Erdös problem on almost quadratic functions on \mathbb{R}.

1. Introduction

Motivated by a result of Hartman [9], Erdös asked an interesting problem concerning almost functions as follows:

Erdös Problem [5]. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x+y)=$ $f(x)+f(y)$ for almost all $(x, y) \in \mathbb{R} \times \mathbb{R}$. Dose there exist an additive function $F: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=F(x)$ for almost all $x \in \mathbb{R}$?

Recall that we say a property holds for 'almost all' if it holds except on a set of measure zero. Affirmative answers to this problem were given by Bruijin [3] and Jurkat [11]. Several mathematicians have studied different functional equations under the assumption of being hold almost everywhere, among them we could refer $[2,6,7,8,10]$.

One of important functional equations is

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

The real function $f(x)=\alpha x^{2}$ is a solution of (1.1), and so this functional equation is called the quadratic functional equation. In particular, every solution Q of the quadratic functional equation is said to be a quadratic mapping. It is well known that a mapping f between real vector space is quadratic if and only if there exists a unique symmetric bi-additive mapping B is given by $B(x, y)=$ $\frac{1}{4}(f(x+y)-f(x-y))$ (see [14]). Another rather related notion to our work is that of stability in which one deals with the following essential question "When is

[^0]* Corresponding author.

2010 Mathematics Subject Classification. Primary 39B72; Secondary 39B70.
Key words and phrases. quadratic function; almost additive function; Erdös problem.
it true that the solution of an equation differing slightly from a given one, must be close to the solution of the given equation?" The interested reader is refereed to $[1,4,12,13]$ and references therein for more information on stability of quadratic functional equation.

In this note we use the notation and strategy of [3] to give an answer to the Erdös problem above in the case where the function f satisfies (1.1) for almost all pairs (x, y) of $\mathbb{R} \times \mathbb{R}$.

2. Main Result

Throughout this short paper the Lebesgue measure is denoted by m. If $N \subseteq$ $\mathbb{R} \times \mathbb{R}$ and $(x, y) \in \mathbb{R}$, then $(x, y)+N$ is the set of all $\left(x+n_{1}, y+n_{2}\right)$ with $\left(n_{1}, n_{2}\right) \in N$, and $-N$ denotes the set of all $\left(-n_{1},-n_{2}\right)$ with $\left(n_{1}, n_{2}\right) \in N$.

Theorem 2.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function satisfies (1.1) for almost all $(x, y) \in$ $\mathbb{R} \times \mathbb{R}$. Then there exists a quadratic function h such that $f(x)=h(x)$ for almost all $x \in \mathbb{R}$.

Proof. Assume that (1.1) holds for all $(x, y) \notin N$ where $N \subseteq \mathbb{R} \times \mathbb{R}$ and $m(N)=0$. A set of measure zero in x -y-plan has the property that almost every line parallel to the y-axis intersects it in a set of measure zero. In the other words, there exists a subset $M \subseteq \mathbb{R}$ with $m(M)=0$ such that for all $x \notin M$ it is true that (1.1) holds for almost all y (see [3]). Let x be an arbitrary real number. Since $m(M)=m(x-M)=m\left(\frac{x-M}{2}\right)=0$, we have $M \cup(x-M) \cup \frac{(x-M)}{2} \neq \mathbb{R}$, so there exists $x_{1} \in \mathbb{R}$ such that $x_{1} \notin M, x-2 x_{1} \notin M$ and $x-x_{1} \notin M$. Therefore,

$$
\begin{equation*}
f\left(x_{1}+y\right)+f\left(x_{1}-y\right)=2 f\left(x_{1}\right)+2 f(y) \tag{2.1}
\end{equation*}
$$

for almost all y.

$$
\begin{equation*}
f\left(x-2 x_{1}+y\right)+f\left(x-2 x_{1}-y\right)=2 f\left(x-2 x_{1}\right)+2 f(y) \tag{2.2}
\end{equation*}
$$

for almost all y, and

$$
\begin{equation*}
f\left(x-x_{1}+z\right)+f\left(x-x_{1}-z\right)=2 f\left(x-x_{1}\right)+2 f(z) \tag{2.3}
\end{equation*}
$$

for almost all z. Putting $z=x_{1}+y$ and $z=x_{1}-y$, in (2.3) we obtain

$$
\begin{equation*}
f(x+y)+f\left(x-2 x_{1}-y\right)=2 f\left(x-x_{1}\right)+2 f\left(x_{1}+y\right) \tag{2.4}
\end{equation*}
$$

for almost all y, and

$$
\begin{equation*}
f(x-y)+f\left(x-2 x_{1}+y\right)=2 f\left(x-x_{1}\right)+2 f\left(x_{1}-y\right) \tag{2.5}
\end{equation*}
$$

for almost all y, respectively.
By (2.1), (2.2), (2.4) and (2.5) we get

$$
\begin{aligned}
f(x+y)+f(x-y)-2 f(y) & =4 f\left(x-x_{1}\right)+4 f\left(x_{1}\right)-2 f\left(x-2 x_{1}\right) \\
& =2\left(2 f\left(x-x_{1}\right)+2 f\left(x_{1}\right)-f\left(x-2 x_{1}\right)\right)
\end{aligned}
$$

for almost all y. Thus there exists a uniquely function h with the property that for every x,

$$
\begin{equation*}
f(x+y)+f(x-y)-2 f(y)=2 h(x) \tag{2.6}
\end{equation*}
$$

for almost all y.
For every x, let K_{x} denote the set of all y for which (2.6) dose not hold, so that $m\left(K_{x}\right)=0$. If $x \notin M$ we also have (1.1) for almost all y. Since $m(\mathbb{R})=\infty$ it follows that $h(x)=f(x)(x \notin M)$. Let $a \in \mathbb{R}, b \in \mathbb{R}$. We shall show the existence of w, z such that simultaneously

$$
\begin{align*}
& f(a+w)+f(a-w)-2 f(w)=2 h(a) \tag{2.7}\\
& f(b+z)+f(b-z)-2 f(z)=2 h(b) \tag{2.8}\\
& f(a+b+w+z)+f(a+b-w-z)-2 f(w+z)=2 h(a+b) \tag{2.9}\\
& f(a-b+w-z)+f(a-b-w+z)-2 f(w-z)=2 h(a-b) \tag{2.10}\\
& f(w+z)+f(w-z)=2 f(w)+2 f(z) \tag{2.11}\\
& f(a+b+w+z)+f(a-b+w-z)=2 f(a+w)+2 f(b+z) \tag{2.12}\\
& f(a+b-w-z)+f(a-b-w+z)=2 f(a-w)+2 f(b-z) \tag{2.13}
\end{align*}
$$

The exceptional sets are, respectively, for (2.7): $K_{a} \times \mathbb{R}$, for (2.8): $\mathbb{R} \times K_{b}$, for (2.9): the set of (w, z) with $w+z \in K_{a+b}$, for (2.10): the set (w, z) with $w-z \in K_{a-b}$, for (2.11): the set N, for (2.12): the set $(-a,-b)+N$, for (2.13): the set $(a, b)-N$. Since this sets have measure zero, therefore, the set of (w, z) for which (2.7), (2.8), (2.9), (2.10), (2.11), (2.12) and (2.13) hold simultaneously is non-empty. Thus (2.7), (2.8), (2.9) and (2.10) are compatible. It immediately follows that $h(a+b)+h(a-b)=2 h(a)+2 h(b)$.

Acknowledgement. The authors would like to thank Tusi Mathematical Research Group (TMRG), Mashhad, Iran.

References

1. M. Adam and S. Czerwik, On the stability of the quadratic functional equation in topological spaces, Banach J. Math. Anal. 1 (2007), no. 2, 245-251.
2. I. Adamaszek, Almost trigonometric functions, Glas. Mat. Ser. III 19(39) (1984), no. 1, 83-104.
3. N.G. De Bruijn, On almost additive functions, Colloq. Math. 15 (1966), 59-63.
4. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, New Jersey, London, Singapore, Hong Kong, 2002.
5. P. Erdös, Problem P310, Colloq. Math. 7 (1960), p. 311.
6. N. Frantzikinakis, Additive functions modulo a countable subgroup of \mathbb{R}, Colloq. Math. 95 (2003), no. 1, 117-122.
7. R. Ger, Note on almost additive functions, Aequationes Math. 17 (1978), no. 1, 73-76.
8. R. Ger, On some functional equations with a restricted domain, Fund. Math. 89 (1975), no. 2, 131-149.
9. S. Hartman, A remark on Cauchy's equation, Colloq. Math. 81961 77-79.
10. W. Jablonski, "Pexiderized" homogeneity almost everywhere, J. Math. Anal. Appl. 325 (2007), no. 1, 675-684.
11. W.B. Jurkat, On Cauchy's equational equation, Proc. Amer. Math. Soc. 16 (1965), 683-686.
12. M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. 37 (2006), no.3, 361-376.
13. A.K. Mirmostafaee and M.S. Moslehian, Fuzzy almost quadratic functions, Results in Math. 52 (2008), 161-177.
14. F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
15. J. Tabor and J. Tabor, Stability of the Cauchy equation almost everywhere, Aequationes Math. 75 (2008), no. 3, 308-313.

1,2 Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, IRAN.

E-mail address: madjid.eshaghi@gmail.com, ramezanim@ymail.com

[^0]: Date: Received: 1 November 2010; Accepted: 20 December 2010.

